EE3054 Signals and Systems

Sampling of Continuous Time Signals

Yao Wang Polytechnic University

Some slides included are extracted from lecture presentations prepared by McClellan and Schafer

License Info for SPFirst Slides

- This work released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

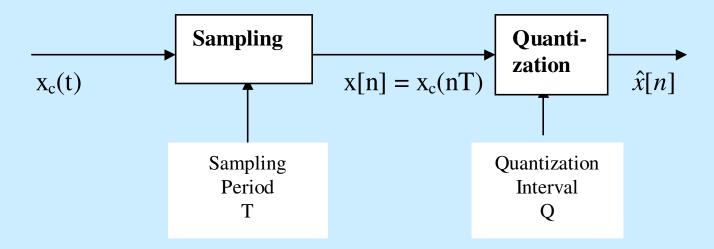
Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

LECTURE OBJECTIVES

- Concept of sampling
- Sampling using periodic impulse train
- Frequency domain analysis
 - Spectrum of sampled signal
 - Nyquist sampling theorem
 - Sampling of sinusoids

Two Processes in A/D Conversion



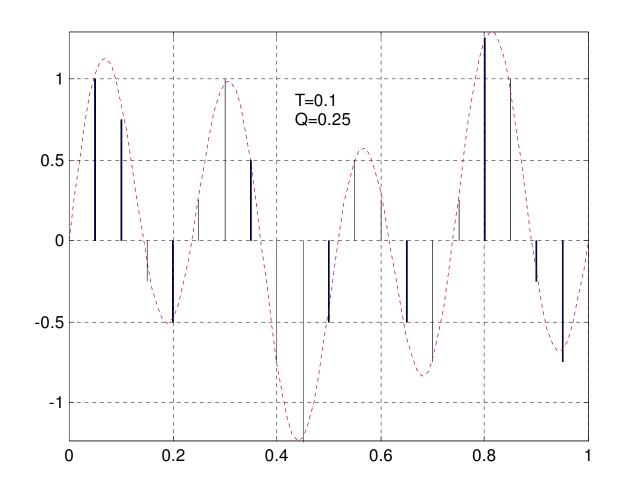
- Sampling: take samples at time *nT*
 - T: sampling period;

$$x[n] = x(nT), -\infty < n < \infty$$

- f_s = 1/T: sampling frequency
- Quantization: map amplitude values into a set of discrete values $\pm pQ$
 - Q: quantization interval or stepsize

 $\hat{x}[n] = Q[x(nT)]$

Analog to Digital Conversion



A2D_plot.m

How to determine T and Q?

- T (or f_s) depends on the signal frequency range
 - A fast varying signal should be sampled more frequently!
 - Theoretically governed by the Nyquist sampling theorem
 - $f_s > 2 f_m$ (f_m is the maximum signal frequency)
 - For speech: $f_s \ge 8$ KHz; For music: $f_s \ge 44$ KHz;
- Q depends on the dynamic range of the signal amplitude and perceptual sensitivity
 - *Q* and the signal range *D* determine bits/sample *R*
 - 2^R=D/Q
 - For speech: *R* = 8 bits; For music: *R* = 16 bits;
- One can trade off T (or f_s) and Q (or R)
 - lower $R \rightarrow higher f_s$; higher $R \rightarrow lower f_s$
- We only consider sampling in this class

SAMPLING x(t)

SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an integer; x[n] is a sequence of values
- Think of "n" as the storage address in memory
- UNIFORM SAMPLING at t = nT_s
 IDEAL: x[n] = x(nT_s)

$$\xrightarrow{x(t)} C-to-D \xrightarrow{x[n]}$$

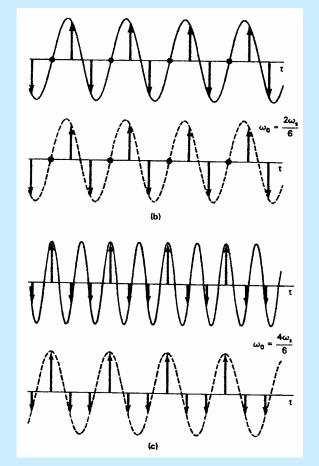
Sampling of Sinusoid Signals

 $\begin{array}{l} \text{Sampling above} \\ \text{Nyquist rate} \\ \omega_{s} = 3\omega_{m} {>} \omega_{s0} \end{array}$

Reconstructed =original

Sampling under Nyquist rate $\omega_s=1.5\omega_m<\omega_{s0}$

Reconstructed \= original



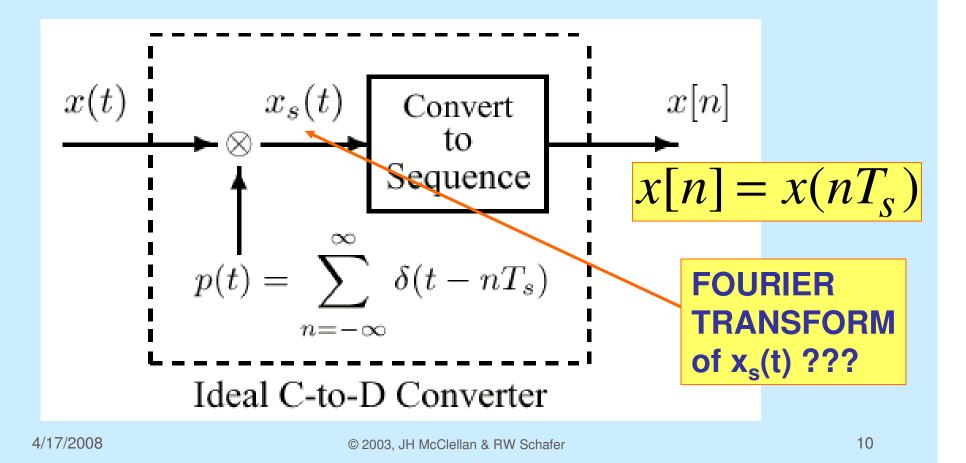
Aliasing: The reconstructed sinusoid has a lower frequency than the original!

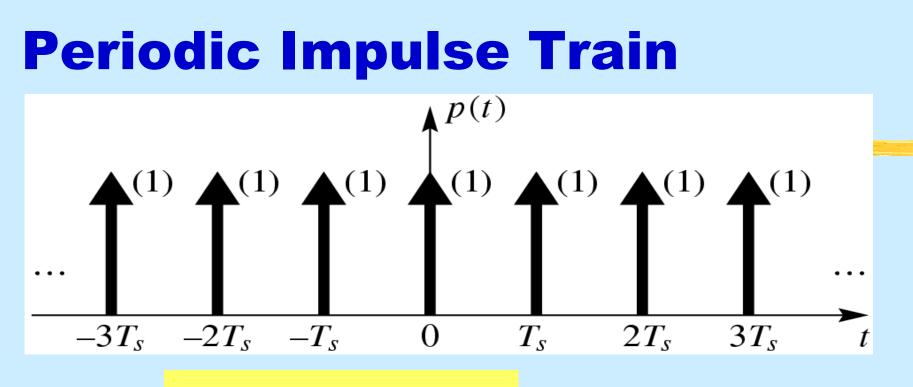
Nyquist Sampling Theorem

Theorem:

- If x(t) is bandlimited, with maximum frequency $f_b(or \omega_b = 2\pi f_b)$
- and if $f_s = 1/T_s > 2 f_b$ or $\omega_s = 2\pi/T_s > 2 \omega_b$
- Then x_c(t) can be reconstructed perfectly from x[n]= x(nT_s) by using an ideal low-pass filter, with cut-off frequency at f_s/2
- $f_{s0} = 2 f_b$ is called the *Nyquist Sampling Rate*
- Physical interpretation:
 - Must have at least two samples within each cycle!

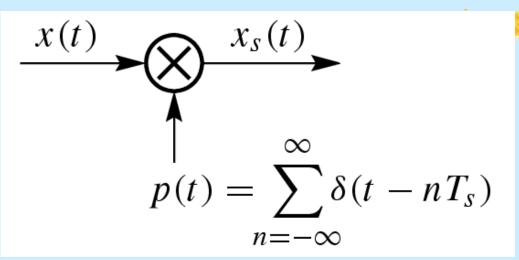
Sampling Using Periodic Impulse Train





$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_s)$$

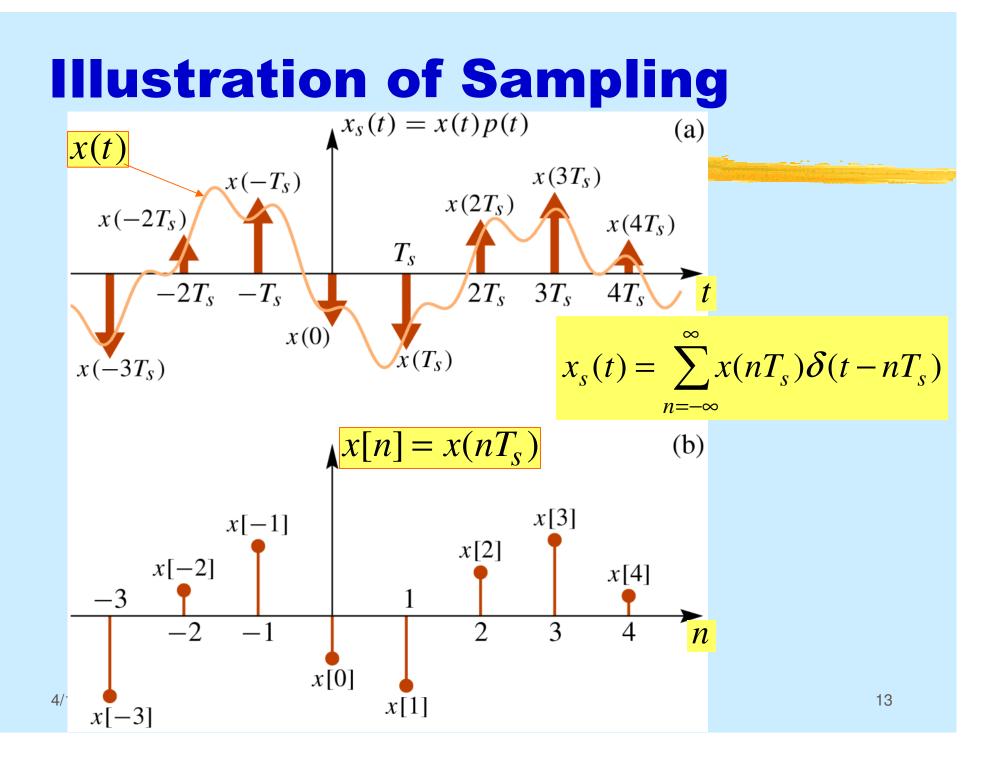
Impulse Train Sampling



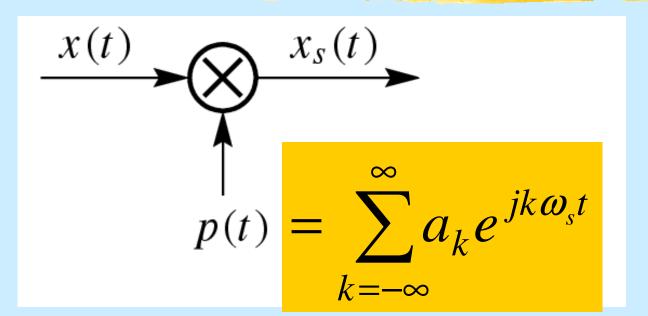
$$x_s(t) = x(t) \sum_{n = -\infty}^{\infty} \delta(t - nT_s) = \sum_{n = -\infty}^{\infty} \underline{x(t)} \delta(t - nT_s)$$

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} x(nT_{s})\delta(t-nT_{s})$$

4/17/2008



Sampling: Freq. Domain



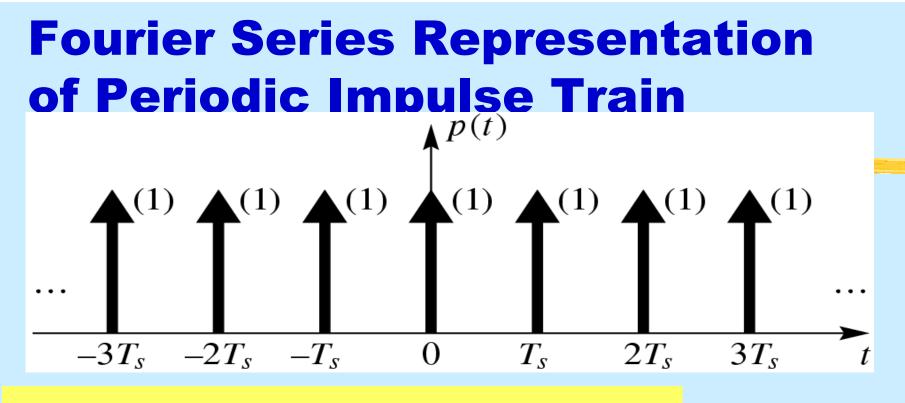
How is the spectrum of $x_s(t)$ related to that of x(t)?

EXPECT FREQUENCY SHIFTING !!!

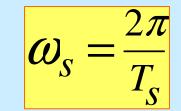
 $p(t) = \sum \delta(t - nT_s) = \sum a_k e^{jk\omega_s t}$ $k = -\infty$ $n = -\infty$

4/17/2008

© 2003, JH McClellan & RW Schafer

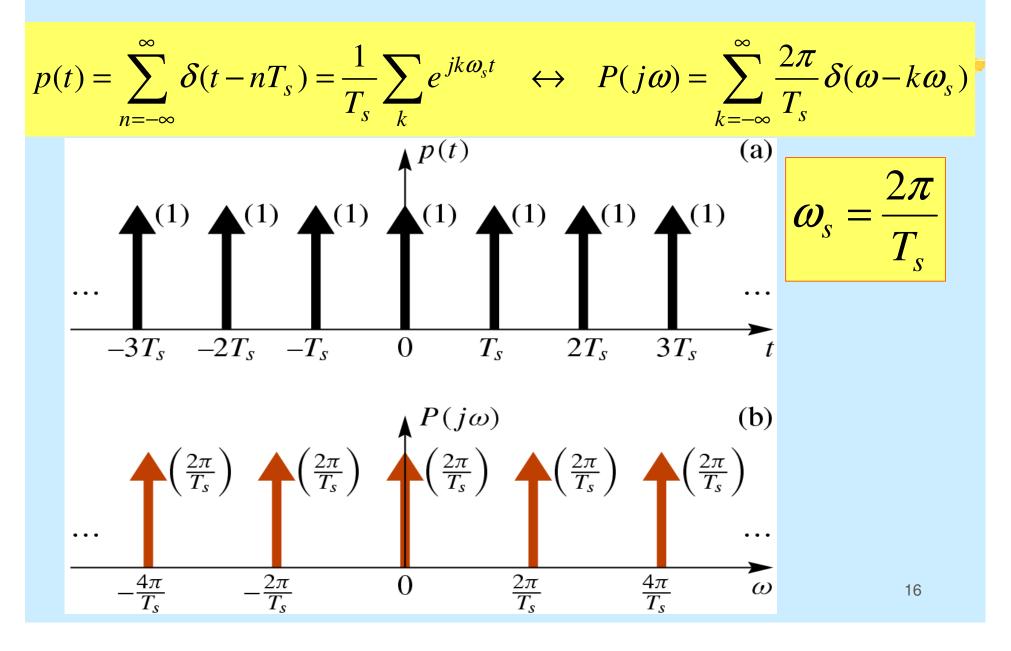


$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_s) = \sum_{k = -\infty}^{\infty} a_k e^{jk\omega_s t}$$



$$a_k = \frac{1}{T_s} \int_{-T_s/2}^{T_s/2} \delta(t) e^{-jk\omega_s t} dt = \frac{1}{T_s} \int_{-T_s/2}^{T_s/2} \delta(t) e^{-jk\omega_s t} dt = \frac{1}{T_s}$$

FT of Impulse Train



Frequency-Domain Analysis: Using Fourier Series

$$x_s(t) = x(t)p(t)$$

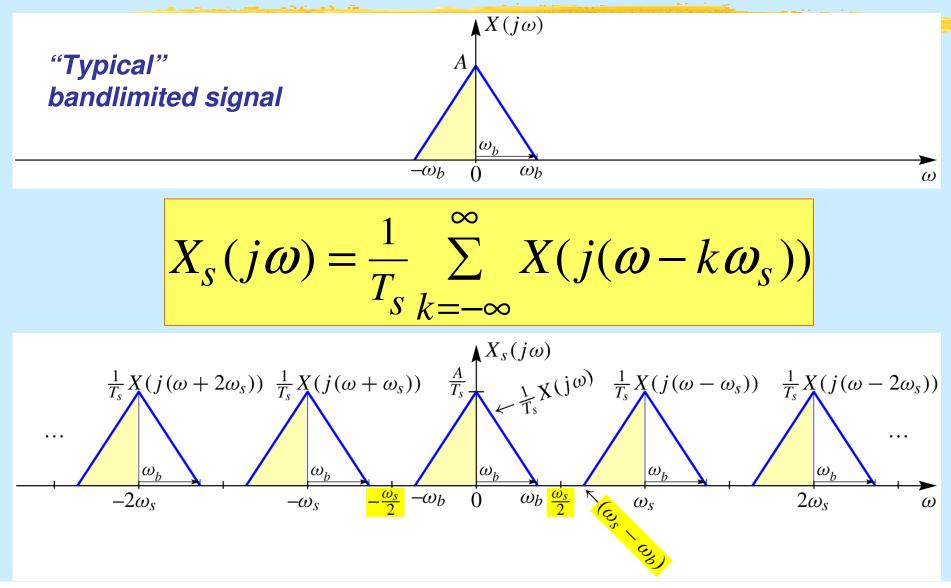
$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_s) = \frac{1}{T_s} \sum_{k} e^{jk\omega_s t}$$
$$x_s(t) = x(t) \sum_{k = -\infty}^{\infty} \frac{1}{T_s} e^{jk\omega_s t} = \frac{1}{T_s} \sum_{k = -\infty}^{\infty} \frac{x(t)e^{jk\omega_s t}}{x_s(t)}$$

$$X_{s}(j\omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} \frac{X(j(\omega - k\omega_{s}))}{\omega_{s} = \frac{2\pi}{T_{s}}}$$

Frequency-Domain Analysis: Using Multiplication-Convolution duality

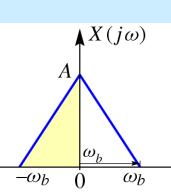
$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \frac{1}{T_s} \sum_{k} e^{jk\omega_s t} \quad \leftrightarrow \quad P(j\omega) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{T_s} \delta(\omega - k\omega_s)$$
$$x(t) p(t) \Leftrightarrow \frac{1}{2\pi} X(j\omega) * P(j\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \frac{2\pi}{T_s} X(j\omega) * \delta(\omega - k\omega_s)$$
$$= \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

Frequency-Domain Representation of Sampling



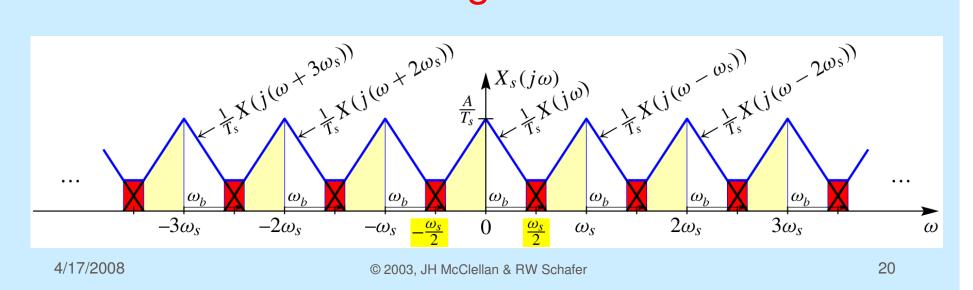
Aliasing Distortion

"Typical" bandlimited signal

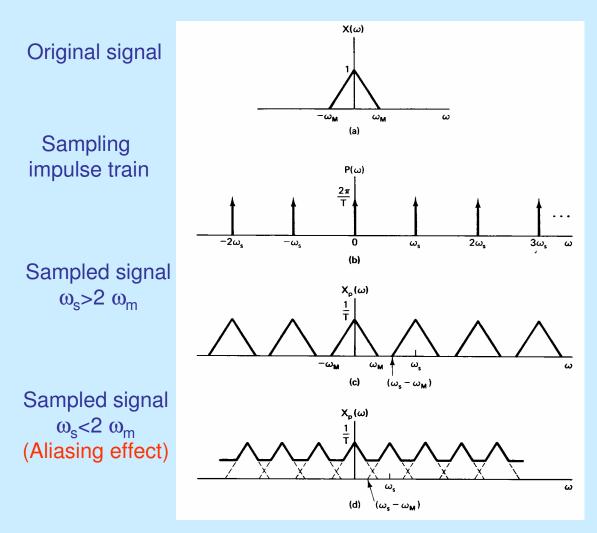


ω

• If $\omega_s < 2\omega_b$, the copies of $X(j\omega)$ overlap, and we have aliasing distortion.



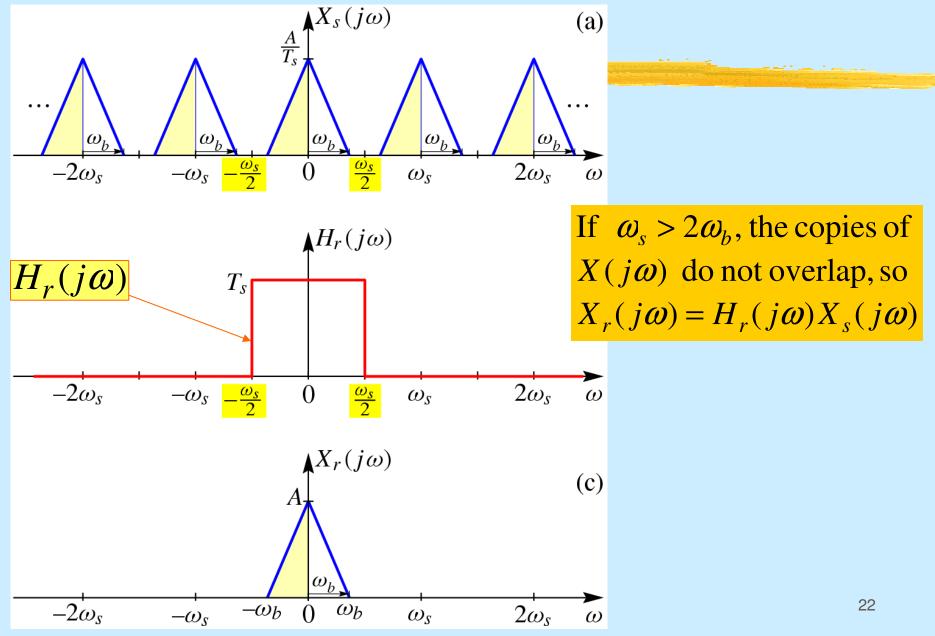
Frequency Domain Interpretation of Sampling



The spectrum of the sampled signal includes the original spectrum and its aliases (copies) shifted to $k f_s$, k=+/-1,2,3,...The reconstructed signal from samples has the frequency components upto $f_s/2$.

When $f_s < 2f_m$, aliasing occur.

Reconstruction: Frequency-Domain



Nyquist Sampling Theorem

Theorem:

- If x(t) is bandlimited, with maximum frequency $f_b(or \omega_b = 2\pi f_b)$
- and if $f_s = 1/T_s > 2 f_b$ or $\omega_s = 2\pi/T_s > 2 \omega_b$
- Then x_c(t) can be reconstructed perfectly from x[n]= x(nT_s) by using an ideal low-pass filter, with cut-off frequency at f_s/2
- $f_{s0} = 2 f_b$ is called the *Nyquist Sampling Rate*
- Physical interpretation:
 - Must have at least two samples within each cycle!

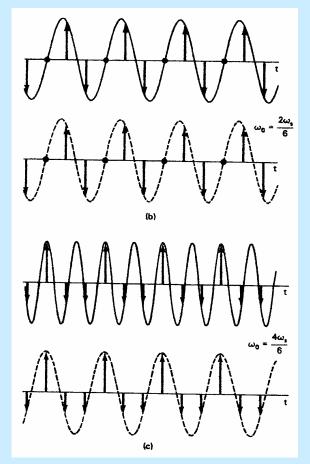
Sampling of Sinusoid Signals: Temporal domain

Sampling above Nyquist rate $\omega_s = 3\omega_m > \omega_{s0}$

Reconstructed =original

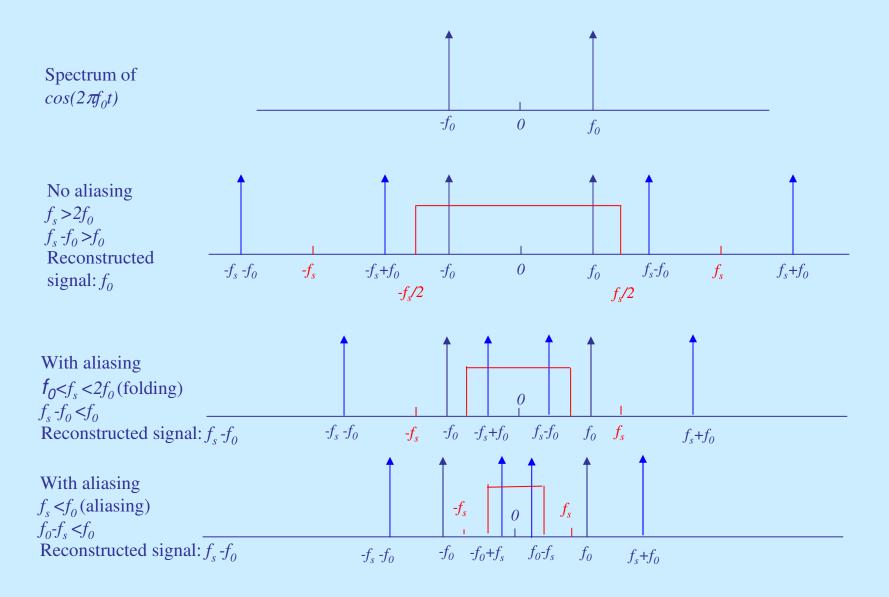
Sampling under Nyquist rate $\omega_s=1.5\omega_m < \omega_{s0}$

Reconstructed \= original



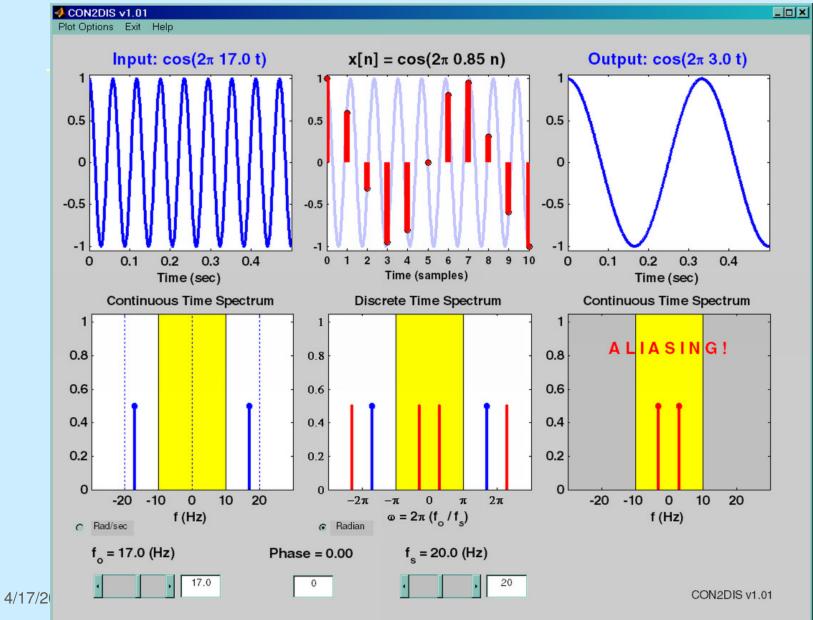
Aliasing: The reconstructed sinusoid has a lower frequency than the original!

Sampling of Sinusoid: Frequency Domain



More examples with Sinusoids

SAMPLING GUI (con2dis)



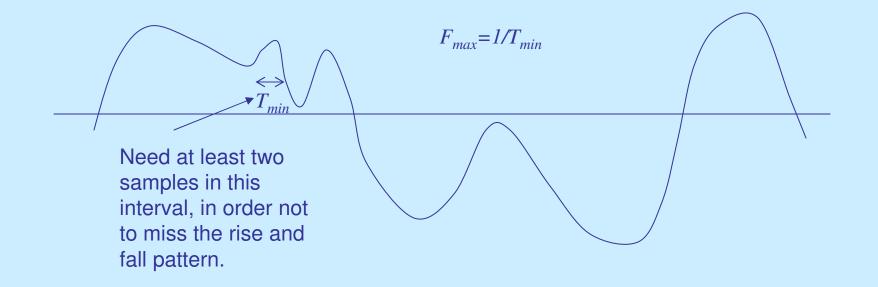
27

Strobe Movie

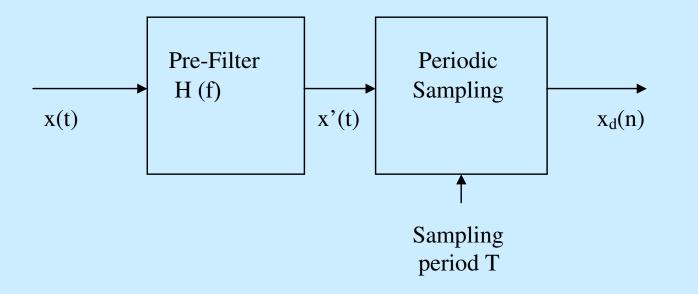
From SP First, Chapter 4, Demo on "Strobe Movie"

How to determine the necessary sampling frequency from a signal waveform?

- Given the waveform, find the shortest ripple, there should be at least two samples in the shortest ripple
- The inverse of its length is approximately the highest frequency of the signal



Sampling with Pre-Filtering



• If $f_s < 2f_b$, aliasing will occur in sampled signal

- To prevent aliasing, pre-filter the continuous signal so that $f_b < f_s/2$
- Ideal filter is a low-pass filter with cutoff frequency at $f_s/2$ (corresponding to sync functions in time)
- •Common practical pre-filter: averaging within one sampling interval

Summary

- Sampling as multiplication with the periodic impulse train
- FT of sampled signal: original spectrum plus shifted versions (aliases) at multiples of sampling freq.
- Sampling theorem and Nyquist sampling rate
- Sampling of sinusoid signals
 - Can illustrate what is happening in both temporal and freq. domain. Can determine the reconstructed signal from the sampled signal.
- Need for prefilter
- Next lecture: how to recover continuous signal from samples, ideal and practical approaches

Readings

- Textbook: Sec. 12.3.1-12.3.2, 4.1-4.3
- Oppenheim and Willsky, Signals and Systems, Chap. 7.
 - Optional reading (More depth in frequency domain interpretation)