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Topics Covered
• Image representation
• Color representation• Color representation
• Quantization

Contrast enhancement• Contrast enhancement
• Spatial Filtering: noise removal, 

sharpening edge detectionsharpening, edge detection
• Frequency domain representations

FT DTFT DFT it t f– FT, DTFT, DFT, unitary transforms
– Implementation of linear filtering using DTFT 

and DFT
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Color Image Representation
• Light is the visible band of the EM wave

– Color hue of a light depends on the wavelength of the EM wave
Ill i ti li ht fl ti li ht– Illuminating light vs. reflecting light

• Color attributes:
– Brightness (luminance)
– Hue (depends on the wavelength)
– Saturation (purity)

• Any color can be reproduced by mixing three primaryAny color can be reproduced by mixing three primary 
colors
– Illuminating and reflecting light sources follow different mixing 

rules
• Color can be represented in many different coordinates 

(or models) with 3 components 
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Tri-chromatic Color Mixing
• Tri-chromatic color mixing theory

– Any color can be obtained by mixing three primary colors with a 
right proportionright proportion

• Primary colors for illuminating sources:
– Red, Green, Blue (RGB)
– Color monitor works by exciting red, green, blue phosphors 

using separate electronic guns
– follows additive rule: R+G+B=White

• Primary colors for reflecting sources (also known as 
secondary colors):
– Cyan, Magenta, Yellow (CMY)
– Color printer works by using cyan, magenta, yellow and black 

(CMYK) dyes
– follows subtractive rule: R+G+B=Black
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Color Models
• Specify three primary or secondary colors

– Red, Green, Blue.
– Cyan, Magenta, Yellow.

• Specify the luminance and chrominance
– HSB or HSI (Hue, saturation, and brightness or 

intensity)
– YIQ (used in NTSC color TV)Q ( )
– YCbCr (used in digital color TV)

• Amplitude specification: 
– 8 bits per color component, or 24 bits per pixel
– Total of 16 million colors 

A 1kx1k true RGB color requires 3 MB memory
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Color Image Processing
• Apply contrast enhancement or filtering (linear or 

non-linear) to each primary color component 
independently using the techniques for 
monochrome images

May change the color hue of the original image– May change the color hue of the original image
• Convert the tri-stimulus representation into a 

luminance / chrominance representation, and p ,
modify the luminance component only.

• For certain applications, different operations 
b li d t diff t l tmay be applied to different color components 

(either in RGB domain or in YC1C2 domain) to 
obtain special desired effects

Yao Wang, NYU-Poly EL5123: Midterm Summary 6

obtain special desired effects



Pseudo Color Processing

• Given a gray-scale image, we may display 
it in pseudo colors to better reveal certainit in pseudo colors to better reveal certain 
features

Color depends on image pixel value– Color depends on image pixel value
• Often used in medical image display, weather 

maps, vegetation mapsp , g p
– Decompose an image into different frequency 

bands and represent each band with different p
colors
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Quantization

Quantizerf Q(f)

Q(f)
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Decision Levels {tk, k = 1, …, L+1}
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Uniform Quantization
• Equal distances between adjacent 

decision levels and between adjacentdecision levels and between adjacent 
reconstruction levels
– tl – tl-1 = rl – rl-1 = ql l 1 l l 1 q

• Parameters of Uniform Quantization
– L: levels (L = 2R)( )
– B: dynamic range B = fmax – fmin
– q: quantization interval (step size)q q ( p )
– q = B/L = B2-R

Yao Wang, NYU-Poly EL5123: Midterm Summary 9



Uniform Quantization: 
Functional Representation

Q(f)

r7=fmax-q/2
t i (f f )/L

qff  
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stepsize q=(fmax-fmin)/L

min
min
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)( fqq
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f /2

r1
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MSE of a Quantizer
• Mean square error (MSE) of a quantizer for a continuous 

valued signal
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– Where p(f) is the probability density function of f

• MSE for a specific image
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MSE of a Uniform Quantizer for A 
Uniform SourceUniform Source
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Example: Nonuniform Source
• The pdf of a signal is shown below, we want to quantize 

it to 2 levels. Determine the partition and reconstruction 
levels that minimizes the quantization error (in terms of 
MSE). Also compute the MSE and SNR.

• Go through in class• Go through in class.

p(f)
1/2

f
Exp(-f)Exp(f)
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MMSE Quantizer

• For any pdf, the quantizer that minimizes 
MSE is known as Minimal MSE (MMSE)MSE is known as Minimal MSE (MMSE) 
quantizer. 
Given simple pdf should know how to• Given simple pdf, should know how to 
determine the decision and reconstruction 
levels to minimize MSElevels to minimize MSE

• Given a quantizer and signal pdf, should 
know how to calculate MSE
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Contrast Enhancement

• An frequently used, important operation
Ho to tell the contrast of an image from• How to tell the contrast of an image from 
its histogram?

• Given a histogram, can sketch a 
transformation that will enhance the 
contrast

• Histogram equalization
• Histogram specification
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Histogram vs. Contrast
p(f) p(f) p(f)

f ff f f

Yao Wang, NYU-Poly EL5123: Midterm Summary 16

(a) Too dark (b) Too bright (c) Well balanced



Enhancement of Too-Dark Images

H(f)

g

g

f

gmax
New histogram

fmax
H(g)

Original histogram
fmax f

Transformation function:
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Enhancement of Too-Bright Images

H(f)

g

g

f

gmax
New histogram

fmax
H(g)

Original histogram
fmax f

Transformation function:
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Enhancement of Images Centered 
near the Middle Rangenear the Middle Range

H(f)

g

g

f

gmax
New histogram

fmax
H(g)

Original histogram
fmax f

Transformation function
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Histogram Equalization

• Transforms an image with an arbitrary 
histogram to one with a flat histogramhistogram to one with a flat histogram
– Suppose f has PDF pF(f), 0 ≤ f ≤ 1

Transform function (continuous version)– Transform function (continuous version)

i if l di t ib t d i (0 1)


f

F dttpfg
0

)()(

– g is uniformly distributed in (0, 1)

HistogramHistogram
Equalization
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Histogram Specification

• What if the desired histogram is not flat?

Histogram
Equalization

Histogram
Equalization

g = sf z

pF(f) pZ(z)pZ(z)
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Image Filtering
• Applications:

– Noise removal (image smoothing, low-pass filtering)( g g p g)
– Edge enhancement (deblurring, high-emphasis)
– Edge detection (high-pass filtering)

C t t h t i li h d b i t• Contrast enhancement is accomplished by point 
operation, i.e., each pixel value is changed 
based on its original value, not its neighboringbased on its original value, not its neighboring 
pixels (but the transformation function depends 
on the overall histogram of the image)

• Image filtering refers to changing the color value 
of one pixel based on the color values of this 
pixel and its neighbors
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Three Ways of Implementing Linear 
FilteringFiltering

• Spatial domain
– Weighted average of adjacent pixels = linear convolution
– Weights or the filter depends on the desired filtering effect– Weights or the filter depends on the desired filtering effect

• Frequency domain (FT, DTFT)
– Design spatial filter based on desired frequency response

• Low pass high pass high emphasisLow pass, high pass, high emphasis
– Convolution theorem: h*f  H F

• Frequency domain (DFT)
– Perform filtering in DFT domainPerform filtering in DFT domain
– Convolution theorem: 

• circulation convolution h@f  H F
– Relation between circulation convolution and linear convolution
– Filter masks in the DFT domain must be designed properly so 

that the corresponding filter in the spatial domain is real 
• The filter mask should enjoy the symmetry property of real signals
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Linear Convolution of Continuous 
SignalsSignals

• 1D convolution
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Linear Convolution of Discrete 
SignalsSignals

• 1D convolution
 

• 2D convolution
 
 
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m m

mnhmfmhmnfnhnf )()()()()(*)(

• 2D convolution
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• Separable filtering

 
 k l
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Interpretation as weighted average of 
neighboring samples

• How should we design the weights?
Smoothing: sum=1 coef >=0– Smoothing: sum=1, coef >=0

– High emphasis: sum=1, some coef <0
Ed d t ti (hi h ) 0– Edge detection (high pass): sum=0
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Ex: Smoothing by Averaging
• Replace each pixel by the average of 

pixels in a square window surrounding thispixels in a square window surrounding this 
pixel

)1,1(),1()1,1((
9
1),(  nmfnmfnmfnmg

))1,1(),1()1,1(
)1,(),()1,(

9




nmfnmfnmf
nmfnmfnmf

• Trade-off between noise removal and 
detail preserving:

)),(),(),( fff

detail preserving:
– Larger window -> can remove noise more 

effectively, but also blur the details/edges
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Directional Edge Detector 

• High pass in one direction and low pass in 
the orthogonal directionthe orthogonal direction

• Prewitt edge detector
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• Sobel edge detector
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Special Considerations in 
ImplementationImplementation

• Boundary treatment
– If f is MxN, h is KxL, convolved image g is (M+K-

1) (N+L 1)1)x(N+L-1)
– Instead of expanding the image size, we modify 

filtering operations at the boundary
S t i i• Symmetric expansion

• Leave the boundary pixels unchanged
• Renormalization

– Filtered values may not be integer, and may have 
negative values, may have a smaller or larger 
dynamic range than original

– To save resulting image in an 8-bit unsigned char 
format, we normalize all values to 0-255

• g’= (g-g_min)/(g_max-g_min) * 255
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Fourier Transform For Discrete Time 
Sequence (DTFT)Sequence (DTFT)

• 1D
– Forward Transform 


 unjenfuF 2)()(

– Inverse Transform

n


2/1

2/1

2)()( dueuFnf unj 

• 2D
– Forward Transform  










m n

nvmujenmfvuF )(2),(),( 

– Inverse Transform

  
2/1 2/1 )(2),(),( dudvevuFnmf nvmuj 

• Separable implementation
Transform each row first with 1D DTFT, then each 

  2/1 2/1
),(),(f
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Design Filters Based on Desired 
Frequency ResponseFrequency Response

• Convolution theorem

)()()(*)( vuHvuFyxhyxf 

• Filter h(x,y) designed based on desired frequency 
response H(u v)

),(),(),(*),( vuHvuFyxhyxf 

response H(u,v)
– Sharp transitions in frequency domain very long filters in spatial 

domain
– Apply a window function to smooth the transition band shorterApply a window function to smooth the transition band  shorter 

filters
• Giver a spatial filter, we can use DTFT to better 

understand its filtering effect (frequency response)understand its filtering effect (frequency response)
• Separable filters

– Design horizontal and vertical filters separately
F i ll h t filt

Yao Wang, NYU-Poly EL5123: Midterm Summary 31

– For images, we usually use very short filters



Discrete Fourier Transform (DFT): 
DTFT for Finite Duration SignalsDTFT for Finite Duration Signals
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Circular Convolution Theorem

• Circular convolution
1N

• Circular convolution• Circular convolution
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Convolution theoremConvolution theorem• Convolution theorem
)()()()( kHkFnhnf 

• Convolution theorem• Convolution theorem
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2D Discrete Fourier Transform

• Definition
Assuming f(m n) m = 0 1 M 1 n = 0– Assuming f(m, n), m = 0, 1, …, M-1, n = 0, 
1, …, N-1, is a finite length 2D sequence
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Periodicity Property of 2D DFT

• Periodicity
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Calculate Linear Convolution Using DFT

• 1D case
f(n) is length N h(n) is length N– f(n) is length N1, h(n) is length N2

– g(n) = f(n)*h(h) is length N = N1+N2-1.
T DFT d t t d f( ) d h( ) t– To use DFT, need to extend f(n) and h(n) to 
length N by zero padding.

f(n) h(n) g(n)*
Convolution

F(k) H(k) G(k)x

DFT DFT DFT

Multiplication
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What is a Linear Transform
• Represent an image (or an image block) as the 

linear combination of some basis images andlinear combination of some basis images and 
specify the linear coefficients. 

+
t1 t2 t3 t42 3 4
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One Dimensional Linear Transform

• Let CN represent the N dimensional 
complex spacecomplex space.

• Let h0, h1, …, hN-1 represent N linearly 
independent vectors in CNindependent vectors in CN.

• For any vector f є CN, 
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Orthonormal Basis Vectors (OBV)

• {hk, k=0,…N-1} are OBV if
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Definition of Unitary Transform

• Basis vectors are orthonormal
For ard transformfh
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Two Dimensional Unitary Transform

• {Hk,l} is an orthonormal set of basis images
For ard transform• Forward transform


 


1 1

* )()()(
M N

nmFnmHlkT FH

• Inverse transform


 


0 0

,, ),(),(,),(
m n

lklk nmFnmHlkT FH

Inverse transform











1

0

1

0
, ,),(),(),(

M

k

N

l
lk ornmHlkTnmF











1

0

1

0
,),(

M

k

N

l
lklkT HF

Yao Wang, NYU-Poly EL5123: Final Review 41



Example of 2D Unitary Transform
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Separable Unitary Transform

• Let hk, k=0, 1, …, M-1 represent a set of 
orthonormal basis vectors in CMorthonormal basis vectors in C ,

• Let gl, l=0, 1, …, N-1 represent another set 
of orthonormal basis vectors in CNof orthonormal basis vectors in CN,

• Let Hk,l=hkgl
T, or Hk,l(m,n)=hk(m)gl(n).

• Then Hk,l will form an orthonormal basis 
set in CMxN.

• Transform can be performed separately, 
first row wise, then column wise
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Example of Separable Unitary Transform

• Example 1
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Why Using Transform?

• When the transform basis is chosen 
properlyproperly
– Many coefficients have small values and can 

be quantized to 0 w/o causing noticeablebe quantized to 0 w/o causing noticeable 
artifacts

– The coefficients are uncorrelated and henceThe coefficients are uncorrelated, and hence 
can be coded independently w/o losing 
efficiency.
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Midterm Exam Logistics

• Scheduled time: 11/2 3-5:40, RH615
Closed book 1 sheet of notes allo ed• Closed-book, 1 sheet of notes allowed 
(double sided OK)

• Special Office hour
– Monday 10/31 3-5PM or by appointment
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