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The Slantlet Transform

Ivan W. SelesnickMember, IEEE

Abstract—The discrete wavelet transform (DWT) is usually case of a class of bases originally described by Alpert in
carried out by filterbank iteration; however, for a fixed number [4]-[6] in a multiwavelet context, the construction of which
of zero moments, this does not yield a discrete-time basis that is relies on Gram-Schmidt orthogonalization. We describe the
_optlmal with respect to time _Iocallzatlon. This paper dlscu_sses the basis from a filterbank viewpoint. give exblicit solutions for
implementation and properties of an orthogonal DWT, with two > o p o 9 _p_ -
zero moments and with improved time localization. The basis is the filter coefficients, and describe an efficient algorithm for
not based on filterbank iteration; instead, different filters are used the transform.
for each scale. For coarse scales, the support of the discrete-time The DWT described in this paper is based on a filterbank
basis functions approaches two thirds that of the corresponding gir,cture where (as in [2] and [3]) different filters are used
functions obtained by filterbank iteration. This basis, which is h le. N thel imole efficient al ith
a special case of a class of bases described by Alpert, retainsfor each scale. e.ver- e essz a very simple etricien ggon m
the octave-band characteristic and is piecewise linear (but dis- based on recursion is available. For the DWT filterbank
continuous). Closed-form expressions for the filters are given, described here, the support of the discrete-time basis functions
an efficient implementation of the transform is described, and s reduced (by a factor approaching one third for coarse
piscowise Inear. s rominisent of the slant transfom, to which SCa1eS) while retaining the hasic characteristics of the two-
ﬁ is compared. ’ ' band iterated filterbank tree. This basis retains the octave-band

characteristic and leads cleanly to a DWT for finite length
signals (boundary issues do not arise, provided the data length
I. INTRODUCTION is a power of 2). The filters are piecewise linear but are
&Iiscontinuous—for coarse scales, they converge to piecewise
Ii{]ear, discontinuous functions.
'The basis, being piecewise linear, is reminiscent of the
ant transform to which it is compared. However, the basis

The degree to which a wavelet basis can successfully yié inctions of the slant transform, like the Hadamard transform
sparse representations of such signals depends on the timé-?x?mple' arednonz_te)zrc:j QVEL_a” of thebdomaln, Whereas_ th;a
localization and smoothness properties of the basis functioR@SIS functions describe Il'n t 'T papedr €come progressively
For example, signal smoothing by the nonlinear thresholdiH&orﬁ narrcr)]w, giving "’ll mlIJ tireso l;]t'on e(;omp%smon_.bHde?]ce,
of DWT coefficients [14] preserves edges reasonably well—f° 1ave the name slantlet for the transform described here.

part, because the support of each basis function is short thﬂe slantlet basis appears especially well suited for treating

respect to its bandwidth. (Thus, we have the “constant-(ﬂ*eceWise linear signals, as is supported by the denoising
behavior, or octave-band characteristic, of the associated filtgfample below.

bank.) However, a fundamental tradeoff exists between time

localization and smoothness characteristics, and it is desirable Il. SLANTLET FILTERBANK

to obtain a good tradeoff between these two competing criteria ] ) ) )
in designing wavelet bases. As is usual for DWT's, in this It is useful to consider first the usual iterated DWT filterbank
paper, the lengths of the discrete-time basis functions a@@d an equivaleftform, which is shown in Fig. 1. The

their moments are the vehicles by which time localization ang@ntiet” filterbank described here is based on the second
smoothness properties are achieved. structure, but it will be occupied by different filters that are

Although the usual filterbank iteration provides a simplB°t Products. With the extra degrees of freedom obtained by

way to generate an orthogonal discrete-time basis haviflyind up the product form, it is possible to design filters of
an octave-band characteristic, for a fixed number of zeFgorter length while satisfying orthogonality and zero moment

moments, it does not yield a discrete-time basis that is optinfzgnditions, as will be shown.

with respect to time localization. This paper examines a speciaf © the two-channel case, the shortest filters for which the
filterbank is orthogonal and hds zero moments are the well-

known filters described by Daubechies [13]. Hor= 2 zero
moments, those filter§ (z) and F'(z) are of length 4. For this
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Fig. 1. Two-scale filterbank and an equivalent structure.
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] ] Fig. 3. Three-scale filterbank and an equivalent structure.
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Fig. 2. Comparison of two-scale iteratéeh filterbank (left-hand side) and e s
two-scale slantlet filterbank (right-hand side). + <£ _ 11) 56 + <i _ 11>z7
16 16 16 16 '

are of length 10 and 4. Without the constraint that the filters areFig. 3 illustrates a three-scale filterbank tree for the DWT
products, an orthogonal filterbank witki = 2 zero moments and, again, an equivalent structure. The three-scale iterated
can be obtained where the filter lengths are 8 and 4, as shois filterbank tree analyzes signals at three scales with filters
in Fig. 2, side by side with the iterate, system. That is of length 4, 10, and 22, as illustrated on the left-hand side
a reduction by two samples, which is a difference that growes Fig. 4. On the other hand, the filterbank shown on the
with the number of stages, as will be shown. right-hand side of Fig. 4 analyzes a signal at three scales with



1306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

6) The slantlet filterbank is less frequency selective than
z z2 z4 Hj(z o .
HEHEDHE @ @ the traditional DWT filterbank due to the shorter length
@ @ of the filters. The time localization is improved with a

degradation of frequency selectivity.

H(:)F(2) @ 7) The slantlet filters are piecewise linear.
— — It must be admitted that although both types of filterbanks

2= H(z)F (%) =7 Ga(1/2) @ posses the same number of zero moments, the smoothness
properties of the filters are somewhat different. In Figs. 2

F(z) @ @ and 4, the slantlet filters have greater “jumps” than do the

'z

iterated D, filters—that is, they have a greater maximum

2T EG) 2 Gi1/3) @ difference between adjacent sample values. The Haar basis,
with its discontinuities, is suitable for analyzing piecewise
yzing p
o HHHIY o " Hye) constant functions. Likewise, the slantlet filterbank appears
K NI e e e K ERE0 R0 AR KT appropriate for the analysis of piecewise linear functions with
o PPN - F discontinuities, as illustrated in the denoising example below.
of e eeenret Ll o -‘uwwl-“'-wq B The ability to model discontinuities is also relevant for other
-05 l -05
N ] o . ] o applications, like edge detection and change point analysis,
0'---.-’x‘rr"-'1a' e op b in which the detection of abrupt changes in an otherwise
-0 e e | Tars relatively smooth but unknown function is considered [24],
05 a5 2
U A e [27].
0 ey v O pves ¥
s l - I — We also wish to mention that symmetry of the filters is an
F(z) 2] . . . . . . .
°-g_l_1[_ . °-§__I__” ] ] important property in some applications, especially in image
s 1 5 l processing. While the filters described here are not symmetric,
0s wre 0s e the filters g;(n) are paired with their time-reversed versions
ol 1 sk so that the effect of time reversing the input signal on ghe
0 2 4 6 8 1012 14 16 18 20 0 2 4 8 8 10 12 14 16 18 20 . . g . p g
channels is merely an interchange of adjacent the channels.
8 8.
7 7
o 6 A. Notation
5 5
. . We will denote, by scale, the scale with whichy;(n),
3 e fi(n), and h;(n) analyze a signal. The length of the filters
2 . - . N . .
f ) for scalei will be proportional to2*. That is approximately
0 0 true for iterated filterbanks; however, it is exact for slantlet
[} 025 05 0.75 1 [} 025 a5 0.75 1 .
o o filterbanks. In general, the support @f(n), fi(n), andh;(n)
Fig. 4. Comparison of three-scale iteratby filterbank (left-hand side) and will be 2+
three-scale slantlet filterbank (right-hand side). We should clarify the way in which the slantlet filterbanks

in Figs. 2 and 4 are generalized tescales. That is done as

filters of length 4, 8, and 16. This reduction in length, whiléllows. Thel-scale filterbank hagl channels. The lowpass
maintaining desirable orthogonality and moment properties, fifer is to be calledi(n). The filter adjacent to the lowpass
possible because these filters are not constrained by the prodfi@nnel is to be calledi(n). Both ;(n) and fi(n) are to
form arising in the case of iterated filterbanks. be followed by downsampling bg’. The remaining2! — 2
We make several comments regarding Figs. 2 and 4.  channels are filtered by;(n) and its shifted time-reverse for

1) Each filterbank (equivalently, discrete-time basis) is o'f;—:ll’l't ) fo’lfo;vi.tr%:f?hies fgﬁe?E;ﬁﬂ?giﬂ&éﬁ;‘ggﬁ%ﬂging by

thogonal. The filters in the synthesis filterbank are 062— . i "
tained by time reversal of the analysis filters. i th):]e tha_tt;]n _Ehet_slantlet f'lteerhKi eaChC:”m'(”) ztappears
2) Each filterbank has two zero moments. The filters (exc-)_ge. er with 1S time reverse. il (n) 0€s No appear
ith its time reverse, it always appears paired with the filter

t for the | ihilate discrete-ti ly~ y
ﬁi?nia?; ofed(()eggeaeSTe(;zetsh)a?]ngl tate discrete-time po%(n). In addition, note that thé-scale and(l + 1)-scale

3) Each filterbank has an octave-band characteristic. f||terban_ks _have In common the filtegs(n) foré = 1,...,1-1
4) The scale-dilation factor is 2 for each filterbank. Be"fmOI their time-reversed versions.
tween scales, the filters dilate by roughly a factor of o
2. (In the slantlet filterbanks, they dilate by exactly &- Derivations
factor of 2.) That the sought filters; (n), f;(n), andh;(n) are piecewise
5) Each filterbank provides a multiresolution decomposiinear is central to the following derivation. When coupled
tion. By discarding the highpass channels and passingth the zero moments, it simplifies orthogonality conditions.
only the lowpass channel outputs through the synthesigst, suppose thay;(n), fi(n), and h;(n) are each linear
filterbank, a lower resolution version of the originabver the intervaln € {0,...,2" — 1} and over the interval
signal is obtained. n € {2¢,...,2%1 — 1}, as in Figs. 2 and 4. Suppose, in



SELESNICK: SLANTLET TRANSFORM 1307

addition, thatg;(n) and f;(n) have two zero moments—thatterms of eight unknown parametésso, bo 1, 1.0, b1.1, co.0,
is, their inner products with linear polynomial sequences atg 1, ¢10, andcy ;.
zero [as filters,g;(n) and f;(n) annihilate “ramps”]. With

j > i, over the support ofj;(n), the functionsg;(n), f;(n),  h;(n) = {1’0:0 +bo.n, . for n = 0; e 22;11
and h;(n) are linear so that orthogonality between scales bio+bii(n—2%, forn=2". 20" -1
is immediate. The same is true for the appropriately shiftedf‘(n) _ Jeoo+coin, - forn=0,. L2 -1
versionsy;(n—2%), fi(n—2%), and their time-reversed versions. " cro+eri(n—2Y, forpn=2 2+ 1

Because the sought-after filtgr(n) is to be linear over
the two above-mentioned intervals, it is described by fthhe orthogonality and moment conditions require the follow-

parameters and can be written as
‘ 1) hi(n) and f;(n) are of unit norm.
ao.0 t+ ap1m, fOl’TLIO,...2Z—1
gi(n) =9 = ’

aro+ai1(n—2%, forn=2¢.. .21 1 2 - 2 -1
| ’ ’ Z Ry =1 > fn) =
Therefore, to obtainy;(n) such that the sought-aftérscale fopr
filterbank is orthogonal with two zero moments requires ob- o )
taining parametersq o, a1, a10, anday; SO that we have 2) h;(n) and f;(n) are orthogonal to their shifted versions.

the following. 51
1) g;(n) is of unit norm. Z hi(n)hi(n+2°) =0
9it1l_q n=0
2 2°—1
g;i(n) =1. ;
nz=:0 Z fz fz n+2 ) 0
2) g;(n) is orthogonal to its shifted time reverse. 27+1_1
oitl_q Z h7(7’L)f n)—=
> gi(m)ed2 T —1-m) =0. =
n=0 2"—1 ‘
. _ _ _ _ > hi(n)filn+2)=0
3) ¢:(n) annihilates linear discrete time polynomials. =
2 7 3) f;(n) annihilates linear discrete time polynomials.
> gin)=0, > ngi(n)=0.
n=0 n=0 2t 2t
Each of the conditions can be written as an algebraic equation Z fi(n) =0, Z nfi(n) = 0.

in terms of the four parameters o, ao1, ¢1,0, anda; ; to n=0

obtain a multivariate polynomial system of equations. ThBy expressing the orthogonality and moment conditions as
conditions are nonlinear in the four parameters; however, wighmultivariate polynomial system, we obtain the following
assistance from the computer algebra systdtaple [11] and solution for 2;(n) and f;(n):

Singular [16] (for the computation of Gitiner bases), we

obtain the following expressions far (n): m=2'
) =1
( )_ Qo,0 + Go,17, fOfTL:O,...2Z—1 v /\/E
gi\n) = a170+a171(n—2i), fOI’TLIZi,...ZH—l -1 v = (2m2+1)/3
=u- 1)/(2
where boo =u-(v+1)/(2m)
; bl,O =uU-—- bo,o
m =2 bo,1 = u/m
51 = 6y/m/((m2 — 1)(4m? — 1)) bii = —bo.,

t1 = 2y/3/(m - (m? — 1))

m —1)/2 ¢ = /3/(m-(m? - 1))/m
S = —S81 - —

o1 =¢q-(v—m)

toz((m—i—l)31/3—mt1)(m—1)/(2m) 6171 :—Q'(U+m)
ao,0 = (50 +t0)/2 cto=c1-(v+1—2m)/2
a1,0 = (so —t0)/2 co,0 = co1 - (v+1)/2.
ao1 = (51 +1t1)/2
ar1 = (s1— t1)/2. In these expression fagi(n), f;(n), andh;(n), the signs of any

of the square roots can be negated. Doing so merely negates
Note that the parametess o, ao 1, a1,0, anda; ; depend ori.  or time reverses the sequences.
The same approach works féi(n) andh;(n). Using, again,  We note thath;(n) and f;(n) specialize to the Daubechies
a piecewise linear formh;(n) and f;(n) can be written in length-4 filters fori = 1, as expected.
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C. Support Length reproduces the characteristics of a tree structured two-band

In Figs. 2 and 4, it was seen that the support of the slantRfSteM- o .
filters is less than those of the filters obtained by filterbank 't Should also be noted that the way in which the filters
iteration. It is interesting to note the difference for the generai(") @ndg:(n) complete the filterbank, given the maximally
I-scale case. The iterated filterbank, with Daubechies lengtiéfular lowpass branch, differs from that suggested in [29].
filters, analyzes scalewith a filter of length3-2¢ — 2. On the N [29], @ completion of the filterbank that approximates a
other hand, the slantlet filterbank analyzes séalith the filter Uniform division of the frequency spectrum inti equal
gi(n) of length2i+1. That gives a reduction &f — 2 samples bands is sugge_sted. Indegd, the motlvatlon' for Mebgnd.
for scalei. The ratio tends to two thirds asincreases (for SYStem in [29] is not the improvement of time-localization

coarser scales). That reduction in the support of the analyB[9Perties while preserving the essential time—frequency tiling
filters is precisely what was sought. of the two-band DWT, but it is to provide a different tiling

of the time—frequency plane that might better suite certain
applications.
i . ] _ Certainly, given an\/-band lowpass filter, we can complete
To clarify the multiresolution spaces generated by the fifhe filterbank in a number of ways, one being the approximate
terbanks described in this paper, it is convenient to defig@iform division of frequency and a second being a division
appropriate function spaces, as is usually done. in frequency similar to that provided by an iterated two-band
Vo = L{Z} (1) systéan;]. In this paper, vxll'e have choser;}th{e selcon?. and ha;/e
Vi = Spar{hi(n — 2k)} @ used the greater generality to improve the time localization o
k

the resulting basis.
Qi = Spar{ fi(n — 2'k)} ®)

W; = Slzar{gi(n — Zik),gi(l — 2k — n)} 4

D. Multiresolution Spaces

F. Finite-Length Signals
The orthogonal discrete wavelet transform based on filter-

{7} = Q1 & V; (5) bank iteration is usually adapted to finite (power of 2) length
—W B O @V (6) data by periodizing the signal. Each output of the analysis
filterbank is then periodic, and in this manner, an orthogonal

=WieWe @ Qs Vs () transformation can be constructed for a finite interval. The

=WieWo @ W3 @ Qi@ Vs (8) same can be done for the slantlet filterbank, with results that
are especially clean, due to the lengths of the the filters being
owers of 2. Consider the orthogonal matrix of dimenstbn
representing the transform associated witl-anale filterbank.
InyFig. 5, a 16x 16 example is illustrated far = 4.
The first row of the matrix, which corresponds fig(n), is
ViC(Qad W) C W QudVs) C--- CL{Z}. simply a constant. The effect of periodizing the input results
in an overlapping effect fok;(n)

Each line above corresponds to the decomposition by
l-scale filterbank, the last line being that of a four-sca
filterbank. The nesting of approximation spaces generated
the four-scale filterbank is expressed as

E. Relationship withi/-band Wavelet Bases

It should be noted that a relationship exists between the — hi(n) + hi(n +2") = boo + b1 o+ (o +bi1)n  (9)
bases described in this paper and those described in [17]-[19], _ 1 (10)
[29]. Those references describes a generalization of the two- - Jm
band Daubechies wavelet basis A-bands or, equivalently,
an M-channel orthogona_l filterbank with zero moments for forn —=0,...,2— 1, m = 2. The second row, corresponding
general’f and K. In particular, for anM-band system, these fi(n), is a linear function, as is shown in Fig. 5. Periodiza-

references describe the shortest lowpass (scaling) filter WitiP- &h : : ;
o : ioh results in an overlapping effect f , as it does for
specified numbelK of zero moments. We wish to note thath (n) pping Gi(n)

for K = 2, this maximally regular filter (in the terminology of !
[29]) is identical to the lowpass filtek;(n) described above

(with ¢ = M). Jin) + filn+2') = co0 + cr0+ (co1 +c11)n (11)
As noted in [29], given the lowpass branch of an orthogonal 3(m — 1) m
filterbank, the remaining filters are not uniquely determined, = m - m”

in contrast with the two-band case. This makes the design of
remaining channels more difficult, and although methods for
obtaining a set of\/ — 1 filters to complete the filterbank are
described in [29] (see also [31]), it can be difficult to contrdior » = 0, ...,2" — 1, m = 2'. Each of the remaining rows
the characteristics of the resulting filters and, in particulanf the matrix consists of the sequengg§.), its time reverse,

to regulate their lengths. Fak = 2, the filters f;(n) and and their shifts by2'+!, fori = 1,...,(I — 1). Except for the
g:(n) described above give a way to complete the filterbanfigst two rows, there is no overlapping effect at the boundaries
given the maximally regular lowpass branch, in a way thaf the matrix, as the supports are powers of two.

(12)
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Fig. 5. Slantlet( NV = 16) basis. Vectors of the 1& 16 orthogonal matrix associated with the four-scale slantlet filterbank.

G. Comparison with Slant Transform to computey;(n). Writing the output sample of channélas
Interestingly, the Haar basis can be obtained by downsaffl inner product

pling the Walsh basis. Both are piecewise constant, but the 211

Walsh transform serves as a minimal complexity DCT fory,(n) = Z (270 + k) gi (k) (13)

frequency analysis, whereas the Haar transform, having basis k=0

functions of progressively shorter widths, gives a multireso- -

lution decomposition. A piecewise linear basis that follows = Z (20 + k) (ao0 + ao1k)

the spirit of the Walsh transform (in performing frequency k=0

analysis) is theslanttransform [1], [7], [15], [23], [25], [26], 2t

[33], which has been used in Intel's “Indeo” video compression + Z 22 n 4+ B a0 +ag 1 (k—29))  (14)

algorithm [8]. In a loose sense, the transform described in this E—2i

paper is to the slant transform what the Haar transform is to 21 21

the Walsh transform. The analogy is only loose, however, and =aoo x(2i+1n + k) + ao1 Z kx(2i+ln + k)

their similarities suggest the nanstantlet transform for the k=0 k=0

transform described in this paper.

I\D
;_.

+a102$21+1 k+22))
H. Efficient Implementation

=0

A key to the efficient implementation of the usual DWT 21 ‘
is its tree structure. The long filters used to analyze coarse tarn > kx(2Tn+ (k+2%)) (15)
scales are implemented by a sequence of convolutions and k=0
downsampling. In the slantlet filterbank, it appears initially that = ao,opt0(2n; 1) + ay,opt0(2n + 154)
an efficient implementation is not available for the lack of tree + ag1p1(2n5%) + a1, p1 (2n + 150) (16)
structure. However, an efficient implementation is possible, as
is shown here. The efficient algorithm given below resembl&§'€'€
closely the iterative procedure used to implement an iterated 2-1
filterbank tree; therefore, the computational complexity is of po(n;i) = Z x(2'n + k) 17
the same order, although the code complexity may increase. k=0

Because the filters are piecewise linear, each filter can be 21 ‘
represented as the sum of a DC and a linear term. Due to the pi(n;i) = Z kx(2n+ k) (18)

simple form of the filtersg;(n), only four terms are needed
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are types of DC and linear moments at scalef the input J. Denoising Example

signalz(n). The same expressions are valid for the projections, this denoising example, the behavior of the slantlet basis
of x(n) onto the time-reversed versions ofn), but the s compared with other wavelet bases having two vanishing
constantsug o, ao,1, 1,0, @nday 1 are to be modified. moments: theD, basis, the biorthogonal-2,2 and -2,4 bases
Note that as in the Haar DWT, the moments can Kgee 13, p. 273]), and the piecewise linear semi-orthogonal
cqmputeq efficiently by a simple recursive algorithm that star, §p|ine) bases (see [32, p. 147]). For the nonorthogonal bases,

with the fine scalé = 1. The DC and linear moments at scalghe pwT was carried out with symmetric extensions. A hard
¢ can be computed from the DC and linear moments at Higeshold was applied uniformly to each scale. We chose the

next finer scale(z — 1) by signal to be the “Houston skyline” function by Guo because
it is piecewise linear and has numerous discontinuities. Fig. 6

po(nit) = po(2n;i— 1)+ po(2rn — 1;4— 1) (19) llustrates the results. Denoising with the slantlet transform
pr(n;d) = (2nsi — 1)+ pa(2n — 14— 1) yields the same artifacts and noise spikes, but for this ex-

2 (20 — ;i — 1). (20) ample, they were generally reduged._ Varying the threshold

used and averaging over 200 realizations for each threshold,
.nthe curve illustrating the root-mean-square error in Fig. 6
\Was obtained. That figure shows that for this example, the
slantlet transform gives an improvement. It indicates that on
average, for thresholds between 0.12 and 0.24, the error with

use of the valuesuo(n;¢) and py(n;i). For the efficient
computation of the inverse, we first computg(n;!) and

p1(n; 1) from the DC and linear slantlet coefficients; we the e slantlet is smaller than that obtained wifh, for any

computeyig(n; i) and py (n; 1) for decreasing values afby o choid That a wider choice of thresholds gives such results
updatinguo andy; using the slantlet coefficients. Finally, with.

i = 1, the original signak(n) is obtained fro and . via is important because in practice, of course, the best threshold
L= 9 gnakin Mo andzey for a particular example is unknown. It is interesting to note

the relation that for thresholds above 0.24, the semi-orthogonal (spline)
bases perform better than do the biorthogonal bases in this
z(2n) = po(n; 1) (21) example. Certainly, the most appropriate basis depends on the

z(2n+1) = po(n; 1) + pa(n;1). (22) data and the noise level.

It should be noted that there are a variety of denoising tech-

Therefore, even though the design of the filterbank is nBtques that go beyond simple thresholding that can produce

based on an iterated filterbank, the computation of its outpiitematically improved results. For example, we have the shift-

can be made efficient by a recursive method. invariant transform of [10] and [20] mentioned above and the
hidden-Markov model-based approach of [12].

I. Shift Variance and Redundant Transform

It should be noted that slantlet filterbanks are more tinf& Underlying Continuous-Time Wavelets

varying than those based on filterbank iteration. Consider theAs noted in the Introduction, the slantlet basis is a special
highpass branch of the tree-structured filterbank in Figs. 1 acalse of the multiwavelet bases described by Alpert [4]-[6],
3. The highpass channel is periodically time varying due twmprised of- scaling functions and wavelet functions with
the downsampling, with a period of 2. On the other hand, thhevanishing moments. The continuous-time multiwavelet basis
highpass channels of the slantlet filterbank are periodicathj [6] with » = 2 is piecewise linear and discontinuaus.
time varying with period 4. However, it is important to note that for these bases, the re-
It is seen that the improvement with regard to time localationship between continuous-time and discrete-time versions
ization costs us not only the simple tree structure but aléd not as simple as it is for scalar wavelet bases (wavelet
costs one greater shift variance. In some applications, that ibases based on a single scaling function). In the scalar case,
disadvantage. However, in denoising, the loss of shift varianttee discrete-time basis is obtained by iterated filtering and
can be overcome by turning to a redundant transform. Withpsampling. However, the filterbank associated with Alpert’s
such a transform, shift invariance is retrieved by effectivelgontinuous-time multiwavelet bases with= 2 does not yield
including all shifts of the data and comes at the expense tbe discrete-time slantlet basis due to important differences
a redundant representation. Interestingly, it has been shobetween scalar- and multiwavelet bases, as highlighted in [28];
that denoising via wavelet thresholding can yield superigm the terminology of [21] and [22], the multiwavelet basis is
results when carried out with this shift-invariant redundant (ot balanced To obtain a discrete-time version of the basis,
stationary) wavelet transform [10], [20]. If memory and runAlpert used a Gram—-Schmidt orthogonalization and considers
time requirements permit, the use of a redundant transfothe general case of vanishing moments, whereas we use
for denoising can be advantageous. In this case, redund@mbbner bases to derive explicit solutions for the special case
denoising is an application where the greater shift variano&2 vanishing moments. The explicit solutions for the filters at
of the slantlet filterbank is not expected to be a significant
drawback. A redundant shift-invariant version of the slantletzAlpert,S basis hasho (1) symmetric:tio (1) = o (¢ — T), andis () anti-
transform, in the sense of [10], is straightforward to derive angmmetric-u, (t) = — i1 (¢ — 7). It is immediate that pairwise symmetry
can be implemented in a similar way. can be obtained by taking their sum and difference.
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Fig. 6. Denoising via hard thresholding with the iterated filterbank and the slantlet DWT.

each scale are useful because they are required for the efficless, a 2-D filterbank can be obtained in a similar manner
implementation of the transform described in Section II-H. that is composed of separable filters, although the filterbank
The approach taken by Alpert addresses the extensigelf is not separable. In the 2-D case, the area of support
of these bases to a higher number of vanishing momeng$;the filters approache&/3)? = 4/9 that of the iterated 2-
however, higher order extensions entail a higher number pf D, system. That is a reduction of the area of support by
separate functions/filters to analyze a signal at a single stagger one half, suggesting that in more than one dimension,
The number of filters increases according to the order. F@fe tradeoff between zero moments and time- localization
bases that are piecewise polynomial with degree 1, » pecomes more significant. However, the smoothness properties

vanishing moments requireswavelet functions/filters. of the 2-D slantlet and the separable 2fB) transforms are
o ] . different as well. While the highpass and bandpass filters of
L. Multidimensional Filterbanks the 2-D slantlet filterbank annihilate linear polynomials in two

The generalization to the multidimensional case is not &ariables,an, + bna + ¢; the separable 2-0D, filterbank
straightforward as it is for iterated filterbank trees. Neverthennihilates polynomials of the formanins + bny + cns + d.
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TABLE |
COMPARING THE ITERATED Do AND SLANTLET FILTERBANKS

(1]

Iterated Dy | Slantlet
(2]
Orthogonal y y
Octave-band y y
(3]
Approximation order 2 2
Efficient implementation y y
Piecewise linear n y [4]
Support at scale ¢ 3-20 -2 2t+1

(5]

It should be emphasized that the slantlet transform is mogt]
appropriate for data that is piecewise linear and cannot bg;]
expected to be useful in the compression of natural imageg,
for example. A description of the details of the 2-D slantlet
transform will be available from the author. (8]

(9]
[10]
The smoothing of data while preserving edges relatively
well is an essential advantage of wavelets in denoising, andzi]
depends in part on both the short support of the basis functions
with respect to their scale and their number of vanishin%zl
moments. In addition, in the application of wavelet bases to
image compression, the time localization and the number 38l
zero moments of the basis are both important. Good timgz,
localization properties lead to good representation of edges.
Approximation order is important for sparse representatid#!
(compression) of smooth regions. However, short support and
zero moments are competing criteria in the construction 6]

wavelet filterbanks.

In this light, this paper presents an orthogonal filterbank for
the discrete wavelet transform with two zero moments, whej¥]
the filters are of shorter support than those of the iterdied 18]
filterbank tree. Although not based on an iterated ﬁlterbanﬁ
tree, the filterbank described in this paper retains the mdi9l
desirable characteristics of the usual DWT filterbank, namely,
orthogonality, an octave-band characteristic, a scale-dilatig]
factor of 2, and an efficient implementation. Table | summa-
rizes a comparison. A transform for finite length signals bas
on this filterbank is particularly clean due to the filter lengths
being exact powers of two. The basis appears particularly w&l
suited for piecewise linear signals, as does the Haar basis
for piecewise constant signals. Improvement in a denoisifp]
example was also shown.

Matlab programs for the slantlet transform, its inverses,
a shift-invariant (redundant) variant, and a 2-D version
are available from the author or via the Internet 6}55]
http://taco.poly.edu/selesi/.

I1l. CONCLUSION
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