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LECTURE OBJECTIVES

Concept of sampling
Sampling using periodic impulse train
Frequency domain analysis

Spectrum of sampled signal

Nyquist sampling theorem
Sampling of sinusoids



Two Processes in A/D

Conversion
i Sampling g:tl{aol:ltl-
Xc(t) I x[n] = x.(nT) T x[n]
Sampling Quantization
Period Interval
T Q

Sampling: take samples at time nT

T: sampling period; x[n]=x(nT),—o0 < n < oo
fs = 1/T: sampling frequency

Quantization: map amplitude values into a set of discrete values * pQ
Q: quantization interval or stepsize i[n] = O[x(nT)]



igital

Analog to D
Conversion

A2D_plot.m



How to determine T and Q?

T (or f,) depends on the signal frequency range
A fast varying signal should be sampled more frequently!
Theoretically governed by the Nyquist sampling theorem
f,>2f  (f,is the maximum signal frequency)
For speech: f,>= 8 KHz; For music: f, >= 44 KHz;
Q depends on the dynamic range of the signal
amplitude and perceptual sensitivity
Q and the signal range D determine bits/sample R
2R=D/Q
For speech: R = 8 bits; For music: R =16 bits;
One can trade off T (or f,) and Q (or R)
lower R -> higher f; higher R -> lower f,

We only consider sampling in this class



SAMPLING x(t)

SAMPLING PROCESS

Convert x(t) to numbers x[n]
“n” Is an integer; x[n] is a sequence of values
Think of “n” as the storage address in memory

UNIFORM SAMPLING at t = nT,
IDEAL: x[n] = x(nT,)

x(t) x[n]

C-to-D —




Sampling of Sinusoid

Signals
Sampling above /T\ /T\ /T\ /T\\b

Nyquist rate U W :
W=30,>0,
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Sampling under
Nyquist rate :
0.=1.50,<0¢,

ws?_w.i
I\ I \ 'z 3% " ° 6
2N /A i 1\ r"\\ /
Reconstructed AR A A A
o r 1 \ t ] Y ¥ X  a—
\= original I} Q\ / ‘{ f ‘{\ oy
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Aliasing: The reconstructed sinusoid has a lower frequency than the original!



Nyquist Sampling Theorem

Theorem:
If x(t) is bandlimited, with maximum frequency r.(or
w, =27 1,)
andif f,=1/T,>2f or o,=27/1T,>2 o,

Then x t can be reconstructed perfectly from x[n]=
X(nT, (by using an ideal low-pass filter, with cut-off

frequency at /2
f.o= 2 f,is called the Nyquist Sampling Rate

S

Physical interpretation:
Must have at least two samples within each cycle!




Sampling Using Periodic Impulse

Train

4/17/2008

p(t) = Z d(t —nly)

Ideal C-to-D Converter
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x[n)

x|n] = x(ni)

FOURIER
TRANSFORM
of x(t) 227?
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Periodic Impulse Train
p(0)

T T T (D T(l) T(l) T(l)
15 2T 37

=37, 2T, —T;

p(t)= ) 8—nT,)

n=—oo
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Impulse Train Sampling

x(1) ? Xs ()

p(t) =Y 8(t —nTy)

n=—00

y=x(t) Y St-nT)= Y x()(t—-nT.)

N=—o0 N1=—o0

oo

x, (= 2. x(nL)ot—nT)

4/17/2008 J1——0°0



lllustration of Sampling
0 Ax.(.‘(r) = x (1) p(1) ()

L x(=Ty) x<3T5)
y x(2Ty)
x(— 2Ts / x(4T;
r, 1
l 2Ts T, _,l. 2T, 3T, 4T \ ¢
Y MO 4 °°

X (23Ty) x(Ty) x,(t) = Y x(nT,)8(t —nT,)
yxln] = x(nTy) (b)
x[—1] x|3]
x[—2] I 83 I x[4]
SR ] ¢
4 n

4/ x[_3] x[l] 13



Sampling: Freq. Domain

How is the

x (1) X (1) o spectrum of x ()
related to that of
x(t)?

5 jkoi  EXPECT
pt) = Zake FREQUENCY

k=—o0 SHIFTING !!!
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Fourier Series Representation
of Periodic Imnupl(%e Train

TITTITT.

37, 2T, -—T; 1 2T 37 l
- - ka t 27
p(1) = Z5(t—nTS)= Zake] : a)S:?
f1=—00 k=—c0 \)
1 112 1 | Fourier Series
a, =— j§(t)e_]kwstdt = —
T T

S r 15



FT of Impulse Train

oo

IGEDY 5(t—nTS)=Tizef"“’sf & P(jo)y= ) ZT” S(w—kw,)

N=—oo Sk k=—co © 8

p(1) (a)

(D A A A) W, =——
r
15 275 375 t

=37, 2T, T
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Frequency-Domain Analysis:
Using Fourier Series

x, (1) = x() p(t)
p(t) = i o(t—nT,) :iZejkwsz

r(=x(t) T Lkt L5 ypelkes

k=—o0 S TS k=—o0

X;(jo) = —kZ X(j(w-kawy))
’s k=0 27T
. =—
D4



Frequency-Domain Analysis:
Using Multiplication-
Convolution duality

oo

pt)y= "> 5(r—nTS)=TiZef"“’sf & P(jo)= ) ZT” S(w—kw,)

N=—o0 S k k=—o0 A

x(O)p(1) & - X(j)* P(jo)

z 2T7Z X(jo)y*o(w—kw,)

k=—o0 A

1
X (jo) =EX(jw)*P(jw) =

b
2T

=T1S§x(j(w—kws»



Frequency-Domain
Representation of Sampling

AX(jw)

“Typical” A
bandlimited signal / \

Y

X,(jo)== 2 X(j(w-kw,))

S k=—oc0

A X (o)
X @+20)) £X(j@+0)) 7L | x(9 FX(@=-0) £X(©-20))

WANVANVANVANVAN

ey

2w —y _Os —Wp 0 wp % K@ Wy 2(1)5
7 14



Aliasing Distortion

AX (o)
“Typical” A
bandlimited signal / \
—Wp () : wp z
If . < 2w, , the copies of X(jw) overlap,
and we have aliasing distortion.
A A A} A
.&@Xrbo) .&UJXFLU) AXV(]G)) N A ¢ .w)/rw)
RV RV % Y NV RN
—3wyg —2wyg —g _% 0 % Wg 2wy 3wy w
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Frequency Domain
Interpretation of Sampling

Original signal

Sampling
impulse train

Sampled signal
0>2 O,

Sampled signal
W.<2 O,
(Aliasing effect)

X{w)

@ (w, — wp)

The spectrum of the
sampled signal includes
the original spectrum and
its aliases (copies) shifted
to kfy, k=+/- 1,2,3,...

The reconstructed signal
from samples has the
frequency components
upto f,/2.

When f,< 2f,,, aliasing
occur.



Reconstruction: Frequency-Domain

AXs (Jo)

(a)

_20)5 —(y 5 O > Wy 2@5 w

A (jo) If w, >2w,,the copies of

H,(jo) Ty X( ]Q) do not (?Verlap, .so

\ XT(]w):Hr(]w)Xs(]w)
- >
—2wy —(y _% 0 % g 2w,

Xr(jo)
/A&M (C)
2w —w, ~®b O wp w5 2o, ’(; 5



Nyquist Sampling Theorem

Theorem:
If x(t) is bandlimited, with maximum frequency r.(or
w, =27 1,)
andif f,=1/T,>2f or o,=27/1T,>2 o,

Then x t can be reconstructed perfectly from x[n]=
X(nT, (by using an ideal low-pass filter, with cut-off

frequency at /2
f.o= 2 f,is called the Nyquist Sampling Rate

S

Physical interpretation:
Must have at least two samples within each cycle!




Sampling of Sinusoid
Signals: Temporal domain

Samplipg above /r\ m /]\ /\f\
e VA VA VAR VA ¥

’r- / s a2 w-‘-ﬁ
/ % (N % S
Reconstructed j ]\ T:T‘ / f‘\ Ji f‘
. . \ \ 14 t '
=original ! "1 /R I A VAR B
/ / / /
~ '/ 7/ 7
(b}
Sampling under
Nyquist rate :
0;=1.50,,<my,
g =
’I’ \“ ll \\ ’[ \\ " \ "8
Reconstructed AN A L A L
o r 1 \ t ] Y ¥ X  a—
\= original I} {\ Fyy 1y vy
|V “J \\_/ ‘\J’

Aliasing: The reconstructed sinusoid has a lower frequency than the original!



Sampling of Sinusoid:
Frequency Domain

Spectrum of

cos(2 79600

No aliasing

f.>2f,
fs o>t

Jo

Reconstructed
signal: f,

With aliasing
f0<fs <2f, (folding)

'fs 'fo 'fs

S+ Jo

£/2

0
|

o /s
f/2

fitho

S To<f

Reconstructed signal: f, -f,

With aliasing
f. <f,(aliasing)
Jots<fo

S fo I

Jo

'fx

-f+fy  fifo

A A

Jo

o‘fs

s Jitho

Reconstructed signal: f, -f,

7 o fo

fotfe  Jofs  So

fitfo



More examples with
Sinusoids



SAMPLING GUI (con2dis)

<) CON2DIS v1.01
Plot Options  Exit  Help

Input: cos(2x 17.0 t)

x[n]

= cos(2n 0.85 n)

Output: cos(2x 3.0 t)

AN
0.5 q 1 05 | |
; : l I
-0.5 |1 -0.5 I \ I
0 01 02 03 04 0 2 3 4 56 7 8 9 10 01 02 03 04
Time (sec) Time (samples) Time (sec)
Continuous Time Spectrum Discrete Time Spectrum Continuous Time Spectrum
. s s 1 1
0.8 04 0.8 ALIASING!
0.6 06 0.6
0.4 04 0.4
0.2 0.2 0.2
ol— ’ = 0 - ol— -
-20 -10 0 10 20 -2n  -m 0 T 2 -20 -10 0 10 20
P a— f (Hz) Pr— 2n(f /1) f(Hz)
f,=17.0 (Hz) Phase =0.00 f =20.0 (Hz)

| | || 17.0

4/17/2!

I |

CON2DIS vi.01

=1ojx

27



Strobe Movie

From SP First, Chapter 4, Demo on
“Strobe Movie”



How to determine the necessary
sampling frequency from a signal
waveform?

Given the waveform, find the shortest ripple, there
should be at least two samples in the shortest ripple

The inverse of its length is approximately the highest
frequency of the signal

Fmale/Tmin
<>
/Tmin

Need at least two
samples in this
interval, in order not
to miss the rise and
fall pattern.



Sampling with Pre-Filtering

X(1)

- If f, < 2f,, aliasing will occur in sampled signal

Pre-Filter
H (f)

x’(t)

Periodic
Sampling

T

Sampling
period T

Xq(n)

* To prevent aliasing, pre-filter the continuous signal so that f, <f/2
- |deal filter is a low-pass filter with cutoff frequency at /2

(corresponding to sync functions in time)
«Common practical pre-filter: averaging within one sampling interval



Summary

Sampling as multiplication with the periodic impulse train

FT of sampled signal: original spectrum plus shifted
versions (aliases) at multiples of sampling freq.

Sampling theorem and Nyquist sampling rate

Sampling of sinusoid signals

Can illustrate what is happening in both temporal and freq.
domain. Can determine the reconstructed signal from the
sampled signal.

Need for prefilter

Next lecture: how to recover continuous signal from
samples, ideal and practical approaches



Readings

Textbook: Sec. 12.3.1-12.3.2, 4.1-4.3
Oppenheim and Willsky, Signals and
Systems, Chap. 7.

Optional reading (More depth in frequency
domain interpretation)



