
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 4, APRIL 2002 465

Solving the Optimal PWM Problem for
Single-Phase Inverters

Dariusz Czarkowski, Member, IEEE, David V. Chudnovsky, Member, IEEE, Gregory V. Chudnovsky, and
Ivan W. Selesnick, Member, IEEE

Abstract—In this paper, the basic algebraic properties of the
optimal PWM problem for single-phase inverters are revealed.
Specifically, it is shown that the nonlinear design equations given
by the standard mathematical formulation of the problem can
be reformulated, and that the sought solution can be found by
computing the roots of a single univariate polynomial ( ), for
which algorithms are readily available. Moreover, it is shown that
the polynomials ( ) associated with the optimal PWM problem
are orthogonal and can therefore be obtained via simple recur-
sions. The reformulation draws upon the Newton identities, Padé
approximation theory, and properties of symmetric functions. As
a result, fast ( log2 ) algorithms are derived that provide
the exact solution to the optimal PWM problem. For the PWM
harmonic elimination problem, explicit formulas are derived that
further simplify the algorithm.

Index Terms—Harmonic elimination, Newton identities, orthog-
onal polynomials, Padé approximation, pulsewidth modulation
(PWM), single-phase inverters, symmetric functions.

I. INTRODUCTION

T HE PROBLEM of the optimal design of pulsewidth modu-
lated (PWM) waveforms for single-phase inverters [1], [2]

is examined in this paper. PWM signals are used in power elec-
tronics, motor control and solid-state electric energy conversion
[2], [3]. The best voltage signal for these purposes is one with
a periodic time variation in which amplitudes of selected non-
fundamental components of the signal have been controlled to
increase efficiency and reduce damaging vibrations. How can
the waveform be designed to most effectively accomplish this?
This paper describes a contribution to the theory and practice of
optimal PWM waveforms that addresses this question.

A PWM waveform consists of a series of positive and neg-
ative pulses of constant amplitude but with variable switching
instances as depicted in Fig. 1 (as in a power electronic PWM
full-bridge inverter). A typical goal is to generate a train of
pulses such that the fundamental component of the resulting
waveform has a specified frequency and amplitude (e.g., for a
constant speed control of an induction motor). Some of
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Fig. 1. A three-level PWM waveform.

the proposed methods for PWM waveform design are: modu-
lating-function techniques, space-vector techniques, and feed-
back methods [2]. These methods suffer, however, from high
residual harmonics that are difficult to control and from limi-
tations in their applicability. A method that theoretically offers
the highest quality of the output waveform is the so-called pro-
grammed or optimal PWM [4]. Owing to the symmetries in the
PWM waveform of Fig. 1, only the odd harmonics exist. As-
suming that the PWM waveform is choppedtimes per half a
cycle, the Fourier coefficients of odd harmonics are given by

(1)

where and is the amplitude of the square
wave. Amplitudes of any harmonics can be set by solving
a system of nonlinear equations obtained from setting (1)
equal to prespecified values. In the harmonic elimination pro-
grammed PWM method, the fundamental component is set to
a required amplitude and low-order harmonics are set to
zero. This is the most common approach in electric drives since
low-order harmonics are the most detrimental to motor perfor-
mance. In other applications, like active harmonic filters or con-
trol of electromechanical systems, harmonics are set to nonzero
values. This task of designing a PWM waveform, the first
Fourier series coefficients of which match those of a desired
waveform has been the subject of many papers [1], [5]–[37].
Often, the Newton iteration method [5] or an unconstrained opti-
mization approach [38] are used to solve the system of nonlinear
equations (1). Those methods are computationally intensive for
on-line calculations and the storage of off-line calculations leads
to high memory requirements. Recent results from the research
community [39], [40] show two approaches to real-time imple-
mentation of an approximate optimal PWM. One approach is to
fine tune conventional PWM techniques like regular-sampled

1057-7122/02$17.00 © 2002 IEEE
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[39] or space-vector methods [41], [40] to approximate pro-
grammed PWM switching patterns. Another approach is to sim-
plify the nonlinear harmonic elimination equations [26] in order
to obtain real-time approximate solutions using modern digital
signal processors.

This paper develops algorithms for solving the
PWM harmonic elimination problem without any approxima-
tions in the problem statement. Since many PWM applications
allow for a computational time frame of a few milliseconds,
the developed algorithms will allow for real time generation of
switching patterns with of the order of hundreds.

II. CONVERTING THE PWM PROBLEM

For the scope of this paper, a PWM waveform is a-periodic
function that is binary-valued for and has the
symmetries and as shown
in Fig. 1. As such, can be written with the Fourier series as

with

The optimal PWM problem, as it is considered here, is the de-
sign of a PWM waveform so that its first Fourier coeffi-
cients are equal to prescribed values. For a PWM waveform,
as shown in Fig. 1, we have

Therefore, the optimal PWM problem gives rise to the following
design equations [4]:

(2)

...

(3)

Given the values , we have equations
and unknowns; we would like to find the unknowns

, with . We can
first simplify the equations as is done for example in [22].

Let for odd , and let for even . Then

(4)

...

(5)

Note that where is the th Chebyshev
polynomial. Let , then

...

As the odd-indexed Chebyshev polynomials are odd polyno-
mials, we can write

With this notation, the PWM equations become

or

(6)

where

are the sums of powers of . Equation (6) forms a set of
linear equations for , . Once the values
are obtained by solving the linear system (6), one has the fol-
lowing problem. Given , find the solution

to the following system of nonlinear equa-
tions

(7)

...

(8)

Once are obtained, the original variables can be found by
letting , for odd , and for
even . Due to the symmetry with respect to, any permutation
of a solution set is also a solution set; likewise for . Yet it
is necessary to order appropriately such that

. Note that for odd, gives
. For even , gives or

. This indicates how to obtain with the desired
ordering from : for those values of let ;
and for those values of let .

However, the design equations (7) and (8) are nonlinear, so
obtaining the desired solution is not so straightforward. In
the following sections, this nonlinear system of equations will
be closely examined and in Section III, a systematic procedure
is given to obtain the solutions.
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A. Specialization to the Harmonic Elimination Problem

For the harmonic elimination PWM problem, which we will
focus on below, the Fourier coefficients of the PWM waveform

should match the Fourier coefficients of a pure sine wave.
That is, the values appearing in (2) and (3) are given by

, and for . For this case, the values
depend on only and are given by

B. A Simpler Problem

It is useful to consider first the related, simpler problem
where contiguous sums of powers are known. Given the values

; find satisfying the following equations:

(9)

...

(10)

It turns out that are the roots of the polynomial

(11)

where

etc. The coefficients can be found as

...

(12)

etc. These areNewton’s Identities. When contiguous values
are known one can easily obtain through these simple re-
cursive relations. Then can be obtained by taking the roots
of (11) for which numerical algorithms are readily available.
(For these identities involve coefficients beyond the
highest power, which are implicitly defined as 0.) For the PWM
problem outlined above, we know only the firstodd , for

. We do not know contiguous values;
therefore Newton’s identities cannot be used. Our question is:
Does any such simple procedure exist for the harmonic elimi-
nation problem for PWM, where one is given only the odd,
for ?

Note that (7)–(10) are symmetric functions of . The
problem of finding the set of elements with given values
of arbitrary symmetric functions in , is in
general a very complicated one because of nontrivial nature of
relations between symmetric functions of high degrees. Only in

special cases this problem can be reduced to a manageable and
“exactly solvable” one. The classical cases of sum of powers
(Newton), Wronski and elementary symmetric functions are
the ones well described in the literature (see, e.g., [42] on
representation of symmetric groups and Frobenius and Schur
functions).

In Section III, we present a procedure to determine the poly-
nomial for the case where one is given the “sums of odd
powers,” as it appears in the optimal PWM problem.

III. GENERALIZING NEWTON’S IDENTITY

To develop a procedure to solve the optimal PWM problem,
it will be useful to examine more closely Newton’s identities.
The simple derivation of Newton’s identities will serve as our
starting point. First write the polynomial as

then the logarithmic derivative is given by

Expanding each term in the sum, one gets

(13)

where

are the sums of the root powers, with .
Integrating (13) gives

Raising to the power of and using the last equation
gives

(14)

In order to generalize Newton’s procedure, we will obtain an
expression similar to (14), but having only odd. To this end,
note that
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and that

or

Then

where

With the notation

(15)

one has

(16)

is the monic polynomial related to by negating the
roots of .

Equation (16) is the counter-part to (14). Likewise, by setting
like powers of equal, we can obtain equations that relate
and . However, in order to do this, we need to expand

into a power series of . Such a power series for
can be obtained using the following algorithm, described in [43,
Sec. 4.7]. Let

and

If for are known, then the values of for
are given by

(17)

(18)

for .
When the first odd values of are known, then are

known for . [ for and
for .] Therefore, using the

relations (17) and (18), we obtainfor , and conse-
quently, we can write out Equation (16), matching like powers
of , to obtain linear equations from which can be obtained.
For example, we write out the expressions for . That is,
we are given , , and , and our goal is to find the corre-
sponding monic third degree polynomial ,

is given by

The ? indicates unknown coefficients. Then, using (17) and (18),
can be determined up to and including

Writing out (16) gives

Matching like powers of gives

Matching further like powers involves coefficients and
higher, which are unknown. Note that the last three equations,
corresponding to , , and , can be written as the
following linear system of equations:

This system is almost Toeplitz—only the signs of the odd
columns must be negated. The true Toeplitz system

where , , gives the solution for
. Note that are the coefficients of defined in (15).

As this system is Toeplitz (the diagonals of the system matrix
are constant), the Levinson algorithm can be used to solve it
efficiently [ instead of ] [44].

The same procedure for generalgives rise to a Toeplitz
system and comprises a generalization of Newton’s identities
to the case where only the firstoddvalues are known. The

procedure for general follows likewise.
Algorithm ODDSOL: Given the sums of odd powers

for , the polynomial can be obtained as follows.

1) Set for . Set
for .

2) Compute for using Equations (17) and
(18).

3) Solve the Toeplitz system for

...
...

...
...

... (19)

and set .
Algorithm HESOL: Given and , the steps to solve the

harmonic elimination problem (2) and (3), are summarized as
follows.
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TABLE I
PARAMETER VALUES COMPUTED IN ALGORITHMS ODDSOLAND HESOLFOR THEPWM HARMONIC-ELIMINATION PROBLEM WITH n = 4 AND A = 0:6

Fig. 2. The PWM harmonic-elimination waveform obtained, withA = 0:6 andn = 15.

1) Set for .
2) From , , obtain the degree polyno-

mial for which the roots satisfy the equations (7)
and (8). (Use algorithm ODDSOL.) Find the rootsof

.
3) Set , , with .

For , set . For , set
. Sort the angles .

For the general optimal PWM problem, the values can be
obtained by solving the linear system (6).

Example 1 (Harmonic Elimination):Let , .
Then

and

Then, the parameters computed in algorithms ODDSOL and
HESOL are shown in Table I. As , and ,

the shown in the table are obtained by letting
, , , , and then

reordering . It can be verified numerically that the harmonic
elimination equations (2) and (3) are satisfied.

Example 2: Fig. 2 illustrates the PWM signal obtained with
and .

It should be noted that for the optimal PWM problem, the
Toeplitz matrix in (19) becomes ill-conditioned asgrows
larger. By using extended precision arithmetic, the range of

for which this basic algorithm is useful can be extended.
However, in the following sections it will be shown that the
solution can also be expressed as the solution to a Padé approx-
imation problem, and consequently the polynomials are

orthogonal. Numerically stable algorithms using properties of
orthogonal polynomials can therefore be developed and will be
presented in future publications.

IV. A RECURRENCE FOR

The fast recursive algorithms for solving Toeplitz systems
compute a solution using the solutions for smaller. The no-
tation will be used to emphasize the dependence of
on . Specifically, denotes the monic degree-polyno-
mial associated with the harmonic elimination problem, with
coefficients

With this notation, a recurrence relation

(20)

can be used to compute . For the harmonic elimination
problem, the initial conditions can be taken to be
and . The coefficients in the recursion can
be computed using the following formula:

(21)

This recurrence exists because of the Toeplitz structure, see [45]
for further details. The coefficients are then determined
recursively as [this implements (20)]

.
(22)
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In order for this algorithm to work, one still needs the coeffi-
cients in the expansion of . While can be computed
using (17) and (18), in Section V, a more direct recursion will
be presented for computing the valuesthemselves.

V. A RECURRENCE FOR

The algorithms presented above for the PWM harmonic elim-
ination problem do not fully utilize the fact that the parameters

depend only on the single parameter. In this section we
will show a relationship between the original (transcendental)
formulation of the PWM problem [in terms of ]
and the converted (algebraic) formulation (in terms of ).
As a result, we obtain an expression for the function
that is important for developing a recursion for generating the
coefficients that are needed for computing in the recur-
sion .

In this section, we show how the transcendental case can be
explicitly expressed using the introduced notations of
and . The basic transformation is

with . With the previous transformation
one has . Solving for gives

Note that, as , one gets

so that the equations (4) and (5) can now be written as

(23)

...

(24)

Therefore, if we define

then, the product has the roots
and as such the key identity

(16) can be applied directly to this problem—as it is of the
“sums of odd powers” form. One gets

where

From (23) and (24) we have for the harmonic elimination
problem, that and for so that

(25)

Now, using and the new transforma-
tion one gets

Therefore

Combining this with (25) and the identity (16) gives

from which we determine that
where is given by

The algorithm for computing is of complexity only.
This algorithm follows the general power series algorithms de-
scribed in [46], [47]. The key to this algorithm is to notice that

satisfies a second order linear differential equation
(with singularities at and an apparent singularity
at ):

If we look at the expansion of at

then we get the fourth-order recurrence on

The initial conditions are for and

From these values and the equation forone derives the
factors in the three-term recurrence for orthogonal polynomials

. The first few are
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All are rational functions in of rather special structure.
Since the case of the continued fraction expansion of
is not “explicitly solvable,” is not a “known” function
of and ; it belongs to the category of “higher Painleve”
transendencies (see examples of such functions in [48]). An
important consequence of the “insolubility” of is the growth
of coefficients of as rational functions in with integer
coefficients. According to standard conjectures about explicit
and nonexplicit continued fraction expansions (cf., [49]), the
coefficients of as a rational function in over grow as

for large . In fact, already for , the coefficients
of in are large integers. This makes it impractical
to precompute with full accuracy for large . It is also
unnecessary to analytically determine explicitly,
since we need to know only in the range of that is
significant for applications—this is the range where the weight
of the orthogonal polynomials is positive. In this case a
much simpler best fit polynomial or rational approximation in

to suffices.
The recursive algorithm for computing can be summa-

rized as follows.
Algorithm RECSOL:Given and , the polynomials

for be recursively computed as follows.

1) Set , , and for to
let

2) Set and and for to
let

Find the roots of .
3) Set , , with .

For , set . For , set
. Sort the angles .

Step 3 of algorithm RECSOL is the same as step 3 of algo-
rithm HESOL. Using a computer algebra system, such as Maple
or Mathematica, this recursive algorithm allows one to obtain

as an explicit function of . A Maple program that im-
plements algorithm RECSOL is given in the Appendix.

VI. COMPLEXITY OF THE PWM PROBLEM

What is the complexity (in the simplest definition, an oper-
ation count) of the problem of “sums of odd powers”—of the
optimal PWM problem discussed above? In the algebraic for-
mulation one can first ask the same question about Newton’s
identities. If one uses Newton identities directly, the complexity
is , but a significantly faster scheme can be found. The key

to this is the representation (14). Indeed, according to Brent’s
theorem, terms of the power series expansion of can
be computed in only steps from the power series
expansion of (see [43, Sec. 4.7, Example 4]). This algo-
rithm requires only FFT-techniques for fast convolution [50].

Similar complexity considerations can be applied to the
problem of fast computation of polynomials that give
the solution to the PWM problem of consecutive odd power
sums. A naive method of computation of Padé approximants
by solving dense systems of linear equations give a very high
complexity bound of . A classical Levinson algorithm
of solving systems of Toeplitz linear equations, or algorithms
based on three-term recurrence relations satisfied by ,
give the complexity of computations of (all coefficients of)

at . These algorithms are, perhaps, the best for
moderate because of their simple nature and the fact that
they use almost no additional space. Also, the algorithm
yields not only the single but all for .
However, for large these algorithms became impractical and
fast algorithms are needed.

A fast algorithm for computing (all coefficients of)
with total complexity of works as follows. First,
one applies Brent’s theorem to compute terms of the
power series expansion (at infinity) of

from the first terms with the complexity of only
. Then, one uses fast Padé approximation algorithms

(or equivalently, fast polynomial gcd algorithms). There is a
variety of such algorithms (for the earliest of Knuth, see [51]),
with the most popular belonging to Brent, Gustavson, and
Yun [52] with complexity. Thus, we can compute

in at most operations. Of course, this
method should be used only for a large(with additional pre-
cision of calculations) since it relies on a variety of extensions
of FFT methods that become advantageous only for very long
arrays.

We wish to note also that in [22] Sun and Grotstollen present
a Newton’s iteration directly on the transformed variables,
and furthermore they note that the Jacobian in that case is a
Vandermonde matrix, and that efficient algorithms are
available. [In fact algorithms are available, which
become efficient for large]. However, Newton’s iteration can
be very sensitive to initial values.

VII. CONCLUSIONS

This paper presents a contribution to the theory of optimal
pulse-width modulation and gives algorithms for efficient
on-line calculation of PWM switching patterns. Some specific
results for the harmonic elimination problem are also presented.
A number of new results regarding the PWM problem are
derived in this paper. It is shown that:

• by a transformation of variables the solution to the optimal
PWM problem is given by the roots of a polynomial
that are appropriately sorted;
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• the polynomials satisfy

where

and are the roots of -degree monic polynomial ;
• the polynomials can be found by solving a Toeplitz

system of linear equations;
• the polynomials give also the solution to a Padé

approximation problem and, therefore, constitute a set of
orthogonal polynomials;

• the polynomials are obtained through a simple re-
currence

where an expression for is given in (21);
• the complexity of a fast algorithm for the optimal PWM

problem is .
An important consequence of the solution of the transcen-

dental “sums of odd cosines” problem in PWM applications
lies in the ability to construct high-quality digital (step-func-
tion) approximations to arbitrary harmonic series. In this paper,
we have paid particular attention to the PWM harmonic elimina-
tion problem in which coefficients in (6) depend only on
the fundamental component . In general, optimal PWM
coefficients depend on the amplitudes of other harmonics

which do not add to the complexity of the problem since
system (6) is linear. Since the proposed algorithms can be ex-
ecuted quite fast on any processor with high-performance DSP
capabilities, it opens a possibility of better on-the-fly construc-
tion of arbitrary (analog) waveforms using simple digital logic.
Areas of application include not only power electronic con-
verters but also, for instance, control of microelectromechan-
ical systems and digital audio amplification. It should be noted
that the design equations corresponding to optimal PWM with
bi-level waveforms [1] have the same structure as (2) and (3),
therefore the results presented in this paper are directly appli-
cable.

While applying these basic algorithms, one should be aware
of the well-known inherent ill-conditioning of the corre-
sponding Toeplitz matrix and Padé approximation calculations.
Techniques for the regularization of the basic algorithms
presented here will be dealt with in detail in future publications.
Future work will also focus on such practical applications as
three-phase inverters which eliminates harmonics with orders
divisible by three in (2) and (3).

A more detailed description of this work is given in the tech-
nical report [45].

APPENDIX A
FIRST FEW

Using the recursive algorithm HESOL, the polynomials
as explicit functions of can be obtained for the har-

monic elimination problem using computer algebra software.
Here are the first few for

APPENDIX B
MAPLE PROGRAM

The following Maple program implements algorithm
RECSOL for solving the PWM harmonic elimination problem.
Other programs are available from the authors.

A

2

2

2 2

n

i

i



CZARKOWSKI et al.: SOLVING THE OPTIMAL PWM PROBLEM FOR SINGLE-PHASE INVERTERS 473

m

APPENDIX C
RELATION TO THE THEORY OFPADÉ APPROXIMATION

The solution to the modified Newton problem, where one has
the first sums ofoddpowers, can also be obtained using the
theory of Padé approximation. Moreover, using the theory of
Padé approximation, we find that the polynomials are or-
thogonal polynomials with respect to a specific weighting func-
tion that depends on only. Consequently, we can draw upon
methods developed for orthogonal polynomials to develop nu-
merically stable fast algorithms for computing both the polyno-
mials for and their roots.

We start with the general relation between Padé approxima-
tions and the generalization of Newton relations between power
and elementary symmetric functions. Let us look at the Padé
approximation of the order to the series at .
Here the function is defined via the generating function

of the sequence : . The Padé ap-
proximation of the order to at (the neighborhood of)

is a rational function with a poly-
nomial of degree and a polynomial of degree—such
that the expansion of matches the expansion of

at up to the maximal order. This means that

or

After taking the logarithmic derivative of this definition, we ob-
tain the following representation of this definition:

Now, if we write the normalized (monic) polynomials
and in terms of their roots

we get an identification of symmetric functions in
and with the sequence of in the definition of

. Namely, we get

for (where ).
In the case , one simply recovers Newton’s identities.

The case (the “diagonal” Padé approximations) is the
case that solves the problem of “sums of odd powers”: Consider
the “anti-symmetric” case when for and

. In this case, in the notations above, for .
We, therefore, obtain the Padé approximation of order to
the following function:

The Padé approximants are related in this case by
. This relation between the numerator

and the denominator of the Padé approximants to must
hold because satisfies the simple functional identity:

. This gives the main result:
Theorem 1: The solution ( ) to the problem

of “sums of odd powers”

is given by the roots of the numerator
of the Padé approximation of order to the function

Another way to verify this approximation without specializa-
tion from the case of general sequence, is to take the identity
(16).

Proof of Theorem 1:First of all, the Padé approxi-
mation rational function of order is
unique. [Indeed, if there would be two rational approximations

and that approximate up to , then
, and since degrees of

are bounded by , then .] Then,
if is a Padé approximation of order to

, we assume that this representation of the rational
function is irreducible [i.e., that and are relatively
prime]. Then, is a Padé approximation of order

to , and is a Padé approxi-
mation of order to . Because of the functional
equation , and the uniqueness of the Padé
approximations, we get .
This equation means that . Moreover, since
the expansion of at starts at 1 [i.e.,
as ], we have as . This
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means that and . Taking
into account the above-mentioned “main” identity

we see that the right-hand side of this identity and the expan-
sion of at must agree up to (but not including)

. This means we have for
.

Notice that in the definition of , the value(s) of
for have no impact on the definition of because
they enter the expansion of only at for

. This is obvious because
.

This completes the proof of Theorem 1.
Since we identified the solution to the “sums of odd powers”

problem with numerator (or denominator) in the (diagonal)
Padé approximation problem, we infer from the standard theory
of continued fraction expansions that the rational functions

are partial fractions in the continued fraction
expansion of the generating function at . This
also means (see Szego for these and other facts of the theory
of continued fraction expansions and orthogonal polynomials
[53]) that the sequence of polynomials is the sequence
of orthogonal polynomials [with respect to the weight that is
Hilbert transform of ], and that the sequence of poly-
nomials satisfies three-term linear recurrence relation.
Since the same recurrence is satisfied both by numerators and
denominators of the partial fractions, the recurrence is satisfied
by two sequences— and . With the
leading coefficient of is 1, one obtains the particularly
simple three-term recurrence relation among

for , which was introduced above where it was developed
using the matrix notation.
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