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Topics Covered Before Midterm
• Image representation
• Color representation• Color representation
• Quantization

Contrast enhancement• Contrast enhancement
• Spatial Filtering: noise removal, 

sharpening edge detectionsharpening, edge detection
• Frequency domain representations

FT DTFT DFT– FT, DTFT, DFT
– Implementation of linear filtering using DTFT 

and DFT
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Topics Covered After Midterm
• Non-linear filtering: median, morphological 

filtering
• Image sampling, interpolation and resizing
• Image compression

– Lossless coding: entropy bound, Huffman coding, 
runlength coding for bilevel images

– Transform coding: unitary transform quantizationTransform coding: unitary transform, quantization, 
runlength coding of coefficients, JPEG

– Wavelet transform and JPEG2K, Scalability
G i f i• Geometric transformation

• Image Restoration
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Non-Linear Filtering

• Convolution is a linear operation
g1=f1*h g2=f2*h– g1=f1 h, g2=f2 h

– (a1* f1+a2* f2)*h=a1* g1+a2*g2
Li filt i b l d i• Linear filtering can be analyzed in 
frequency domain easily

• Non-linear filtering
– Median
– Rank-order filtering
– Morphological filtering
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Median Filter
• Problem with averaging or weighted averaging 

filter 
Bl d d d t il i i– Blur edges and details in an image

– Not effective for impulse noise (Salt-and-pepper)
• Median filter:Median filter:

– Taking the median value instead of the average or 
weighted average of pixels in the window

• Sort all the pixels in an increasing order, take the middle oneSort all the pixels in an increasing order, take the middle one
– The window shape does not need to be a square
– Special shapes can preserve line structures

Median filter is a NON LINEAR operation• Median filter is a NON-LINEAR operation
• Generalization of median filtering

– Rank-order filtering: taking the k-th largest value
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Morphological Filtering

• Binary image 
dilation erosion closing opening– dilation, erosion, closing, opening

– can be interpreted as set operation
M hi ti t d ti t t– More sophisticated operations can extract 
image features (skeleton, edges, etc.)

G l i• Gray scale image
– Dilation, erosion, closing, opening
– Proofs of properties of the morphological 

filters not required.
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Binary Dilation

• Dilation of set F with a structuring element 
H is represented by HF H is represented by HF 

})ˆ(:{  FHxHF x

where Φ represent the empty set.
• is composed of all the points HFG 

that when Ĥ shifts its origin to these points, 
at least one point of Ĥ is included in F.

• If the origin of H takes value “1”, dilation 
expands the original image HFF 
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Binary Erosion

• Erosion of set F with a structuring element 
H is represented by and is definedHFH is represented by           , and is defined 
as,

HF

})(:{ FHxHF x 

• is composed of points that HFG 
when H is translated to these points, every 
point of H is contained in F.

• If the origin of H takes value of “1”, erosion 
shrinks the original image FHF 
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Closing and Opening

• Closing
HHFHF  )(

– Smooth the contour of an image
HHFHF  )(

– Fill small gaps and holes
• Opening

– Smooth the contour of an image

HHFHF  )(

g
– Eliminate false touching, thin ridges and 

branches. 
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Morphological Processing for
Grayscale ImageGrayscale Image

• Dilation }),();,(),(max{),)(( hDtstshtysxfyxhf 

• Erosion

• Opening

}),();,(),(min{),)(( hDtstshtysxfyxhf 

hhfhf  )(• Opening

• Closing

hhfhf  )(

hhfhf  )(g hhfhf  )(

• Can be thought of as non-linear filtering: replacing 
weighted sum by min/max operations
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Sampling and Interpolation

• What determines necessary sampling 
frequency?frequency?

• Why is pre-filtering necessary?
• How to reconstruct a continuous image 

from samples
• Frequency domain interpretation of 

sampling and interpolation
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Frequency Domain Interpretation of 
SamplingSampling

• Sampling is equivalent to multiplication of 
the original signal with a sampling pulsethe original signal with a sampling pulse 
sequence.
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I f d i

 
nm

ynyxmxyxpwhere
,

),(),( 

• In frequency domain
s vuPvuFvuF

11
),(),(),(

 










nm

ysxs
nm

ysxs nfvmfuF
yx

vuF

ffwhere

nfvmfu
yx

vuP
,

,,
,

,, ),(1),(

11

),(1),( 

Yao Wang, NYU-Poly EL5123: Final Review 12





 ysxs y

f
x

fwhere ,, ,



Frequency Domain 
Interpretation of Sampling in 1D

Original signal

p p g

Sampling 
impulse train

The spectrum of the 
sampled signal includes 
the original spectrum and

S l d i l

the original spectrum and 
its aliases (copies) shifted 
to k fs , k=+/- 1,2,3,…  
The reconstructed signal 
from samples has the 

Sampled signal
fs > 2fm

o sa p es as t e
frequency components 
upto  fs /2.

When fs< 2fm , aliasing 
Sampled signal

fs < 2fm
(Aliasing effect)

s m , g
occur. 
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Sampling of 1D Sinusoid Signals

Sampling above
Nyquist rateyq
s=3m>s0

Reconstructed
i i l=original

Sampling under
Nyquist rate
s=1.5m<s0

ReconstructedReconstructed
!= original
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Frequency Domain Interpretation of 
Sampling in 2DSampling in 2D

• The sampled signal contains replicas of 
the original spectrum shifted by multiplesthe original spectrum shifted by multiples 
of sampling frequencies.

u uu u

fm x

fs,x

fs,x>2fm,x

v
v

fm,x

fm,y fs,y

fs,y>2fm,y

Original spectrum F(u v) Sampled spectrum F (u v)
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Illustration of Aliasing Phenomenon

u u

fm,x fs,x
fs x<2fm x

v vfm,y
fs,y

s,x fm,x
fs,y<2fm,y

Original spectrum F(u,v) Sampled spectrum Fs(u,v)
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Nyquist Sampling and Reconstruction 
TheoremTheorem

• In order to avoid aliasing, the sampling frequency fs,x, fs,y
must be at least twice of the highest frequency of the 
signal known as Nyquist sampling ratesignal, known as Nyquist sampling rate.

• A band-limited image with highest frequencies at fm,x, fm,y
can be reconstructed perfectly from its samples, 
provided that the sampling frequencies satisfy: fs,x >2fm,x, 
fs,y>2fm,y

• The reconstruction can be accomplished by the ideal p y
low-pass filter with cutoff frequency at fc,x = fs,x/2, fc,y = 
fs,y/2, with magnitude ∆x∆y.

ffff ii
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• The interpolated image
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Applying Nyquist Theorem
• Two issues

– The signals are not bandlimited.The signals are not bandlimited.
– The sinc filter is not realizable.

• A general paradigmg p g

Prefilter InterpolationA A
B D

Prefilter InterpolationA A

Sampling pulse fs
To limit the 
bandwidth to 
<=fs/2

•Averaging
•Weighted

•Sample and hold
•Bilinear interpolation
Bi bi

Yao Wang, NYU-Poly EL5123: Final Review 18

Weighted 
average
•Truncated sinc 

•Bicubic
•Truncated sinc



Sampling a Sinusoidal Signal
 )1,2()1,2(

2
1),()24cos(),(  vuvuvuFyxyxf 

S l d t ∆ ∆ 1/3 f f 3Sampled at ∆x=∆y=1/3   fs,x=fs,y=3

v v
Original Spectrum Sampled Spectrum

3
(-2,1)

3
(-2,1)

u

3

-3 3

(2,-1)

u

3

-3 3
(2,-1) Ideal-3 (2, 1) -3

Original pulse Replicated pulse

interpolation 
filter
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Replication center)22cos(),(ˆ yxyxf  
What if we use non-ideal interpolation filter?



Sampling in 2D: 
Sampling a 2D Sinusoidal PatternSampling a 2D Sinusoidal Pattern

f(x,y)=sin(2*π*(3x+y))
Sampling: dx=0 01 dy=0 01 f(x,y)=sin(2*π*(3x+y))Sampling: dx=0.01,dy=0.01
Satisfying Nyquist rate
fx,max=3, fy,max=1
fs,x=100>6, fs,y=100>2

Sampling: dx=0.2,dy=0.2
(Displayed with pixel replication)
Sampling at a rate lower than Nyquist rate
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Comparison of Different Interpolation 
FiltersFilters
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Image Resizing
• Image resizing:

– Enlarge or reduce the image size (number of pixels)
– Equivalent to 

• First reconstruct the continuous image from samples
• Then Resample the image at a different sampling ratep g p g

– Can be done w/o reconstruct the continuous image explicitly

• Image down-sampling (resample at a lower rate)
S ti l d i i– Spatial domain view

– Frequency domain view: need for prefilter

• Image up-sampling (resample at a higher rate)g p p g ( p g )
– Spatial domain view
– Different interpolation filters

• Nearest neighbor Bilinear Bicubic
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Down Sampling by a Factor of Two

8x8 Image 4x4 Image

• Without Pre-filtering (simple approach)Without Pre filtering (simple approach)

Averaging Filter

)2,2(),( nmfnmfd 

• Averaging Filter
4/)]12,12()2,12()12,2()2,2([),(  nmfnmfnmfnmfnmfd
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Problem of Simple Approach
• Aliasing if the new sampling rate is below the 

Nyquist sample rate = 2 * highest frequency inNyquist sample rate  2  highest frequency in 
the signal

• We need to prefilter the signal before down-p g
sampling

• Ideally the prefilter should be a low-pass filter 
with a cut-off frequency half of the new sampling 
rate.
– In digital frequency of the original sampled image, the 

cutoff frequency is ¼.
• In practice we may use simple averaging filter
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• In practice, we may use simple averaging filter



Example: Image Down-Sample

Without prefiltering

With prefiltering
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Image Up-Sampling
• Produce a larger image from a smaller one

– Eg. 512x512 -> 1024x1024
M ll l b bit f t L– More generally we may up-sample by an arbitrary factor L

• Questions: 
– How should we generate a larger image?
– Does the enlarged image carry more information?

• Connection with Interpolation of a continuous image from discrete 
image
– First interpolate to continuous image, then sampling at a higher sampling 

rate, Lfs
– Can be realized with the same interpolation filter, but only evaluate at 

x=mx’ y=ny’ x’=x/L y’=y/Lx=mx , y=ny , x =x/L, y =y/L
– Ideally using the sinc filter!

)(sin)(sin
)()(ˆ ,, ymyfxmxf

ff ysxs 



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Example: Factor of 2 Up-Sampling

(m,n+1)(m,n) (2m,2n) (2m,2n+1)

(2m+1 2n) (2m+1 2n+1)

(m+1,n+1)(m+1,n)

(2m+1,2n) (2m+1,2n+1)

Green samples are retained in the interpolated image;
Orange samples are estimated from surrounding green samples.
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Pixel Replication (0-th order)

(m,n+1)(m,n) (2m,2n) (2m,2n+1)

(2m+1 2n) (2m+1 2n+1)

(m+1,n+1)(m+1,n)

(2m+1,2n) (2m+1,2n+1)

Nearest Neighbor:
O[2m,2n]=I[m,n]
O[2m,2n+1]= I[m,n]
O[2m+1,2n]= I[m,n]
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O[2m+1,2n+1]= I[m,n]



Bilinear Interpolation (1st order)

(m,n+1)(m,n) (2m,2n) (2m,2n+1)

(2m+1 2n) (2m+1 2n+1)

(m+1,n+1)(m+1,n)

(2m+1,2n) (2m+1,2n+1)

Bilinear Interpolation:
O[2m,2n]=I[m,n]
O[2m,2n+1]=(I[m,n]+I[m,n+1])/2
O[2m+1,2n]=(I[m,n]+I[m+1,n])/2

Yao Wang, NYU-Poly EL5123: Final Review 29

O[2m+1,2n+1]=(I[m,n]+I[m,n+1]+I[m+1,n]+I[m+1,n+1])/4



Bicubic Interpolation (3rd order)

(2m,2n) (2m,2n+1)(m-1,n+1)(m-1,n)

(2m+1 2n) (2m+1 2n+1)

(m,n) (m,n+1)(m,n-1) (m,n+2)

(2m,2n+1) (2m+1,2n) (2m+1,2n+1)

(m+1,n+1)(m+1,n)(m+1,n-1) (m+1,n+2)

Bicubic interpolation in Horizontal direction

(m+2,n) (m+2,n+1)

Bicubic interpolation in Horizontal direction

F[2m,2n]=I[m,n]
F[2m,2n+1]= -(1/8)I[m,n-1]+(5/8)I[m,n]+(5/8)I[m,n+1]-(1/8)I(m,n+2)
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Same operation then repeats in vertical direction



Comparison of 
Interpolation MethodsInterpolation Methods
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Up-Sampled from w/o Prefiltering

Nearest
neighborOriginal
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Bilinear Bicubic



Up-Sampled from with Prefiltering

Nearest
neighborOriginal
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Image Compression
• Three major steps

– Transformation, quantization, binary encodingq y g
• Binary encoding
• Quantization
• Transformation:

– Runlength
Li t f– Linear transform

– Prediction
• JPEG• JPEG
• JPEG2000
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A Typical Compression System

Input Transformed Quantized Binary

Transfor- Quanti- Binary

Input
Samples

Transformed
parameters

Quantized
parameters

Binary
bitstreams

Transfor
mation

Quanti
zation

Binary
Encoding

Prediction
Transforms
M d l fitti

Scalar Q
Vector Q

Fixed length
Variable length

Model fitting
…...

g
(Huffman, 
arithmetic, LZW)

• Motivation for transformation ---
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Binary Encoding

• Binary encoding
To represent a finite set of symbols using binary– To represent a finite set of symbols using binary 
codewords.

• Fixed length codinged e gt cod g
– N symbols represented by (int) log2(N) bits.

• Variable length codingg g
– more frequently appearing symbols represented by 

shorter codewords (Huffman, arithmetic, LZW=zip).
• The minimum number of bits required to 

represent a source is bounded by its entropy.
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Entropy of a Source
• Consider a source of N symbols, rn, n=1,2,…,N. Suppose the 

probability of symbol rn is pn. The entropy of this source is defined as:





N

n
nn bitsppH

1
2 )(log

• Shannon Source Coding Theory: For an arbitrary source, a code 
can be designed so that the average length is bounded by

1  HlplH
• The Shannon theorem only gives the bound but not the actual way 

of constructing the code to achieve the bound
P ti l di th d

1  HlplH nn

• Practical coding methods:
– Huffman
– LZW

Arithmetic coding

Yao Wang, NYU-Poly EL5123: Final Review 37
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Huffman Coding
• Procedure of Huffman coding

– Step 1: Arrange the symbol probabilities pn in aStep 1: Arrange the symbol probabilities pn in a 
decreasing order and consider them as leaf nodes of 
a tree.
S 2 Whil h i h d– Step 2: While there is more than one node:

• Find the two nodes with the smallest probability and 
arbitrarily assign 1 and 0 to these two nodes

• Merge the two nodes to form a new node whose probability is 
the sum of the two merged nodes.

2/3 1 “1”a1

a2

a3

2/3
1/6

1/6 1/30

1
0

1 “1”
“01”

“00”

4112
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Improvement of Huffman Coding
• Disadvantage of Huffman coding: 

– At least one bit has to be used for each symbol
• Vector Huffman coding

– Treat each group of M symbols as one entity and give each 
group a codeword. 

– Bit rate per M symbols bounded by the joint entropy of M 
symbols: 

– Bit rate per symbol bounded by 
1 MMM HRH

MM
HRM

H MM 1

• Conditional Huffman coding:
– The possible outcomes of a new sample depends on its 

neighboring samples
– Described by the conditional probability
– Build a different Huffman table for each possible neighborhood 

structure (context)
B d d b th diti l t
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Runlength Coding of Bi-Level Images

• 1D Runlength Coding:
– Count length of white and length of black alternatinglyCount length of white and length of black alternatingly
– Represent the last runlength using “EOL”
– Code the white and black runlength using different 

codebook (Huffman Coding)
• 2D Runlength Coding:

– Use relative address from the last transition in the line 
above

– Used in Facsimile Coding (G3 G4)– Used in Facsimile Coding (G3,G4)
– Details of 2D run-length coding in the G3/G4 

standards are not required.
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Example of 1-D Runlength Coding

X
X
2 4 2 1 5 4 2 1 2 4

X
1 1 1 1 12 1 5 1 5 1 5 1 5 1

X
2 5 5 5 5 X

……X
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Quantization

Quantizerf Q(f)

Q(f)
r8

r7

r5

Decision Levels {tk, k = 1, …, L+1}

Reconstruction Levels {rk, k = 1, …, L}

)[f

r6

r7

f
t1 t2 t5 t8

If ),[ 1 kk ttf
Then Q(f) = rk t6
L levels need bits LR log

t3 t7
r3

t4

r4

r1

Quantizer
error

L levels need          bits LR 2log
r2

r3

 x returns the smallest integer
that is bigger than or equal to x

r0

f

r1 r2 r3 r4 r5 r6 r7 r8r0
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Uniform Quantization
• Equal distances between adjacent 

decision levels and between adjacentdecision levels and between adjacent 
reconstruction levels
– tl – tl-1 = rl – rl-1 = ql l 1 l l 1 q

• Parameters of Uniform Quantization
– L: levels (L = 2R)( )
– B: dynamic range B = fmax – fmin
– q: quantization interval (step size)q q ( p )
– q = B/L = B2-R
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Uniform Quantization: 
Functional Representation

Q(f)

r7=fmax-q/2
t i (f f )/L

qff  
r5

r6

stepsize q=(fmax-fmin)/L

min
min

2
)( fqq

q
fffQ 










r3

r4

f /2

r1

r2 x returns the biggest 
integer that is smaller 
than or equal to x

f
t0 t1 t2 t3 t4 t5 t6 t7 t8

fmin fmax

r0=fmin+q/2than or equal to x
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q
fffI 
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



What if fmin, fmax are not known?
• For sources with zero mean (e.g. transform coefficients, prediction errors)

With quantizer bins centered around zeros
Quantize f to the bin: Qindex(f)=sign(f)* (int)[|f|+Q/2)/Q]Quantize f to the bin: Qindex(f)=sign(f)  (int)[|f|+Q/2)/Q]
Quantized value: Q(f)= Qindex(f)*Q

-3Q -2Q -Q 0 Q 2Q 3Q 4Q-4QReconstruction Levels

( )

f
-7Q/2

-5Q/2

-3Q/2

-Q/2 Q/2

3Q/2

5Q/2

7Q/20Decision Levels

• For sources starting at 0 (e.g. original pixel values):
– Quantize f to the bin: Qindex(f)=(int)[f/Q]
– Quantized value: Q(f)=Qindex(f)*Q+Q/2

0 Q 2Q 3Q 5Q

Q/2 3Q/2 5Q/2 7Q/2 9Q/2

4Q

Reconstruction Levels

D i i L l

……

……
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Transform Coding

Bl k Quantization Coding off t ˆ BBlock
transform

Quantization 
of transform 
coefficients

Coding of 
quantized 
coefficients

f t t Bt

Encoder

DeCoding of 
quantized 
coefficients

Dequantization 
of transform 
coefficients

Inverse
block

transform

ft̂Bt
t̂

Decoder
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Predictive Coding
• Motivation

– The value of a current pixel usually does notThe value of a current pixel usually does not 
change rapidly from those of adjacent pixels. 
Thus it can be predicted quite accurately from 
th i lthe previous samples.

– The prediction error will have a non-uniform 
distribution centered mainly near zero anddistribution, centered mainly near zero, and 
can be specified with less bits than that 
required for specifying the original sample 
values, which usually have a uniform 
distribution.
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Linear Predictor
• Let f0 represent the current pixel, and fk, k = 

1,2,…,K the previous pixels that are used to1,2,…,K the previous pixels that are used to 
predict f0. For example, if f0=f(m,n), then fk=f(m-
i,n-j) for certain i, j ≥ 0. A linear predictor is





K

k
kk faf

1
0̂

• ak are called linear prediction coefficients or 
simply prediction coefficients.

k 1

p y p
• The key problem is how to determine ak so that 

a certain criterion is satisfied.
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LMMSE Predictor (1)
• The designing criterion is to minimize the mean 

square error (MSE) of the predictor.square error (MSE) of the predictor.
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LMMSE Predictor (2)
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An Example of Predictive Coder
• Assume the current pixel f0 = f(m, n) is predicted from two pixels, one on the 

left, f1 = f(m, n-1), and one on the top, f2 = f(m-1,n). Assume the pixel values 
have zero means. The correlations are: R(0,0) = R(1,1) = R(2,2) = σf

2, R(0,1)have zero means. The correlations are: R(0,0)  R(1,1)  R(2,2)  σf , R(0,1) 
= ρhσf

2, R(0,2) = ρvσf
2, R(1,2) = R(2,1) = ρdσf

2.
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Note: when the pixel value has non-zero mean, the above predictor can be applied to mean-shifted values.



What is a Linear Transform
• Represent an image (or an image block) as the 

linear combination of some basis images andlinear combination of some basis images and 
specify the linear coefficients. 

+
t1 t2 t3 t42 3 4
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One Dimensional Linear Transform

• Let CN represent the N dimensional 
complex spacecomplex space.

• Let h0, h1, …, hN-1 represent N linearly 
independent vectors in CNindependent vectors in CN.

• For any vector f є CN, 
1N
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f and t form a transform pair
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Orthonormal Basis Vectors (OBV)

• {hk, k=0,…N-1} are OBV if
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Definition of Unitary Transform

• Basis vectors are orthonormal
For ard transformfh


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Property of Unitary Transform

• Energy preservation: ||f||=||t||.
Proof: ttttAAtfff  HHHHProof: 

• Mean vector relation:
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Two Dimensional Unitary Transform

• {Hk,l} is an orthonormal set of basis images
For ard transform• Forward transform
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Example of 2D Unitary Transform
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Separable Unitary Transform

• Let hk, k=0, 1, …, M-1 represent a set of 
orthonormal basis vectors in CMorthonormal basis vectors in C ,

• Let gl, l=0, 1, …, N-1 represent another set 
of orthonormal basis vectors in CNof orthonormal basis vectors in CN,

• Let Hk,l=hkgl
T, or Hk,l(m,n)=hk(m)gl(n).

• Then Hk,l will form an orthonormal basis 
set in CMxN.

• Transform can be performed separately, 
first row wise, then column wise
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Example of Separable Unitary Transform

• Example 1
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Why Using Transform?

• When the transform basis is chosen 
properlyproperly
– Many coefficients have small values and can 

be quantized to 0 w/o causing noticeablebe quantized to 0 w/o causing noticeable 
artifacts

– The coefficients are uncorrelated and henceThe coefficients are uncorrelated, and hence 
can be coded independently w/o losing 
efficiency.
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Transform Basis Design
• Optimality Criteria:

– Energy compaction: a few basis images are sufficient 
to represent a typical imageto represent a typical image.

– Decorrelation: coefficients for separated basis images 
are uncorrelated.

Karhunen Loeve Transform (KLT) is the Optimal• Karhunen Loeve Transform (KLT) is the Optimal 
transform for a given covariance matrix of the underlying 
signal (the vector of pixels in a block).

Must be computed for a given image or a collection of training– Must be computed for a given image or a collection of training 
data

– KLT basis design not required!
• Discrete Cosine Transform (DCT) is close to KLT forDiscrete Cosine Transform (DCT) is close to KLT for 

images that can be modeled by a first order Markov 
process (i.e., a pixel only depends on its previous pixel).
– Fixed transform
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Basis Images of DCT
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JPEG Image Coding Standard
• JPEG (Baseline) uses block-DCT

– Divide an image into 8x8 non-overlapping blocks
– For each block:

• Apply Discrete Cosine Transform
• Quantize DCT coefficients (uniform quantizer with different 

stepsizes for different coefficients)stepsizes for different coefficients)
• Zig-zag ordering of quantized DCT coefficients
• Create Run-length representation
• Huffman coding of run-length symbolsHuffman coding of run-length symbols

• Pros and Cons
– Good coding efficiency
– Simple 
– Blocking artifacts at low bit rate
– No scalability
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Wavelet Transform

• Multi-resolution representation using a 
pyramid decompositionpyramid decomposition

• Wavelet transform through tree-structured 
subband decompositionsubband decomposition
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Multi-Resolution Representation 
(aka Pyramid Representation)(aka Pyramid Representation)
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Two Band Filterbank
s(n) u(n)

q(n)

r(n)

t(n) v(n)

h0: Lowpass filter,  y0: a blurred and then down-sampled version of x 
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h1: Highpass filter, y1: edges in x
When the filters h0,h1, g0, g1 are designed appropriately, 
X^=X (perfect reconstruction filterbank)



Iterated Filter Bank

From [Vetterli01]
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How to Apply Filterbank to Images?

2D decomposition is accomplished by applying the 1D decomposition 
l f i fi t d th l
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along rows of an image first, and then columns.



Wavelet Transform for Images

From [Usevitch01]
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JPEG2000
• Uses wavelet transforms
• Divide an image into tiles, process each tile of each color 

component separately
• For each tile

– Apply wavelet transformpp y
– Divide the coefficients into code blocks
– Represent each code block in bit planes
– Code successive bit planes using context-based arithmeticCode successive bit planes using context based arithmetic 

coding
– Resulting bits are packetized into a scalable bit stream

• Coarse scale coefficients first
• Higher bit planes first within each scale

• Details of JPEG2000 coding algorithms not required.
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JPEG2000 Features
• Improved coding efficiency

– Primarily due to efficient entropy coders for bit planes of wavelet 
coefficients

• Full quality scalability
– From lossless to lossy at different bit rateFrom lossless to lossy at different bit rate
– Enabled by bit plane coding

• Spatial scalability
– Enabled by wavelet transform: code the coefficients from coarse 

to fine scale

• Region of interestsg
• More demanding in memory and computation time than 

JPEG
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What is Geometric Transformation?
• So far, the image processing operations we 

have discussed modify the color values of pixelshave discussed modify the color values of pixels 
in a given image

• With geometric transformation, we modify the g , y
positions of pixels in a image, but keep their 
colors unchanged
– To create special effects
– To register two images taken of the same scene at 

different times or by different sensorsdifferent times or by different sensors
– To morph one image to another

Yao Wang, NYU-Poly EL5123: Final Review 75



Illustration of Forward and Inverse 
Mapping FunctionsMapping Functions

y
v

(u, v) Forward
( ) ( )
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uu
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x(u,v), y(u,v)

xy
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u Inverse
u(x,y), v(x,y)

x
(x, y)

y
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Translation, Scaling, Rotations

• Should know the mapping functions for 
eacheach

• Can be combined  and represented with a 
general form ofgeneral form of

)(
,)(

11 cxAbxAu
bAutuRSx





.,,
,)(
tcRStbRSA

cxAbxAu



with

• Note that interchanging the order of 
operations will lead to different results
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Polynomial Warping
• The polynomial warping includes all deformations that 

can be modeled by polynomial transformations:
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• Special cases:
– Affine Mapping, which has only first order terms:
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Image Warping by Inverse Mapping
• Inverse Mapping

– For each point (x, y) in the image to be obtained, findFor each point (x, y) in the image to be obtained, find 
its corresponding point (u, v) in the original image 
using the inverse mapping function, and let g(x, y) = 
f(u v)f(u, v)

P’P1

P2

P3

P4
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2 4

P’ will be interpolated
from P1, P2, P3, and P4



Image Registration
• Suppose we are given two images taken at 

different times of the same object. To observedifferent times of the same object. To observe 
the changes between these two images, we 
need to make sure that they are aligned properly. 
To obtain this goal, we need to find the correct 
mapping function between the two. The 
determination of the mapping functions betweendetermination of the mapping functions between 
two images is known as the registration problem.

• Once the mapping function is determined the• Once the mapping function is determined, the 
alignment step can be accomplished using the 
warping methods.
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warping methods. 



How to determine the mapping function?

• Assume the mapping function is a polynomial of 
order Norder N

• Step 1: Identify K≥N corresponding points 
between two images, i.e.g ,

• Step 2: Determine the coefficients ai, bi, i =
....,2,1),,(),( Kiyxvu iiii 

Step 2: Determine the coefficients ai, bi, i  
0,…,N-1 by solving

xvauaavux iiiii ,),( 210

  

Ki
yvbubbvuy
xvauaavux

iiiii

iiiii ,...,2,1
,),(
,),(

210

210 







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Image Registration Method (2)

• Step 2: 
where

, yAbxAa
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If K = N and the matrix A is non-singular thenIf K  N, and the matrix A is non singular, then

yAbxAa 11 ,  
If K > N, then we can use a least square solution

yb TTTT AAAxAAAa 11 )(,)(  

If K < N, or A is singular, then more corresponding feature points 
must be identified
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Image Morphing
• Image morphing has been widely used in movies and 

commercials to create special visual effects. For 
example, changing a beauty gradually into a monster.

• The fundamental techniques behind image morphing is 
image warpingimage warping.

• Let the original image be f(u) and the final image be g(x). 
In image warping, we create g(x) from f(u) by changing 
its shape. In image morphing, we use a combination of 
both f(u) and g(x), to create a series of images in 
between f(u) and g(x),between f(u) and g(x), 

/
,,...,1,0)),(()()1()(

Kkswhere
Kkgsfssh kkkk  uduudu
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Examples of Image Morphing

Cross
DissolveDissolve

I(t) = (1-t)*S+t*T

Mesh
based

George Wolberg “Recent Advances in Image Morphing”
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George Wolberg, Recent Advances in Image Morphing , 
Computer Graphics Intl. '96, Pohang, Korea, June 1996. 



Image Restoration
• How to model the image degradation process 

– Transformation (linear or nonlinear) + Noise( )
– Linear model

• g(x,y)= h(x,y)*f(x,y)+ n(x,y)

• How to estimate h(x y) for common degradation• How to estimate h(x,y) for common degradation 
processes
– Spatial blurringp g
– Motion blurring

• How to restore the image with given h(x,y)?
– Inverse filtering
– Wiener filtering

Problems and fixes
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– Problems and fixes…



Final Exam Logistics
• Scheduled time: 12/22 1:30-4:30, RH615
• Closed-book, 1 sheet of notes allowed (double sided , (

OK)
• Only cover topics after midterm exam
• See previous notes on topics that will not be covered.
• Office hour:

– 12/20 4-6PM Contact me for other times by email– 12/20 4-6PM. Contact me for other times by email
– Last two HW will be due on 12/15 5PM outside door of my office 

(LC256)
Solutions to last three HWs will be posted on my poly by 12/16– Solutions to last three HWs will be posted on my.poly by 12/16
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Follow-Up Courses
• EL6123 - Video processing

– TV systems, video sampling and format conversion, motion 
estimation video coding techniques video coding andestimation, video coding techniques, video coding and 
communication standards, video transport over networks

– Require a term project
http://eeweb poly edu/~yao/EL612/– http://eeweb.poly.edu/~yao/EL612/

• CS6643 - Computer vision
• Other related courses

– EL7133: Digital signal processing
– EL7163: Multiresolution signal processing
– CS6533: Computer Graphics
– EL5823: Medical Imaging I
– EL5143: Multimedia Lab
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