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Topics Covered Before Midterm

* Image representation
» Color representation

* Quantization

* Contrast enhancement

» Spatial Filtering: noise removal,
sharpening, edge detection

* Frequency domain representations
—FT,DTFT, DFT

— Implementation of linear filtering using DTFT
and DFT
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Topics Covered After Midterm

* Non-linear filtering: median, morphological
filtering
* Image sampling, interpolation and resizing

* |Image compression

— Lossless coding: entropy bound, Huffman coding,
runlength coding for bilevel images

— Transform coding: unitary transform, quantization,
runlength coding of coefficients, JPEG

— Wavelet transform and JPEG2K, Scalability
» Geometric transformation
* Image Restoration
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Non-Linear Filtering

» Convolution is a linear operation
— g1=f1*h, g2=f2*h
—(a1* f1+a2* f2)*h=a1* g1+a2*g2

* Linear filtering can be analyzed in
frequency domain easily

* Non-linear filtering
— Median
— Rank-order filtering
— Morphological filtering
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Median Filter

]Ic:’roblem with averaging or weighted averaging
iiter

— Blur edges and details in an image
— Not effective for impulse noise (Salt-and-pepper)

Median filter:

— Taking the median value instead of the average or
weighted average of pixels in the window

« Sort all the pixels in an increasing order, take the middle one
— The window shape does not need to be a square
— Special shapes can preserve line structures

Median filter is a NON-LINEAR operation

Generalization of median filtering
— Rank-order filtering: taking the k-th largest value
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Morphological Filtering

* Binary image
— dilation, erosion, closing, opening
— can be interpreted as set operation

— More sophisticated operations can extract
image features (skeleton, edges, etc.)

* Gray scale image
— Dilation, erosion, closing, opening

— Proofs of properties of the morphological
filters not required.
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Binary Dilation

 Dilation of set F with a structuring element
H is represented by F®H

FOH ={x:(H), "F = ®}
where ® represent the empty set.

G=F@®H js composed of all the points
that when H shifts its origin to these points,
at least one point of H is included in F.

If the origin of H takes value “17, dilation
expands the originalimage gr_—-fFg@H
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Binary Erosion

* Erosion of set F with a structuring element
H is represented by FOH , and is defined

dS,  F@H ={x:(H), c F}

« G=FOH s composed of points that
when H is translated to these points, every
point of H Iis contained in F.

* If the origin of H takes value of “1”, erosion
shrinks the original image FOH — F
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Closing and Opening

» Closing
FeH=(F®H)OH
— Smooth the contour of an image
— Fill small gaps and holes
* Opening
FoH=(FOH)®H

— Smooth the contour of an image

— Eliminate false touching, thin ridges and
branches.
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Morphological Processing for

Grayscale Image

Dilation (f @h)(x,y)=max{f(x-s,y—-t)+h(s,t);(s,t) e D,}
Erosion  (fOh)(x,y)=min{f (x+s,y+t)—h(s,t);(s,t) e D, }

Opening f oh=(f®h)®h

HoSN9 £ oh=(f ®h)®h

Can be thought of as non-linear filtering: replacing
weighted sum by min/max operations

Yao Wang, NYU-Poly EL5123: Final Review 10



Sampling and Interpolation

* What determines necessary sampling
frequency?

* Why is pre-filtering necessary?

* How to reconstruct a continuous image
from samples

* Frequency domain interpretation of
sampling and interpolation
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Frequency Domain Interpretation of
Sampling

« Sampling is equivalent to multiplication of
the original signal with a sampling pulse

SEQUENCE. £ (x,y)= F(xy)p(x.y)
where  p(x,y) =) &(X—mMAX, y—nAy)

* In frequency domain
F.(u,v)=F(u,v)*P(u,v)

P(u,Vv) =ﬁAy25(u -mf,,,v—nf,,) = F(u,v) =ﬁAyz F(u—-mf,,,v—nf, )

where fsxzi,fsy:L
A T Ay
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Frequency Domain

Interpretation of Sa

pling in 1D

Xlw)

Original signal /,*\

Sampling
impulse train

The spectrum of the
sampled signal includes
the original spectrum and
its aliases (copies) shifted

- to kf,, k=+/- 1,2,3,...

Sampled signal

cn AAANAAAA

The reconstructed signal
from samples has the
frequency components
upto f/2.

Sampled signal
fg < 2f
(Aliasing effect)

When f.< 2f, aliasing
occur.

1
Wy

d)  {w; —wy)
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Sampling of 1D Sinusoid Signals

| M A
Ut rate v \U \U \

=3w,..>
0=30,,> 0 ) -
w2
! \\ l' ‘\ :’ \ I, \ Ce
J “ \‘ ! “

Reconstructed
=original

Sampling under
Nyquist rate t
0,=1.50,<0,

wp = 2
" \‘ i [y Vi XY '6
2R ,"T \\ r'/[‘\ I'T \ !
Reconstructed Vi LV AN L WA W N
I= original ) 4 ,y ‘4 ,’ \* y i ," t
\\\/, \\J \\j \\J’

Aliasing: The reconstructed sinusoid has a lower frequency than the original!
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Frequency Domain Interpretation of

Sampling in 2D

* The sampled signal contains replicas of
the original spectrum shifted by multiples
of sampling frequencies.

UA f

my ! s,y
Original spectrum F(u,v) Sampled spectrum F(u,v)
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lllustration of Aliasing Phenomenon

u,
fm,X
foy Y Y
Original spectrum F(u,v) Sampled spectrum F (u,v)
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Nyquist Sampling and Reconstruction
Theorem

In order to avoid aliasing, the sampling frequency f ,, f; ,
must be at least twice of the highest frequency of the
signal, known as Nyquist sampling rate.

A band-limited image with highest frequencies at f, f,,
can be reconstructed perfectly from its samples,
provided that the sampling frequencies satisfy: f;, >2f_ ,
fsy>2f

The reconstruction can be accomplished by the ideal
low-pass filter with cutoff frequency at f_, =1 ,/2, f., =
fs,/2, with magnitude AxAy.

sin zf X sin o,y

fSX fS
AXAY Ul =% |v[g—=L
2 2 f, X 7zfs,yy

0 otherwise

H(u,v)= < h(x,y)=

The interpolated image

. : Er—— "
f(x,y)=zzfs(m,n)sm’ﬁs,x(x mAX) sin 7 (Y —mAy)
m n ﬂfs)X(X—mAX) ﬂfs,y(y_mAy)
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Applying Nyquist Theorem

e TwoO Issues

— The signals are not bandlimited.
— The sinc filter is not realizable.

* A general paradigm

@ —> Prefilter

® ©

— Interpolation —>®

To limit the
bandwidth to
<=fs/2

*Averaging
*Weighted
average
*Truncated sinc

Yao Wang, NYU-Poly

[ Sampling pulse f

*Sample and hold
Bilinear interpolation
*Bicubic

*Truncated sinc

EL5123: Final Review
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Sampling a Sinusoidal Signal

f(X,y)=cos(4nx—22y) < F(u,v) :%[5(u —2,V+1)+5Uu+2,v-1)]

Sampled at Ax=Ay=1/3 f,,=f;,=3
Original Spectrum Sampled Spectrum
Vo, Vv
2y | T ol ¢
o | o B
-3 O3 u u
3+ (2-1) _Ideal |
O O interpolation
filter
O  Original pulse O  Replicated pulse

f(Xa y) = cos(27X + 27y) + Replication center

What if we use non-ideal interpolation filter?
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Sampling in 2D:

W

f(x,y)=sin(2*n*(3x+y))

Sampling: dx=0.01,dy=0.01 f(x,y)=sin(2*1*(3x+y))

Sampling: dx=0.2,dy=0.2

SR NG s (Displayed with pixel replication)
fomax™3> by =1 Sampling at a rate lower than Nyquist rate
f,,=100>6, f, ,=100>2
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Comparison of Different Interpolation
Eilters

Yao War *

Two-dimensional

One-dimensional Definition interpolation Frequency

interpolation Diagram pix) function response Py, 0

function Palx.¥) = plxIply) Palky. 2}
Rectangle s g ; 1.0
(zero-order hold) Ax 1 . 2

1 P, (x)p,(y) sinc ( )smc(—)
ZOH Ax rect (‘A_x) ° ° 2,0 2,
P {x) x
_A{ 0 _Ai '—"l 4Ex0 I‘_
2 2
Triangle a1 i (.i.) 1.0
{first-order hold) Ax Ax Ax £ £ Y2
FOH p,{x)p, (y) [sinc ( ) sinc( )]
pyix) 2kx0 20
x
-Ax Ax polx) ® P, x) _,I 4, |_‘_‘

nth-order hold I 1.0
n = 2, quadratic Polx) ® - - ®p,(x) p,(x)p,(y) [sinc (E_') sinc (.E_z)]
n =( 3), cubic splines n convolutions £ Eya
Palx

"l 4k, '-‘—

1.0
Gaussian ! _i] 1 [_(X2+Y2)] —2n202(2 + 2
Pglx) V2702 exp[ 20? 270? P 202 exp [~2no*(Ey + ]
X
2o
1.0
i 1 gine (X 1 gine (2= ) sinc {2 _f'_) (_53_
Sinc Esmc (Ax) Axdy sinc (Ax ) sinc (Ay) rect (2&0 rect 25,.0)
esd Fe>]
2Ax 20
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Image Resizing

* Image resizing:
— Enlarge or reduce the image size (number of pixels)

— Equivalent to
 First reconstruct the continuous image from samples
« Then Resample the image at a different sampling rate

— Can be done w/o reconstruct the continuous image explicitly
* Image down-sampling (resample at a lower rate)

— Spatial domain view

— Frequency domain view: need for prefilter
* Image up-sampling (resample at a higher rate)

— Spatial domain view

— Different interpolation filters
» Nearest neighbor, Bilinear, Bicubic

Yao Wang, NYU-Poly EL5123: Final Review
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Down Sampling by a Factor of Two

> % 4x4 Image
0% @
O—CO—C0O0—0O0—C0O0—0O0—C0——0
S 090.9 0 e

Without Pre-filtering (simple approach)
f,(m,n)=f(2m,2n)

8x8 Image

Averaging Filter
f,(m,n)=[f(2m2n)+ f(2m,2n+1)+ f(2m+1,2n)+ f (2m+1,2n+1)]/4
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Problem of Simple Approach

 Aliasing if the new sampling rate is below the

Nyquist sample rate = 2 * highest frequency in
the signal

* We need to prefilter the signal before down-
sampling

* |deally the prefilter should be a low-pass filter
with a cut-off frequency half of the new sampling
rate.

— In digital frequency of the original sampled image, the
cutoff frequency is Va.

* |n practice, we may use simple averaging filter

Yao Wang, NYU-Poly EL5123: Final Review
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Example: Image Down-Sample

With prefiltering
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Image Up-Sampling

Produce a larger image from a smaller one
— Eg. 512x512 -> 1024x1024
— More generally we may up-sample by an arbitrary factor L

Questions:
— How should we generate a larger image?
— Does the enlarged image carry more information?
Connection with Interpolation of a continuous image from discrete
image
— First interpolate to continuous image, then sampling at a higher sampling
rate, Lfs
— Can be realized with the same interpolation filter, but only evaluate at
X=mMAX’, y=nAy’, AX'=AX/L, Ay’=Ay/L
— ldeally using the sinc filter!

. ' — MAX) sin 7f —MA
F(x.y) = ZZ ) sin 7zfij(x MAX) sin S’y(y MAY)
n ﬂfij(X—mAX) ﬂfs,y(y_mAy)

m
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Example: Factor of 2 Up-Sampling

(nhn) (m/,h+1) (2m|2n) (Zﬂl,2n+1)

O O O O O
) I ) )

A\

(2m+IZn) (2\1E+1 ,2n+\i[)
—
) ) )
./ ./ ./ A\ ./ A\
(m+1,n) (Mm+1,n+1)

) O O )

A\ A\ A\ A\

Green samples are retained in the interpolated image;
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Pixel Replication (O-th order)

(mjgﬂ)

(2m|2n) (2i,2n+1 )

\/ \/

) )

\/ \/
(m+1,n) (m+1,n+1)

( ) Y
\/ ]: \/ N\
) Y )

N\

(2m+1,2n) (2m+1,2n+1)
—

)
\/ N\ \/ N\
) Y ) )
N\ N\ N\ N\

Yao Wang, NYU-Poly

Nearest Neighbor:
O[2m,2n]=I[m,n]
O[2m,2n+1]= I[m,n]
O[2m+1,2n]= I[m,n]
O[2m+1,2n+1]= I[m,n]

EL5123: Final Review
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Bilinear Interpolation (15! order)

(nhn) (m/,h+1) (2m|2n) (2i,2n+1)

O O O O O
) I ) )

A\

(2m+IZn) (2\1E+1 ,2n+\i[)
—
) ) )
./ ./ ./ A\ ./ A\
(m+1,n) (Mm+1,n+1)

) O O )

A\ A\ A\ A\

Bilinear Interpolation:

O[2m,2n]=I[m,n]

O[2m,2n+1]=(I[m,n]+I[m,n+1])/2
O[2m+1,2n]=(I[m,n]+I[m+1,n])/2
O[2m+1,2n+1]=(I[m,n]+I[m,n+1]+I[m+1,n]+I[m+1,n+1])/4
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Bicubic Interpolation (39 order)

(1) (Lt 1) (2m|2n) (2i,2n+1)
O O O
() ) (&
(m,n-1) (m,n) (m,n+1) (m,n+2)
—@ o—O | o—
O O O
(2m+IZn) (2\1E+1,2n+\1[)
—
O
() (& ) (&
(m+1,n-1) (m+1,n) (m+1,n+1) (m+1,n+2)
O O O O
(& (& (& (&
(m+2,n) (m+2,n+1)
* °

Bicubic interpolation in Horizontal direction

F[2m,2n]=I[m,n]
F[2m,2n+1]= -(1/8)I[m,n-1]+(5/8)I[m,n]+(5/8)I[m,n+1]-(1/8)I(m,n+2)

Same operation then repeats in vertical direction
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Comparison of

Interpolation Methods

Qriginal Mearest Neighbor
10 -
\’/////‘5
00
Bilinear
10,

__.-ii" “‘ "‘_--".'-'—-- :
Ny "‘“"‘1"—":-;;. _
ol IW@%‘E

Resize peak.m
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Nearest

Original neighbor

Bilinear Bicubic
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Up Sampled from Wlth Preflltermg

.. Nearest
Original neighbor
Bilinear Bicubic

Yao Wang, NYU-Poly EL5123: Final Review 33



Image Compression

* Three major steps
— Transformation, quantization, binary encoding

* Binary encoding
» Quantization

* Transformation:
— Runlength
— Linear transform
— Prediction

- JPEG
- JPEG2000

Yao Wang, NYU-Poly EL5123: Final Review
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A Typical Compression System

Input Transformed Quantized Binary
Samples parameters parameters bitstreams
| Tran§for- a Quqntl- | Blnar.y |
mation zation Encoding
Prediction Scalar Q Fixed length
Transforms Vector Q Variable length

Model fitting (Huffman,
. arithmetic, LZW)

* Motivation for transformation ---
To yield a more efficient representation of the original samples.
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Binary Encoding

Binary encoding

— To represent a finite set of symbols using binary
codewords.

Fixed length coding
— N symbols represented by (int) log,(N) bits.

Variable length coding

— more frequently appearing symbols represented by
shorter codewords (Huffman, arithmetic, LZW=zip).

The minimum number of bits required to
represent a source is bounded by its entropy.

Yao Wang, NYU-Poly EL5123: Final Review
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Entropy of a Source

Consider a source of N symbols, r,, n=1,2,...,N. Suppose the

probability of symbol r,, is p,,. The entropy of this source is defined as:

N

H = _Z Py 10g2 Py (bItS)

n=1

Shannon Source Coding Theory: For an arbitrary source, a code
can be designed so that the average length is bounded by

H<l=> pl, <H-+1

The Shannon theorem only gives the bound but not the actual way
of constructing the code to achieve the bound

Practical coding methods:

— Huffman
- LZW
— Arithmetic coding

Yao Wang, NYU-Poly EL5123: Final Review
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Huffman Coding

* Procedure of Huffman coding

— Step 1: Arrange the symbol probabilities p, in a
decreasing order and consider them as leaf nodes of
a tree.

— Step 2: While there is more than one node:

* Find the two nodes with the smallest probability and
arbitrarily assign 1 and 0O to these two nodes

* Merge the two nodes to form a new node whose probability is
the sum of the two merged nodes.

a1 2/3 1 “1”

a, 1/6 113 “00”
| :%x1+lx2+lx2=i=1.33
3 6 6 3

Yao Wang, NYU-Poly EL5123: Final Review
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Improvement of Huffman Coding

« Disadvantage of Huffman coding:
— At least one bit has to be used for each symbol

« Vector Huffman coding

— Treat each group of M symbols as one entity and give each
group a codeword.

— Bit rate per M symbols bounded by the joint entropy of M
symbols: H,, <R, <H,, +1

— Bit rate per symbol bounded by H%A <R< H%l L
« Conditional Huffman coding:

— The possible outcomes of a new sample depends on its
neighboring samples

— Described by the conditional probability

— Build a different Huffman table for each possible neighborhood
structure (context)

— Bounded by the conditional entropy

Yao Wang, NYU-Poly EL5123: Final Review
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Runlength Coding of Bi-Level Images

* 1D Runlength Coding:

— Count length of white and length of black alternatingly
— Represent the last runlength using “EOL”

— Code the white and black runlength using different
codebook (Huffman Coding)

« 2D Runlength Coding:

— Use relative address from the last transition in the line
above

— Used in Facsimile Coding (G3,G4)

— Details of 2D run-length coding in the G3/G4
standards are not required.

Yao Wang, NYU-Poly EL5123: Final Review
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Example of 1-D Runlength Coding

X
X
2, 4. 271 5 4. 21 2 4
1 1 1 1 1
2 SHEENES =2 ey S o ®
2 . =9 e S o ®

ey
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Quantization

Q(f)
f —— Quantizer — Q(f) s 7
r7 -1
Decision Levels {t,, k=1, ..., L+1}
r~ L
Reconstruction Levels {r,, k=1, ..., L} °
5 |
Then Q(f) = r | | —] | |
Q( ) k . t1 t2 t3_tJ t5 t6 t7 tg
L levels need R = |_log2 L_| bits 3|
|_x_| returns the smallest integer r, +
that is bigger than or equal to x Quantizer
4 error
ro 1T

Yao Wang, NYU-Poly EL5123: Final Review
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Uniform Quantization

» Equal distances between adjacent
decision levels and between adjacent
reconstruction levels

Y-t =n-n4=9

« Parameters of Uniform Quantization
— L: levels (L = 2R)
—B:dynamicrangeB=1f__ —f_.
— Q: quantization interval (step size)
—q=B/L=B2R

Yao Wang, NYU-Poly EL5123: Final Review
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Uniform Quantization:
Functional Representation

aff) ,
7= max'q/2
stepsize q=(f,x-Tmin)/L
e
M5
f—f
Q(f)=| i |+ q+ 2+ 1, o
g 2
M3
M
LXJreturns the biggest
integer that is smaller Iy
than or equal to x ro=f, +q/2 |

I(f)= [ Ll J is called the reconstruction level index, which indicates which reconstruction levelis used for f.

44



What If fmin, fmax are not known?

For sources with zero mean (e.g. transform coefficients, prediction errors)
With quantizer bins centered around zeros
Quantize f to the bin: Qindex(f)=sign(f)* (int)[|f|+Q/2)/Q]
Quantized value: Q(f)= Qindex(f)*Q

Reconstruction Levels -4Q -3Q -2Q -Q O Q 2Q 3Q 4Q

Decision Levels -1Q/2 -3Q/2 0 3Q/2 Q2
-5Q/2 Q2 Q2 5Q/2
For sources starting at 0 (e.g. original pixel values):
— Quantize f to the bin: Qindex(f)=(int)[f/Q]
— Quantized value: Q(f)=Qindex(f)*Q+Q/2

v

Reconstruction Levels Q/2 3Q/2 5Q/2 7Q/2 9Q/2

I I I I I
| | | | | |
Q 2Q 3Q 4Q 5@ e

v

Decision Levels 0

Yao Wang, NYU-Poly EL5123: Final Review
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Transform Coding

f Quantization | - Coding of B
SEHESRY Sl J of transform | L . oo SN
transform . .
coefficients coefficients
Encoder
B DeCoding of Dequantization Inverse f
— R » of transform > block e
coefficients coefficients transform
Decoder

Yao Wang, NYU-Poly

EL5123: Final Review
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Predictive Coding

* Motivation

— The value of a current pixel usually does not
change rapidly from those of adjacent pixels.
Thus it can be predicted quite accurately from
the previous samples.

— The prediction error will have a non-uniform
distribution, centered mainly near zero, and
can be specified with less bits than that
required for specifying the original sample
values, which usually have a uniform
distribution.

Yao Wang, NYU-Poly EL5123: Lossless Compression
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Linear Predictor

* Let f, represent the current pixel, and f,, k =
1,2,...,K the previous pixels that are used to
predict f,. For example, if f,=f(m,n), then f =f(m-
I,n-j) for certain i, j 2 0. A linear predictor is

A K
fo — Z Ch fk
k=1

 a, are called linear prediction coefficients or
simply prediction coefficients.

* The key problem is how to determine a, so that
a certain criterion is satisfied.

Yao Wang, NYU-Poly EL5123: Lossless Compression
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LMMSE Predictor (1)

* The designing criterion is to minimize the mean
square error (MSE) of the predictor.

o K 2
0';2) =E{| f,— 1, ") = E{ fo_zak fy }
k=1
* The optimal a, should minimize the error

oo’ K
Zo gl f,-Yaf |f =0, 1=12..K.
03, k=1

K
Let R(k,)=E{fif} > a,R(k,)=R(0,1), 1=12,..K
k=1

Yao Wang, NYU-Poly EL5123: Lossless Compression
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LMMSE Predictor (2)

K
> aRk,H=R(O,), 1=12,.,K
k=1

In matrix format

"R R2D .. RKDTal [ROD]
R({,z) R(%,z) R(r:<,2) | _ R((:),z) L Ra s ae RHF
R(LK) R(2,K) - R(K,K)|a,| |ROK)

The MSE of this predictor

A K
o2 = E{(f,— f,) T} =R(0,0)- Y a,R(k,0) =R(0,0)~r"a=R(0,0)~r"R"'r
k=1
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An Example of Predictive Coder

Assume the current pixel f, = f(m, n) is predicted from two pixels, one on the
left, f, = f(m, n-1), and one on the top, f, = f(m-1,n). Assume the pixel values
have zero means. The correlations are: R(0,0) = R(1,1) = R(2,2) = ¢4, R(0,1)
= Pno?, R(0,2) = p,o¢%, R(1,2) = R(2,1) = p40¢*.

< f(m-1,n)
f(m,n-1) _— | < f(m,n)
f, = f(m,n)
f,=f(mn-1)
f,=f(m-1,n)

R(0,0) = E{f(m,n)f(m,n)}
RA)=E{f(m,n-1)f(m,n-1)}
R(2,2)=E{f(m-1,n)f(m-1,n)}
R(O,)=E{f(m,n)f(mn-1)}
R(0,2)=E{f(m,n)f(m—-1,n)}
R(1,2)=E{f(m,n-1)f(m—-1,n)}
R2,DH)=E{f(m=-Ln)f(mn-1)}

f(mn)=a f(mn-1)+a,f(m-1,n)

R(LY  REDTa]_[ROD]_[ 1 psfa]_[e

R2,D R22a,| |RO2| [p, 1 la,| |p,

:{al}_ I {1 —pd]ph}_ 1 {ph—pdpv}

_ 2 - 2

& l=pil-ps 1 JLo] l1=pilp—Pupy
_a1} :G?(I_Pﬁ + 0, _vapdphj

1-p4

o2 =R(0,0)-[R(0.)) R(0.2)]

if the correlation is isotropic, p, = p, = p,

Note: when the pixel value has non-zero mean, the above predictor can be applied to mean-shifted values.

Yao Wang, NYU-Poly
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What is a Linear Transform

* Represent an image (or an image block) as the
linear combination of some basis images and
specify the linear coefficients.

t / t, / \t3 \t4

=
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One Dimensional Linear Transform

« Let CN represent the N dimensional
complex space.

* Let hy, hy, ..., hy 4 represent N linearly
independent vectors in CN.
« For any vector f € CN,
f= Nit(k)hk = Bt,
O] T =BT = Af
t(1)

where B=[h,h,,.. h ], t=
fand t form a transform pair

(N 1) |
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Orthonormal Basis Vectors (OBV)

* {h,, k=0,...N-1} are OBV if

1 k=1

<hwm>:@u:{o |

N -1 N -1
<h,,f>=<h,, ) t(kh, >=> t(k)<h,,h, >=t(l)=h,"f
k=0 k=0

f=B"f=Af

B'=B",orB"B=BB" =1. B is unitary
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Definition of Unitary Transform

Basis vectors are orthonormal

t(k)=<h,.f >= sz h.(n)" f(n),

f=B"f = Af

=Y ton ).

N-1
f=>tkh,=h, h - hg Jt=Bt=Axt
k=0

Yao Wang, NYU-Poly EL5123: Final Review
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Property of Unitary Transform

* Energy preservation: ||f||=][t|].
Proof: [f|=f"f=t"AA"t=t"t=|¢t|

* Mean vector relation:

B =Ap,, p,=A"p, where

pe =E{f},and p, = E{t}

Covariance relation:

C,=AC, A" C, =A"C,A, where

C,=E{(f-p)f-p)"}, C =E{(t-p)(t-p)"}

Proof:

t-p =A(f-p,) = C=E{Af-p)f-p)"A"}=ACA".

Yao Wang, NYU-Poly EL5123: Final Review
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Two Dimensional Unitary Transform

* {H\ } Is an orthonormal set of basis images
* Forward transform

M-1N-1
T(k,D)=<H,,F>= H,,(m,n)F(m,n)

m=0 n

Z

Il
S

* |nverse transform

F(m,n):MZ_ZIET(k,I)HkJ(m,n), or

k=0 1=0

F = T(k,DH,,

Yao Wang, NYU-Poly EL5123: Final Review
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Example of 2D Unitary Transform

(12 12
“l1/2 1/2

| =

1 2
F =
{3 4

Yao Wang, NYU-Poly

1/2 1/2 1/2
>H01: 9H10:
—-1/2 -1/2 1/2

(T(0,00=5
T(0,))=-2
T(1,0)=-1
| TL,DH=0

EL5123: Final Review

—1/2
—1/2

i|’ Hll

|

1/2
—1/2

—1/2

1/2

|
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Separable Unitary Transform

- Leth,, k=0, 1, ..., M-1 represent a set of
orthonormal basis vectors in CM,

- Letg,, I=0, 1, ..., N-1 represent another set
of orthonormal basis vectors in CN,

° Let H, =h,g,", or H, (m,n)=h,(m)g,(n).
 Then H, , will form an orthonormal basis
set in CMXN,

* Transform can be performed separately,
first row wise, then column wise

Yao Wang, NYU-Poly EL5123: Final Review
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Example of Separable Unitary Transform

* Example 1
N VR N Iy AV
A2l =142
Hop T 1/2 1/2 Ho_ppT 1/2 —1/2
0T 2 172 o O 0 —1/2
HonnT /2 1/2 bt 1/2 —1/2
R N 5 T 1)) et 12 1/2
e 2D DFT
H,.,(m,n)= 1 ejzi{k“”_m v
k,I ’ \/m 5
(M) = eV, g (m e
‘ JM e JN
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Why Using Transform?

 When the transform basis is chosen
properly

— Many coefficients have small values and can
be quantized to 0 w/o causing noticeable
artifacts

— The coefficients are uncorrelated, and hence
can be coded independently w/o losing
efficiency.

Yao Wang, NYU-Poly EL5123: Final Review
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Transform Basis Design

» Optimality Criteria:

— Energy compaction: a few basis images are sufficient
to represent a typical image.

— Decorrelation: coefficients for separated basis images
are uncorrelated.

« Karhunen Loeve Transform (KLT) is the Optimal
transform for a given covariance matrix of the underlying
signal (the vector of pixels in a block).

— Must be computed for a given image or a collection of training
data

— KLT basis design not required!

* Discrete Cosine Transform (DCT) is close to KLT for
images that can be modeled by a first order Markov
process (I.e., a pixel only depends on its previous pixel).
— Fixed transform

Yao Wang, NYU-Poly EL5123: Final Review
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Basis Images of DCT

h(m,n,u,v) = a(u)a(v) cos{%} cos[(zn;Nl)Vﬂ} T(u,v)= i E f (m,n)h(m,n,u,Vv)
| _ i
where oz(u)—{\/\/;1 U u_?\l 1 f(m,n)= 3 1T(u,v)h(m,n,u,v)
N u=0 v=0
- CT

Low-High High-High

Yao Wang, NYU-Poly EL5123: Final Review
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JPEG Image Coding Standard

« JPEG (Baseline) uses block-DCT

— Divide an image into 8x8 non-overlapping blocks

— For each block:
* Apply Discrete Cosine Transform

* Quantize DCT coefficients (uniform quantizer with different
stepsizes for different coefficients)

- Zig-zag ordering of quantized DCT coefficients
« Create Run-length representation
« Huffman coding of run-length symbols

* Pros and Cons
— Good coding efficiency
— Simple
— Blocking artifacts at low bit rate
— No scalability

Yao Wang, NYU-Poly EL5123: Final Review
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Wavelet Transform

* Multi-resolution representation using a
pyramid decomposition

* Wavelet transform through tree-structured
subband decomposition

Yao Wang, NYU-Poly EL5123: Final Review
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Multi-Reso

ution Representation

(aka Pyra

11 PN

Level 0 {apex)

2x2 s Level 1
4w 4 Level 2
L ]

s S

N2 N2
£

NKNI-"

ld Representation)
ﬂb

FIGURE 7.2 (a) A
pvramidal image
structure and

(b) system block
diagram for
creating it.

Level J — 1

™,

Level T (base)

Downsampler

Approximation Level j — 1
filter 2*‘ T approximation
2
} Upsampler
Interpolation
filter
Prediction
_ Level j
. Level) prediction
npul mage residual
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a
b

FIGURE 7.3 'Two
image pyramids
and their
statistics: (a) a
(Giaussian
(approximation)
pyvramid and (b) a
Laplacian
(prediction

residual) pyramid.
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Two Band Filterbank

a s(n) | u(n) a(@)
b hy(n) 24 24 goln)
I
FIGURE 7.4 (a) A _I-..l[;z;l—I|
two-band filter x(n) e— Analysis ! Synthesis <+>—¢ i(n)
dimensional e
-NsIone : h(n | 2 "in
subband coding 1(n) 2y | i g1ln) )
and decoding, and t(n) | v(n)
(b} its spectrum
splitting R
properties. Hy(w)] Ho(o)] |
|
I
Low band | High band :
| |
| |
I I:., i)

—

LI =]

hO: Lowpass filter, y0: a blurred and then down-sampled version of x

h1: Highpass filter, y1: edges in x

When the filters h0,h1, g0, g1 are designed appropriately,

XA=X (perfect reconstruction filterbank)
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lterated Filter Bank

X e Hy 21—

H; _@ H, _@_. Analysis

Stage 1 Hﬂ_@_ - m _@_.
-Gh—

Hag

Stage J

A 3. ferated filter bank The lowpass branch gets split repeatedly
fo get g discrefe-fime wavelet transform.

From [VetterliO1 ]
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How to Apply Filterbank to

Images?

ho(m)

—® a(m, n)

2

x(m, n) e—

Rows
(along m)

hy(m)

& dY(m, n)

e d(m,n)

24

Rows

hy(n) 2y
Columns
(along n)
hy(n) 2%
Columns
ho(n) 2¢
Columns
hy(n) 24

e dP(m, n)

Columns

FIGURE 7.5 A
two-dimensional,
four-band filter
bank for subband
image coding.

2D decomposition is accomplished by applying the 1D decomposition
along rows of an image first, and then columns.

Yao Wang, NYU-Poly
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Wavelet Transform for Images

L,

HL4

LH,

HH,

& 4 The subband labeling scheme for g one-level, 2-0 wavelet

transform.

Yao Wang, NYU-Poly

LLg|Hig
HL,
LHs | HH
373 HL,
LH, | HH,
LH, HH,

transform.
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Yao Wang, NYU-Poly
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a
bcd

FIGURE 7.8 (a) A
discrete wavelet
transform using
Haar basis
functions. Its local
histogram
variations are also
shown;

(b)—(d) Several
different
approximations
(64 x 64,

128 = 128, and
256 % 256) that
can be obtained
from (a).
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JPEG2000

 Uses wavelet transforms

« Divide an image into tiles, process each tile of each color
component separately

* For each tile
— Apply wavelet transform
— Divide the coefficients into code blocks
— Represent each code block in bit planes

— Code successive bit planes using context-based arithmetic
coding

— Resulting bits are packetized into a scalable bit stream

« Coarse scale coefficients first
« Higher bit planes first within each scale

« Details of JPEG2000 coding algorithms not required.
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JPEG2000 Features

Improved coding efficiency

— Primarily due to efficient entropy coders for bit planes of wavelet
coefficients

Full quality scalability
— From lossless to lossy at different bit rate
— Enabled by bit plane coding

Spatial scalability

— Enabled by wavelet transform: code the coefficients from coarse
to fine scale

Region of interests

More demanding in memory and computation time than
JPEG
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What i1s Geometric Transformation?

So far, the image processing operations we
have discussed modify the color values of pixels
In a given image

With geometric transformation, we modify the
positions of pixels in a image, but keep their
colors unchanged

— To create special effects

— To register two images taken of the same scene at
different times or by different sensors

— To morph one image to another

Yao Wang, NYU-Poly EL5123: Final Review
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Illustration of Forward and Inverse

]

Yao Wang, NYU-Poly

Mapping Functions
&7 XD

Forward
X(u,v), y(u,v)

>

Inverse
u(x,y), v(x,y)

EL5123: Final Review
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Translation, Scaling, Rotations

« Should know the mapping functions for
each

* Can be combined and represented with a

general form of
x =RS(u+t)=Au+b,

u=A"'(x-b)=Ax+c,
with A =RS, b =RSt, ¢ = —t.

* Note that interchanging the order of
operations will lead to different results.

Yao Wang, NYU-Poly EL5123: Final Review
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Polynomial Warping

« The polynomial warping includes all deformations that
can be modeled by polynomial transformations:

X=a,+au+aVv+auv+a,u’+ayv? +--
y=b, +bu+b,v+buv+b,u’+byv: +--

« Special cases:
— Affine Mapping, which has only first order terms:

— Bilinear Mapping

y =b, +b,u+b,v+Db;uv

Yao Wang, NYU-Poly EL5123: Final Review
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Image Warping by Inverse Mapping

* |Inverse Mapping
— For each point (X, y) in the image to be obtained, find
its corresponding point (u, v) in the original image
using the inverse mapping function, and let g(x, y) =
f(u, v)

e -

P’ will be interpolated
from P,, P,, P5, and P,
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Image Registration

« Suppose we are given two images taken at
different times of the same object. To observe
the changes between these two images, we

need to make sure that they are aligned properly.

To obtain this goal, we need to find the correct
mapping function between the two. The
determination of the mapping functions between

two images is known as the reqistration problem.

* Once the mapping function is determined, the
alignment step can be accomplished using the
warping methods.

Yao Wang, NYU-Poly EL5123: Final Review
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How to determine the mapping function?

* Assume the mapping function is a polynomial of
order N

« Step 1: Identify K=N corresponding points
between two images, i.e.
(U.,Vv.) <> (X, Y:),1=1,2...,K.
» Step 2: Determine the coefficients a, b, i =
0,...,N-1 by solving
{x(ui,vi):aoJralui +a,V + =X,

1=12....K
y(uiavi):bo +b1ui +b2Vi T =Y
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Image Registration Method (2)

* Step 2: sa-x av-y

where
(1 u, v, e [ a, | [ b, | [ X, | I
1 u, v, - a b X

A= 7 7 lLa=| | |b=| | [x=| |y=
_1 Ue Vg T _aN—IJ _bN—l_ _XK_ N

If K =N, and the matrix A is non-singular, then
a=A"x, b=A"y

If K> N, then we can use a least square solution
a=(A"A)"'A'x, b=(ATA)'A'y

If K< N, or A is singular, then more corresponding feature points
must be identified.

Yao Wang, NYU-Poly EL5123: Final Review
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Image Morphing

* Image morphing has been widely used in movies and
commercials to create special visual effects. For
example, changing a beauty gradually into a monster.
The fundamental techniques behind image morphing is
Image warping.

Let the original image be f(u) and the final image be g(x).
In image warping, we create g(x) from f(u) by changing
its shape. In image morphing, we use a combination of

both f(u) and g(x), to create a series of images in
between f(u) and g(x),

h(u+sd)=(1-s,)f(u)+s,g(u+d(u)), k=0,1.. K,
where s, =k/K.
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Examples of Image Morphing

Cross
Dissolve

I(t) = (1-4)*S+*T

Mesh
based

-

George Wolberg,. ecent Advances in Image Morphing”,
Computer Graphics Intl. '96, Pohang, Korea, June 1996.
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Image Restoration

How to model the image degradation process
— Transformation (linear or nonlinear) + Noise
— Linear model
* g(x.y)= h(x,y)*f(x,y)+ n(x,y)
How to estimate h(x,y) for common degradation
Processes
— Spatial blurring
— Motion blurring

How to restore the image with given h(x,y)?
— Inverse filtering

— Wiener filtering
— Problems and fixes...

Yao Wang, NYU-Poly EL5123: Final Review
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Final Exam Logistics

Scheduled time: 12/22 1:30-4:30, RH615
Closed-book, 1 sheet of notes allowed (double sided
OK)

Only cover topics after midterm exam

See previous notes on topics that will not be covered.

Office hour:
— 12/20 4-6PM. Contact me for other times by email

— Last two HW will be due on 12/15 5PM outside door of my office
(LC256)

— Solutions to last three HWs will be posted on my.poly by 12/16

Yao Wang, NYU-Poly EL5123: Final Review
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Follow-Up Courses

 EL6123 - Video processing

— TV systems, video sampling and format conversion, motion
estimation, video coding techniques, video coding and
communication standards, video transport over networks

— Require a term project
— http://eeweb.poly.edu/~yao/EL612/

« CS6643 - Computer vision

« Other related courses
— EL7133: Digital signal processing
— EL7163: Multiresolution signal processing
— CS6533: Computer Graphics
— EL5823: Medical Imaging |
— EL5143: Multimedia Lab

Yao Wang, NYU-Poly EL5123: Final Review
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