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Sparsity-Assisted Signal Smoothing (SASS)
We model the signal to be estimated as
X = X1 + X

x, x1, xo € RV

% Xy X=X+ X,
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I. W. Selesnick. Sparsity-assisted signal smoothing. In R. Balan et al., editors, Excursions in
Harmonic Analysis, Volume 4, pages 149-176. Birkhauser Basel, 2015.
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Signal Model

We model the signal to be estimated as
_ N
X =x1 + xo, X, X1, Xo0 € R™,

where

» Dx is sparse where D is differentiation of order K,

i.e., a suitable regularizer for xj is
||DX1||1

> Xy is a low-frequency signal,
i.e., for a zero-phase low-pass filter H,

Xo = H(XQ)
xo &= H(xp + w)

where w is white Gaussian noise.



Signal Estimation

Goal: Estimate unknown signal x from noisy signal y.
Signal in additive white Gaussian noise (AWGN):

y=X+w
y=x1+x+w

y—x1=X2+w

Hence,
xpr Hxo +w) = xo =~ H(y — x1).

If x; were known, then we could estimate x, by low-pass filtering y — x.
Thus, we estimate x, as
R =H(y — %1).
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Signal Estimation

We estimate x as

R=%X+%
X=%+H(y—*%)
%= (I —H)% + Hy
X = GX1 + Hy

where G is a zero-phase high-pass filter

G=1—-H.
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Signal Estimation
We assume G is a high-pass filter that admits the factorization
G=RD
where D is differentiation of order K.
G could be a Butterworth or Chebshev-I| filter. Then

% = RD%1 + Hy

ie.,
X = Ri+ Hy
where
0:=Dxy
is sparse.
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SASS Optimization Problem

Given

y=x+w,

to estimate x as
X = Ri{+ Hy

where u is sparse, we use sparse-regularized least squares
N g1 2
6 =argmin {5 ly — (Ru + Hy)|13 + Al }

where

Ixllz =D x(m?, xll =) x(m)l, A> 0.

n
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SASS Optimization Problem

Problem

. .01
o =argmin {5 ly = (Ru+ Hy)|13 + Al }

o e
a = argmin { 3/|(/ = H)y = Rul + Allu], }
can be solved via forward-backward splitting (FBS), ISTA, FISTA, etc.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In
H. H. Bauschke et al., editors, Fixed-Point Algorithms for Inverse Problems in Science and
Engineering, pages 185-212. Springer-Verlag, 2011.
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Filters as Matrices
A banded Toeplitz matrix P

P2 P1 PO
P2 pP1 Po

P2 P1 Po

represents an LTI system.

Convolution:

[Px]n = (p*x)(n)
Transfer function:

P(z) = Z pnz” "
Frequency response:

P(e) = 3 prein
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Filters as Matrices

Consider cost function
2 2
J(x) =Ry —=x)|> +allPx[3,  a>0
where P and Q are banded Toeplitz matrices as above.

The function J is minimized by

x = Hy
where
H:=(Q'Q+aP'™P)1QTQ,
ie.,
H:=A1Q'Q
where

A:=Q'Q+aP"P.

A is banded.
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Filters as Matrices

Matrix H represents an LTI system with transfer function

B Q2)Q(1/2)
H2) = Q@R(/2) + aP)P(i/2)

and frequency response

1Q(e™)[?

H(e®) =
) 1Q(ei)* + af P(ei)?

Note that H(e/“) is zero-phase (i.e., real-valued).
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Butterworth Low-pass Filter

Some classical filters have transfer functions of the form

B Q2)Q(1/2)
=) = Q@) + 0P(2)P(1/2)

For example, the Butterworth low-pass filter has

P(2)=(1- 2

Qz) = (1+271)7.
When d = 3,
-1 3 -3 1 1 3
-1 3 -3 1 3
P= . ; Q=
-1 3 -3 1
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Butterworth Low-pass Filter

Poles, zeros
H(w) 1 LT 04 EOu(pu(due(ox(n):s(n)
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Zero-phase Butterworth filter for finite-length data. (The dashed line is the old
formulation which has end-point transients.)
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High-pass Filter

If H is a zero-phase low-pass filter, then G = | — H is a zero-phase
high-pass filter

6(2) =1 H(2) = g Q(jfz()z)f C(ylpf(zz)) e
and
G=I1-H
=1-A1Q"TQ
=AY (A-QTQ)
=aA PP

where we used A = QTQ + aPTP from above.
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Factorization
Let D be the K-order difference

D(z) = (1—-z 1)
When K = 2,

If 1< K <d, then
Pz)=(1-z")°
_ (1 _ z—l)d—K (1 _ Z—I)K
= P1(z) D(2)
P=PD
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Filters as Matrices
Summarizing:

A=Q'Q+aP™P

H=A"1Q

P=PD

G=I1-H
=aA'PTP
=aA'PTPD
= RD

where
R=aA'P'P
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SASS Optimization Problem

The SASS cost function

_1

J(u) 5

2
(1 = H)y — Rully + Allull,
where

| —H=RD

can then be written

1
J(u) = 3l|laA™*PTPy — oA~ PTPLu} + Alull,

or
1 _
J(w) = 3 aAPT(Py — Py)ul3 + Alluly

which can be solved using proximal algorithms.

17/19



Example

(€] Noisy data (o = 0.20)

0 100 200 300 400 500
(b) Low-pass filtering (d = 2, fc = 0.030)
RMSE = 0.117

0 100 200 300 400 500

(c) SASS (K=2,A=1.52,d =2, fc = 0.030)
RMSE = 0.066
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(d) Sparse signal u
0.2
o ! N
-0.2
0 100 200 300 400 500
Time (n)
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Conclusion

Numerous signals can be modeled as the sum of two component signals:
(1) signal with a sparse K-order derivative.
(2) low-frequency signal and

LTI filters over-smooth discontinuities (e.g., ‘corners’ of a signal).

Sparsity-assisted signal smoothing (SASS) combines and unifies LTI

low-pass filtering and generalized total-variation denoising.

The SASS algorithm formulates the denoising problem as a sparse
deconvolution problem which can be solved via proximal algorithms.

For the formulation and efficient implementation of SASS, we formulate
zero-phase recursive filtering of finite-length input signals in terms of

banded Toeplitz matrices.
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