
Sparsity-Assisted Signal Smoothing (Revisited)

Ivan Selesnick

Electrical and Computer Engineering

Tandon School of Engineering

New York University

Brooklyn, New York

March 2017

1 / 19

Sparsity-Assisted Signal Smoothing (SASS)

We model the signal to be estimated as

x = x1 + x2

x , x1, x2 ∈ RN

0 50 100 150 200

−1

0

1

2

x
1

0 50 100 150 200

−2

−1

0

1

2

x
2

0 50 100 150 200

−1

0

1

2

3

x = x
1
 + x

2

I. W. Selesnick. Sparsity-assisted signal smoothing. In R. Balan et al., editors, Excursions in

Harmonic Analysis, Volume 4, pages 149–176. Birkhäuser Basel, 2015.

2 / 19

Signal Model
We model the signal to be estimated as

x = x1 + x2, x , x1, x2 ∈ RN ,

where

I Dx1 is sparse where D is differentiation of order K ,

i.e., a suitable regularizer for x1 is

‖Dx1‖1

I x2 is a low-frequency signal,

i.e., for a zero-phase low-pass filter H,

x2 = H(x2)

x2 ≈ H(x2 + w)

where w is white Gaussian noise.

3 / 19

Signal Estimation
Goal: Estimate unknown signal x from noisy signal y .

Signal in additive white Gaussian noise (AWGN):

y = x + w

y = x1 + x2 + w

y − x1 = x2 + w

Hence,

x2 ≈ H(x2 + w) =⇒ x2 ≈ H(y − x1).

If x1 were known, then we could estimate x2 by low-pass filtering y − x1.

Thus, we estimate x2 as

x̂2 = H(y − x̂1).

4 / 19

Signal Estimation

We estimate x as

x̂ = x̂1 + x̂2

x̂ = x̂1 + H(y − x̂1)

x̂ = (I − H)x̂1 + Hy

x̂ = Gx̂1 + Hy

where G is a zero-phase high-pass filter

G = I − H.

5 / 19

Signal Estimation

We assume G is a high-pass filter that admits the factorization

G = RD

where D is differentiation of order K .

G could be a Butterworth or Chebshev-II filter. Then

x̂ = RDx̂1 + Hy

i.e.,

x̂ = Rû + Hy

where

û := Dx̂1

is sparse.

6 / 19

SASS Optimization Problem

Given

y = x + w ,

to estimate x as

x̂ = Rû + Hy

where u is sparse, we use sparse-regularized least squares

û = arg min
u

{1

2
‖y − (Ru + Hy)‖22 + λ‖u‖1

}
where

‖x‖22 :=
∑
n

x(n)2, ‖x‖1 :=
∑
n

|x(n)|, λ > 0.

7 / 19

SASS Optimization Problem

Problem

û = arg min
u

{1

2
‖y − (Ru + Hy)‖22 + λ‖u‖1

}
i.e.,

û = arg min
u

{1

2
‖(I − H)y − Ru‖22 + λ‖u‖1

}
can be solved via forward-backward splitting (FBS), ISTA, FISTA, etc.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In

H. H. Bauschke et al., editors, Fixed-Point Algorithms for Inverse Problems in Science and

Engineering, pages 185–212. Springer-Verlag, 2011.

8 / 19

Filters as Matrices
A banded Toeplitz matrix P

P =


p2 p1 p0

p2 p1 p0
. . .

. . .

p2 p1 p0


represents an LTI system.

Convolution:

[Px]n = (p ∗ x)(n)

Transfer function:

P(z) =
∑
n

pnz
−n

Frequency response:

P(ejω) =
∑
n

pn e
−jnω

9 / 19

Filters as Matrices
Consider cost function

J(x) = ‖Q(y − x)‖22 + α‖Px‖22, α > 0

where P and Q are banded Toeplitz matrices as above.

The function J is minimized by

x = Hy

where

H := (QTQ + αPTP)−1QTQ,

i.e.,

H := A−1QTQ

where

A := QTQ + αPTP.

A is banded.
10 / 19

Filters as Matrices

Matrix H represents an LTI system with transfer function

H(z) =
Q(z)Q(1/z)

Q(z)Q(1/z) + αP(z)P(1/z)

and frequency response

H(ejω) =
|Q(ejω)|2

|Q(ejω)|2 + α|P(ejω)|2

Note that H(ejω) is zero-phase (i.e., real-valued).

11 / 19

Butterworth Low-pass Filter

Some classical filters have transfer functions of the form

H(z) =
Q(z)Q(1/z)

Q(z)Q(1/z) + αP(z)P(1/z)
.

For example, the Butterworth low-pass filter has

P(z) = (1− z−1)d

Q(z) = (1 + z−1)d .

When d = 3,

P =


−1 3 −3 1

−1 3 −3 1

. . .
. . .

−1 3 −3 1

 , Q =


1 3 3 1

1 3 3 1

. . .
. . .

1 3 3 1

 .

12 / 19

Butterworth Low-pass Filter

0 1 2 3
0

0.5

1

ω

H(ω)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

6

Poles, zeros

0 50 100

−0.02

0

0.02

0.04

0.06

0.08

0.1
Output due to x(n) = δ(n)

0 20 40 60 80 100

0

0.05

0.1

Output due to x(n) = δ(n − 30)

0 50 100
0

0.5

1

1.5
Output due to x(n) = 1

0 50 100

0

20

40

60

80

100

120 Output due to x(n) = n

Zero-phase Butterworth filter for finite-length data. (The dashed line is the old

formulation which has end-point transients.)

13 / 19

High-pass Filter

If H is a zero-phase low-pass filter, then G = I − H is a zero-phase

high-pass filter

G (z) = 1− H(z) =
αP(z)P(1/z)

Q(z)Q(1/z) + αP(z)P(1/z)
.

and

G = I − H

= I − A−1QTQ

= A−1(A− QTQ)

= αA−1PTP

where we used A = QTQ + αPTP from above.

14 / 19

Factorization
Let D be the K -order difference

D(z) = (1− z−1)K

When K = 2,

D =


1 −2 1

1 −2 1
. . .

. . .

1 −2 1


If 1 6 K 6 d , then

P(z) = (1− z−1)d

= (1− z−1)d−K (1− z−1)K

= P1(z)D(z)

P = P1D

15 / 19

Filters as Matrices

Summarizing:

A = QTQ + αPTP

H = A−1Q

P = P1D

G = I − H

= αA−1PTP

= αA−1PTP1D

= RD

where

R = αA−1PTP1

16 / 19

SASS Optimization Problem

The SASS cost function

J(u) =
1

2
‖(I − H)y − Ru‖22 + λ‖u‖1

where

I − H = RD

can then be written

J(u) =
1

2
‖αA−1PTPy − αA−1PTP1u‖22 + λ‖u‖1

or

J(u) =
1

2
‖αA−1PT(Py − P1)u‖22 + λ‖u‖1

which can be solved using proximal algorithms.

17 / 19

Example

0 100 200 300 400 500

0

1

Noisy data (σ = 0.20)(a)

0 100 200 300 400 500

0

1

Low−pass filtering (d = 2, fc = 0.030)

RMSE = 0.117

(b)

0 100 200 300 400 500

0

1

SASS (K = 2, λ = 1.52, d = 2, fc = 0.030)

RMSE = 0.066

(c)

0 100 200 300 400 500

−0.2

0

0.2

Sparse signal u

Time (n)

(d)

18 / 19

Conclusion

Numerous signals can be modeled as the sum of two component signals:

(1) signal with a sparse K -order derivative.

(2) low-frequency signal and

LTI filters over-smooth discontinuities (e.g., ‘corners’ of a signal).

Sparsity-assisted signal smoothing (SASS) combines and unifies LTI

low-pass filtering and generalized total-variation denoising.

The SASS algorithm formulates the denoising problem as a sparse

deconvolution problem which can be solved via proximal algorithms.

For the formulation and efficient implementation of SASS, we formulate

zero-phase recursive filtering of finite-length input signals in terms of

banded Toeplitz matrices.

19 / 19

