Medical Imaging (EL582/BE620/GA4426)

Ultrasound Imaging

Daniel Turnbull, Ph.D. Skirball Institute and Dept of Radiology NYU School of Medicine

Reference

Prince and Links, Medical Imaging Signals and Systems, Chap. 10 (Math derivations in section 10.5 not required),11.2,11.3

Acknowledgement

Thanks to Professor Yao Wang for use of her course materials!

Ultrasound Imaging

- Measure the reflectivity of tissue to sound waves
- Can also measure velocity of moving objects, e.g. blood flow (Doppler imaging)
- No radiation exposure, completely non-invasive and safe (*)
- Fast
- Inexpensive (relatively)

Medical Ultrasound Imaging Medical applications: fetus, heart, abdominal,... 3-10 MHz \$ 1 mm resolution (limited contrast) \$ 60 images per second

Acoustic Waves Pressure waves that propagate through matter via compression and expansion of the material - Generated by compressing and releasing a small volume of tissue Longitudinal wave Particles in the medium move back and force in the same direction that the wave is traveling Shear Wave - Particles move at right angles to the direction of the wave - Not used for medical ultrasound imaging

		000	0	0	0	٥	•	000	0	0	0
	•	000	•	0	0	0	•	000	•	•	•
		000	0	•	0	0	0	000	•	•	•
	0	000	0	0	0	0	•	00 0	•	•	0
λ		000	۵	0	ø	0	٥	00 0	0	0	•
		-			λ			-•			

EM vs Acoustic Waves

Electromagnetic

- Self propagating, consisting of electric and magnetic components ascillating at right angles to each other, and to propagation direction Does not *require* a material medium through which to propagate Classification (increasing in frequency, decreasing in wavelength): » radio, microwave, infrared, visible light, ultraviolet, x-ray, gamma ray

Acoustic

- Pressure waves that propagate through matter via compression and expansion of the material Requires a material medium through which to propagate
 Classification (increasing in frequency, decreasing in wavelength):
 » Infra sound, audible sound, ultrasound

Transfer / Transformation of Energy

- Light becomes sound photoacoustic phenomena
- Sound becomes light sonoluminescence
- Absorbed electromagnetic (EM) and acoustic energy both become heat
- Nevertheless, EM and acoustic energy are FUNDAMENTALLY DISTINCT PHENOMENA!

Acoustic	Wave E	nergy Rang	Jes
Intrasound	Audible	Ultrasound	
2	0 Hz 20	kHz	
Just as there are i the EM spectrum, s "beneath"), audible "beyond," "above")	nfrared, visib so there are i (i.e., sound) ranges of aco	le, and ultraviolet (nfrasound (``infra") and ultrasound (``uli ustic wave frequend	ranges in = "below tra" = cies

 Note that the ratio of the highest to the lowest audible frequencies is 10³, while the ratio of the highest to the lowest frequencies of visible light is a bit less than 2!

Image frame rate is determined by sound speed

- Sound speed = 1540 m/s = 1.54 mm/µs
 - 256 line image / Depth = 10 mm

Propagation length = 20 mm (2-way) Time per line = $20/1.54 \sim 13 \ \mu s$

Time per image = 13 x 256 = 3300 µs = 3.3 ms

Frame rate = 1/3.3 ms ~ 300 images/s

- Ultrasound imaging relies on the propagation of sound within tissue
- Mechanical (pressure) wave
- Pressure distribution

3D Wave Equation

• <u>Acoustic pressure</u>: p(x, y, z, t)• <u>3-D wave equation</u> $\nabla^2 p(x, y, z, t) = \frac{1}{c^2} p_{tt}(x, y, z, t)$ where $\nabla^2 p = p_{xx} + p_{yy} + p_{zz}$ and c is the <u>speed of sound</u> • General solution is very complicated

Harmonic Waves

Harmonic plane wave: p(z,t) = cos(k[z-ct])

- Viewed at a fixed particle, the pressure changes in time with frequency f₁=kc/2π (cycles/s)
- Viewed at a fixed time, the pressure changes in z with frequency f_z=k/2π
 - k is called wavenumber
- Wavelength is the spacing between peak or valleys of the wave at any time
 λ=1/f₂=2π/k=c/f₁
- (approximately) Harmonic wave are widely used in ultrasound imaging
- Given f_t, the wavelength depends on c, which depends on tissue properties!
- Wavelength determines the resolution of ultrasound imaging - Ex: f_1 =3.5 MHz, c=1540m/s (most tissue), λ =0.44mm

Attenuation of Ultrasound

- Attenuation = Energy lost through interactions between ultrasound waves and soft tissues:
 - Absorption: Power deposited in tissue (Heat) - <u>Scattering</u>
 - Ultrasound radiated away from transducer

Attenuation of Ultrasound

- Attenuation is frequency dependent:
 a(f) = a_o fⁿ
 - $a_{_{0}}$ is the attenuation coefficient at 1 $$\rm MHz$$
 - n ~1 for most soft tissues
- Attenuation leads to a decrease in amplitude of the ultrasound signal: Attenuation ~ 1 dB / cm / MHz

Attenuation: An Example

What relative amplitude of a 60 MHz ultrasound signal do you expect to receive from a depth of 5 mm?

Attenuation ~ 1 dB / cm / MHz

@ 60MHz: Attenuation ~ 60 dB/cm

Depth = 5 mm: Ultrasound propagates through 1 cm

Attenuation ~ 60 x 1 = 60 dB 1/1000 of the transmitted signal is received!

- Consequences of frequency dependent attenuation for imaging:
- Penetration of ultrasound is limited by frequency
 - Frequency of ultrasound decreases with increasing depth of imaging

Resolution vs Penetration

- Resolution (axial and lateral) | with | frequency
- Penetration | with †frequency

Compromise between resolution and penetration

Doppler Ultrasound: Basic Concepts

- Ultrasound wave reflected from moving targets (*Blood cells*)
- Frequency shift in received ultrasound wave compared to transmitted wave: Doppler Shift Frequency, f_d

□\\\\• ◆ Target moves way from transducer:

Target moves towards transducer:

- More compressions per unit time: $f_d > 0$

Doppler Ultrasound: Basic Concepts

Transducer ____ / / / / / / / / /

 \Box'

- Fewer compressions per unit time: $f_d < 0$

Target (stationary): f_d = 0

Doppler Equation: Consequences

- Shift frequency is proportional to blood velocity
- $f_o = 2-10 \text{ MHz}$, v = 0-5 m/s $\rightarrow f_d = 0-15 \text{ kHz}$ (Audio frequencies)
- f_d is maximized when blood flow is in-line with ultrasound beam (θ =0)
- f_d = 0 when flow is perpendicular to the beam

Schematic: Ultrasound Imaging System transmitter TGC am for scan convert nalog to digita converter signal proces

Matching Layer(s)

- To provide acoustic coupling between the crystal and patient skin and to protect surface of the crystal Z of PZT (Z, I) is ~45 times greater than Z of tissue (Z,). Placing crystal directly over skin would result a large amount of energy be reflected back from the Boundary » R = [(Z_1-Z_1)/(Z_1+Z_1)] ~1 Matching layer layer thickness = $\lambda/4$ $Z_z = /(Z_1-Z_2)$ Maximize energy transfer into the body Show as a homework(*) Problems: Finding material with exact Z value

Beam Properties of a Piston Transducer

- At border of the beam width, the signal strength drops by a factor of 2, compared to the strength on the z-axis
- Beam width determines the imaging resolution (lateral resolution).
- Smaller D is good only before far field
- D=1~5 cm in practice, very poor lateral resolution
- Focused plate is used to produce narrow beam

Array types

- Linear Sequential (switched) ~1 cm x 10-15 cm, up to 512 elements Curvilinear similar to (a), wider field of view
- iew
- Linear Phased up to 128 elements, small footprint → cardiac imaging
- 1.5D Array 3-9 elements in elevation allow for focusing
- 2D Phased Focusing, steering in both dimensions

Homework

Reading:

- Reading:
 Prince and Links, Medical Imaging Signals and Systems, Chap. 10 (Sec. 10.5 not required),11.2,11.3
 Problems:

 P10.1
 P10.3
 P10.6
 P10.8
 P10.12
 P10.13
 Considering the (\/4) matching layer in a transducer. Show that the transmitted energy into the tissue is maximized with an impedance of √(Z_TZ_L)