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Abstract—n this paper, the basic algebraic properties of the  EI-
optimal PWM problem for single-phase inverters are revealed.
Specifically, it is shown that the nonlinear design equations given
by the standard mathematical formulation of the problem can
be reformulated, and that the sought solution can be found by ‘ I
computing the roots of a single univariate polynomial P(z), for o, 0 O 2 Ed 2 s
which algorithms are readily available. Moreover, it is shown that
the polynomials P(x) associated with the optimal PWM problem
are orthogonal and can therefore be obtained via simple recur-
sions. The reformulation draws upon the Newton identities, Padé gL
approximation theory, and properties of symmetric functions. As
a result, fast O(nlog® n) algorithms are derived that provide
the exact solution to the optimal PWM problem. For the PWM
harmonic elimination problem, explicit formulas are derived that
further simplify the algorithm. the proposed methods for PWM waveform design are: modu-

Index Terms—Harmonic elimination, Newton identities, orthog-  1ating-function techniques, space-vector techniques, and feed-
onal polynomials, Padé approximation, pulsewidth modulation back methods [2]. These methods suffer, however, from high
(PWM), single-phase inverters, symmetric functions. residual harmonics that are difficult to control and from limi-
tations in their applicability. A method that theoretically offers
the highest quality of the output waveform is the so-called pro-

_ _ _ grammed or optimal PWM [4]. Owing to the symmetries in the
HE PROBLEM of the optimal design of pulsewidth modup\wm waveform of Fig. 1, only the odd harmonics exist. As-

1 lated (PWM) waveforms for single-phase inverters [1], [2duming that the PWM waveform is choppedimes per half a

is examined in this paper. PWM signals are used in power elegrle, the Fourier coefficients of odd harmonics are given by

tronics, motor control and solid-state electric energy conversion 4

[2], [3]. The best voltage signal for these purposes is one with — ~— [COS kay — coskag + - - -+ (=1L cos ko

a periodic time variation in which amplitudes of selected non- g o

fundamental components of the signal have been controlled to + o+ (=) Teoskay] (1)

increase efficiency and reduce damaging vibrations. How c@parer. — 1,3, 5, ... and E is the amplitude of the square

the waveform be designed to most effectively accomplish thig2, o Amplitudes of any, harmonics can be set by solving
Thi_s paper describes a contribution to the th.eory anq practiceaofsystem ofa nonlinear equations obtained from setting (1)
optimal PWM waveforms that addresses this question. equal to prespecified values. In the harmonic elimination pro-
A PWM waveform consists of a series of positive and negsammed PWM method, the fundamental component is set to
ative pulses of constant amplitude but with variable SW'tCh"yrequired amplitude ang — 1 low-order harmonics are set to
instances as depicted in Fig. 1 (as in a power electronic PWM,, Thjs is the most common approach in electric drives since
full-bridge inverter). A typical goal is to generate a train Of,y_order harmonics are the most detrimental to motor perfor-
pulses such that the fundamental component of the resultipdnce | other applications, like active harmonic filters or con-
waveform has a specified frequency and amplitude (e.g., fogd) of electromechanical systems, harmonics are set to nonzero
constantV/f speed control of an induction motor). Some OI/aIues. This task of designing a PWM waveform, the first
Fourier series coefficients of which match those of a desired
waveform has been the subject of many papers [1], [5]-[37].
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[39] or space-vector methods [41], [40] to approximate prdNote thatcosnt = T, (cost) whereT,, is thenth Chebyshev
grammed PWM switching patterns. Another approach is to sippelynomial. Letz; = cos 3;, then
plify the nonlinear harmonic elimination equations [26] in order
to obtain real-time approximate solutions using modern digital Ti(xy) +Ti(z2) 4 - Ti(zn) =My
signal processors. Ty(xy) + Ta(xo) + - Ta(xy,) = ha
This paper develop®(n log? n) algorithms for solving the
PWM harmonic elimination problem without any approxima- :
tions in the problem statement. Since many PWM applications 7%, _1(x1) + Tan_1(x2) + - - - Top_1(2,) =hon_1.
allow for a computational time frame of a few milliseconds,
the developed algorithms will allow for real time generation os the odd-indexed Chebyshev polynomials are odd polyno-

switching patterns with of the order of hundreds. mials, we can write
k
[I. CONVERTING THE PWM PROBLEM Tor_1(z) = Z o, mz L,
For the scope of this paper, a PWM waveformisraperiodic m=1

function f(¢) that is binary-valued fod < ¢ < 7/2 and has the \yin this notation, the PWM equations become
symmetriesf(t) = f(w —¢) andf(t) = — f(2r — ¢) as shown

in Fig. 1. As such(¢) can be written with the Fourier series as no k
SN m-ai" T =haoy,  1<k<n

ot =1 m=1
f(t) = Z fgkfl COs (2/€ — 1)t
ot or
with -
Z Ck,m * S2m—1 — th—b 1<k<n (6)
) /2 m=1
= — t) cos(kt) dt.
fu=2 [ pecostin here
The optimal PWM problem, as it is considered here, is the de- N~
sign of a PWM waveformy(¢) so that its first Fourier coeffi- Sm= 2
cientsf; are equal to prescribed values. For a PWM waveform, =t
as shown in Fig. 1, we have are the sums of powers ¢f:; }. Equation (6) forms a set of
linear equations fa$s,, 1,1 < m < n.Once the values,,,, 1
4 < 4 ' i i -
fo= 2 Z (1)~ cos kai. are_obtamed by sqlvmg the linear system (_6), one has _the fol
wk P lowing problem. Giver{sy, ss, ..., sa,—1}, find the solution
{1, x2, ..., z,} to the following system of nonlinear equa-
Therefore, the optimal PWM problem gives rise to the followintjons
design equations [4]:
T1+ T2+ -+ 3y =51 (7)
COS (v] — COS (¥g + COS(v3 — - - - COS (¥, = Pg 2 o3+ ad 4+ ad =53
cos 3oy — €os 3o + cos 3z — - - - cos 3y, = hs
e e R Y (8)

cos (2n — 1)ag —cos (2n — Das o btained. the oriainal variab be found b
ncez; are obtained, the original variables can be foun

+cos (2n — Dag — -+ cos (2n — Dan = han-1. (3) letting 3; = arccos z;, a; = /iigfor oddi, ande; = 7 — 3 fory

even:. Due to the symmetry with respectitg, any permutation

of a solution se{x; } is also a solution set; likewise fg. Yet it

is necessary to ordeét; appropriately such th@it< a; < s <

- < @, < /2. Note that for odd, 0 < «; < 7/2 gives0 <

G; < w/2.Foreven,0 < «; < w/2gives0 < 7 —f3; < w/20r

7 /2 < 3; < =. This indicates how to obtain; with the desired

cos Py +cosfls +cosfz+---+cosf, =hy (4) g:]%efrcl)r:%:roosrg%arg;;hgjfzvgll;;S7?;3 Z|e€t C()f’;rf)_l%tzaz o

cos 331 + cos 302 +cos3B3+ -+ -+ cos 383, = hs However, the design equations (7) and (8) are nonlinear, so
obtaining the desired solutidnx; } is not so straightforward. In
the following sections, this nonlinear system of equations will

cos (2n — 1)B1 +cos (2n — 1) be closely examined and in Section Ill, a systematic procedure

+cos(2n —1)fs+ - +cos(2n —1)B, = hap—1.  (5) is given to obtain the solutions.

Given then valuesh; = knf./(4E), we haven equations
and n unknowns; we would like to find thex unknowns
{og, .o, ap b, With0 < oy < e < -+ < v, < 7/2. We can
first simplify the equations as is done for example in [22].
Let 3; = «; for odds, and letg; = = — «; for eveni. Then
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A. Specialization to the Harmonic Elimination Problem special cases this problem can be reduced to a manageable and
For the harmonic elimination PWM problem, which we will‘exactly solvable” one. The classical cases of sum of powers

focus on below, the Fourier coefficients of the PWM waveforddVewton), Wronski and elementary symmetric functions are

#(#) should match the Fourier coefficients of a pure sine wavle ones well described in the literature (see, e.g., [42] on

That is, the valued.;,_; appearing in (2) and (3) are given byrepresentation of symmetric groups and Frobenius and Schur

hy = A, andhy;_; = 0 for 2 < i < n. For this case, the valuesUnctions). _
s 1 depend omd only and are given by In Section Ill, we present a procedure to determine the poly-
.

nomial P(z) for the case where one is given the “sums of odd

A /2 -1 W . )
1 = iy < ‘L 1 >’ 1<i<n. powers,” as it appears in the optimal PWM problem.
i—
[ll. GENERALIZING NEWTON'S IDENTITY
B. A Simpler Problem To develop a procedure to solve the optimal PWM problem,

It is useful to consider first the related, simpler probler} Will be useful to examine more closely Newton’s identities.
where contiguous sums of powers are known. Given the valutii® Simple derivation of Newton'’s identities will serve as our

s1, ..., sp; find z; satisfying the following equations: starting point. First write the polynomia(«) as
atEt e, = ©) P(z) = [[ (= — =),
T +as 4+ 3k =80 =1

then the logarithmic derivative is given by

2ty oy =5, (10) P'(z) n 1

, Plz) Z T—x;
It turns out that{xy, ..., =, } are the roots of the polynomial i=1
P(@) = 2" +pia™ 44 pn =0 (11) Expanding each term in the sum, one gets
P'(x) LS g
where _ L
P(aj) Z Z pmtl
=1 m=0
s1+p1 =0 o
s2 +p1sy +2p2 =0 = Z pm+l (13)
s3 +p1s2 + pasy +3p3 =0 m=0
where
etc. The coefficientg;, can be found as "
Sm = xgn
D1 =—51 i=1
p2 I—%(SQ + p151) .
! are the sums of the root powers, with= n.
ps =—3(s3+pisz +p2s1) Integrating (13) gives
. Pl(.’L') Sm n > Sm
1 = ~ = — _
Pe=—7 (sk +p1sx—1+ -+ pr-151) (12) P(z) g::o T g T g::l gmtl
etc. These arblewton’s IdentitiesWhen contiguous values / P(z) do — /ﬁ du +/ Z Sml do
are known one can easily obtaip through these simple re- P(x) x = ™t
cursive relations. Them; can be obtained by taking the roots =
of (11) for which numerical algorithms are readily available. ln P(z) =nlnz — Z Lm
(For k > n these identities involve coefficients, beyond the ——

highest power, which are implicitly defined as 0.) For the PWM{aisinge

_ i to the power ofln P(x) and using the last equation
problem outlined above, we know only the firstodd sy, for

k=1,3,...,2n — 1. We do not know contiguous valuas gives

therefore Newton'’s identities cannot be used. Our question is: < s,

Does any such simple procedure exist for the harmonic elimi- P(z) = 2" exp <— Z mx,ﬁ)- (14)
nation problem for PWM, where one is given only the ogd m=1

fork=1,3,5...,2n - 17 In order to generalize Newton’s procedure, we will obtain an

Note that (7)—(10) are symmetric functions ff;}. The expression similar to (14), but having only osld To this end,
problem of finding the set of elementsz; } with given values note that
of n arbitrary symmetric functiongs; }inz,;, i =1---n,isin oo
general a very complicated one because of nontrivial nature of P(~z) = (=1)"z" exp <_ Z sm(—l)m>
relations between symmetric functions of high degrees. Only in mx™

m=1
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and that V() is given by
P 0 - - _ 2 3_2?5?7 209 4.
20— (Cayen <— > (1= (—1)’")) V(@) = =2s10 — 3s52° — s+ 7+ 0% +
(=) e The ? indicates unknown coefficients. Then, using (17) and (18),
or G(z) can be determined up to and includigg
P(z) (-)" 2 i Sm Gx) =14 gz + -+ gez®+2a"+72% + ..
P(—z) P e mam Writing out (16) gives
3 2
Then (z° + pr +3p2a? +1293) 2
=—(=2" + p1a” —p2x + pa)(L+ g1/ + g2/5" +-++).
Plz) = (=1)"P(-2)G(1/z) Matching like powers of: gives
where x3 - 1=1
Glz) :=e"® a? - pr=—-p1t+a
S5 5 S5 s b = pr=pr—gipit o2
V() ;:_2(31374_33: T +) 2’ = p3=-p3+gp2— g2p1 + 93
- - /.  — 0=—gps+gap2 — g3p1 + a
With the notation ) 1/22 = 0= —gops + Gsps — gaps + 05
P(z) = (-1)"P(-z) (15) 1/z® — 0= —gsps + gapz — gsp1 + -

Matching further like powers involves coefficients, and
higher, which are unknown. Note that the last three equations,

P(z) = P(a:)G(l/a:). (16) corresponding td /, 1/x?, and1/z3, can be written as the
following linear system of equations:

one has

P(x) is the monic polynomial related tB(x) by negating the

roots of P(z). g3 —92 0 P g4
Equation (16) is the counter-part to (14). Likewise, by setting g4 793 G2\ P2 =195
like powers ofz equal, we can obtain equations that relate g5 —94 93] LP3 9o
ands;. However, in order to do this, we need to exp&#g:) = This system is almost Toeplitz—only the signs of the odd
¢¥(®) into a power series af. Such a power series fa*’ *)  columns must be negated. The true Toeplitz system
gan bjf gbtaLuned using the following algorithm, described in [43, B g o i g4
ec. 4.7]. Let 94 g3 92| |P2| =— |95
i 95 g4 93 p3 Je
Viw) = Z it wherep; = —p1, p2 = P2, p3 = —p3 gives the solution for
=0 p:. Note thatp; are the coefficients of’(z) defined in (15).
and As this system is Toeplitz (the diagonals of the system matrix
o0 are constant), the Levinson algorithm can be used to solve it
G(z)=c"" =" gz’ efficiently [O(n?) instead ofO(n?)] [44].
i=0 The same procedure for generalgives rise to a Toeplitz

system and comprises a generalization of Newton’s identities
to the case where only the firgstoddvaluess; are known. The
O(n?) procedure for general follows likewise.

If v; for 0 < ¢ < m are known, then the values gf for 0 <
1 < m are given by

go =¢"” (17) Algorithm ODDSOL: Given the sums of odd powess; _;
1< for 1 <4 < n, the polynomialP(z) can be obtained as follows.
9i = : Z kvkgi*k (18) 1) Setyy; = 0for0 <1< n. Setvy,;,_1 = —28271_1/(2i—1)
k=1 for1 <i < n.
forl <i<m. 2) Computeg; for 0 < ¢ < 2n using Equations (17) and
When the firstn odd values ofs; are known, thery; are (18).

known for0 < ¢ < 2n.[vy; = 0for0 < ¢ < n and 3) Solve the Toeplitz system fgr;
v2;—1 = —2s2;_1/(2¢—1) for 1 <4 < n.] Therefore, using the

relations (17) and (18), we obtainfor 0 < i < 2n, and conse- g." 9.1 pll g"'“
quently, we can write out Equation (16), matching like powers R = (19)
of z, to obtain linear equations from whigh can be obtained. Gon—1 " Yn Dn, Gon

For example, we write out the expressions#oe 3. That is,
we are givensy, s3, andss, and our goal is to find the corre-
sponding monic third degree polynomi@(x),

and setp; = (—1)ip;.
Algorithm HESOL: Given A andn, the steps to solve the
harmonic elimination problem (2) and (3), are summarized as
P(z) = 2° + p12® + pox + pa. follows.
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PARAMETER VALUES COMPUTED IN ALGORITHMS ODDSOLAND HESOLFOR THEPWM HARMONIC-ELIMINATION PROBLEMWITHn = 4 AND A = 0.6

TABLE |

go = -+1.00000000000000

po = +1.00000000000000

B1 = 0.76848515715652 7

g1 = —1.20000000000000 | p; = ~0.60000000000000 | B, = 0.52807085706244 =
g2 = +0.72000000000000 | po = —0.64755955745780 | B3 = 0.31666400048098
g3 = —0.58800000000000 | ps = +0.31063573447468 | B4 = 0.15043709981329 7
94 = +0.44640000000000 | ps = +0.03190274246951 | a; = 0.15043709981329
gs = —0.38673600000000 | z, = —0.74695539133959 | ay = 0.23151484284348

g6 = +0.31554720000000
g7 = —0.28238094857143
gs = +0.23942744228571

T3 = —0.08807293772494
z3 = +0.54464605975877
z4 = +0.89038226930576

a3 = 0.31666400048098
ay = 0.47192914293756
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OPTIMAL PWM WAVEFORM
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ven

Fig. 2. The PWM harmonic-elimination waveform obtained, with= 0.6 andn = 15.

1) Setsy;—1 = (A/4i—1)(2ii:11) fori=1,...,n. orthogonal. Numerically stable algorithms using properties of
2) Fromsy;_1,4 = 1, ..., n, obtain the degree polyno- orthogonal polynomials can therefore be developed and will be
mial P(x) for which the rootse; satisfy the equations (7) presented in future publications.
and (8). (Use algorithm ODDSOL.) Find the roatsof
P(z). IV. A RECURRENCE FORP(z)
3) Sets;, = arccosz;, ¢ = 1, ..., n, with 8; € (0, n).
For3; € (0, n/2), sete; = f;. Forg; € (n/2, ), set
a; = m — [3;. Sort the angles;.
For the general optimal PWM problem, the valugs ; can be
obtained by solving the linear system (6).
Example 1 (Harmonic Elimination)Let A = 0.6, n = 4.
Then

The fast recursive algorithms for solving Toeplitz systems
compute a solution using the solutions for smalieiThe no-
tation P,,(z) will be used to emphasize the dependenc@f)
on n. Specifically, P,,(x) denotes the monic degreepolyno-
mial associated with the harmonic elimination problem, with
coefficientsp,, 1

Py(z)=a" +pp12" "+ + Py
s1=0.6, s3=045 s5=0375, s7=0328125 () P, 1 Pn,
With this notation, a recurrence relation
(v, -+ vs) = (0,—1.2,0, —0.3,0, —0.15,0, —0.093 75, 0). +1(@) = 2Pale) (@) (20)

. . cgn be used to comput®,(x). For the harmonic elimination
Then, the parameters computed in algorithms ODDSOL aBaobIem, the initial conditions can be taken to Bg(x) = 1

HESOL are shown in Table I. A8y, 3> € (w/2, 7) andfs, Pi(x) = z — A. The coefficients’,, in the recursion can
4 € (0, w/2) theo,; shown in the table are obtained by letting, computed using the following formula:
6 = T — /31, y = T — /32, g = /33, g = /34, and then '

reorderinge;. It can be verified numerically that the harmonic i (1) ¥ gonr1 kP i

elimination equations (2) and (3) are satisfied. O — _ k=0 ’ 1)
Example 2: Fig. 2 illustrates the PWM signal obtained with ™ n—1 )

A = 0.6 andn = 15. > (=1)*g2p_1-kPn—1,x

. k=0
It should be noted that for the optimal PWM problem, the ) ]
Toeplitz matrix in (19) becomes ill-conditioned asgrows This recurrence exists because of the Toeplitz structure, see [45]
larger. By using extended precision arithmetic, the range {9 further details. The coefficienis,+1, » are then determined
n for which this basic algorithm is useful can be extendedecursively as [this implements (20)]
However, in the following sections it will be shown that the  p, .1 1 = p, . k=1
solution can also be expressed as the solution to a Padé approx-p,,1  =pn x +Crn - Pn1.k-2, k=2,...,7n (22)

imation problem, and consequently the polynomiglgz) are Prtt k = Crn * Pt k-2, k=mn+1.
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In order for this algorithm to work, one still needs the coeffirrom (23) and (24) we have for the harmonic elimination
cientsy; in the expansion of7(z). While g; can be computed problem, that; = 24 and¢;;_; = 0for 2 < ¢ < »n so that
using (17) and (18), in Section V, a more direct recursion will

be presented for computing the valuggshemselves. La(2)B(z) e~ 224/74+0(/ZMT)

P, (—2)Py(—2)
V. A RECURRENCE FORG(z) =c 4 1 0(1/21Y). (25)

The algorithms presented above for the PWM harmonic elim- Now, usingP,,(z) = [, (# — ;) and the new transforma-
ination problem do not fully utilize the fact that the parametet®n one gets
s; depend only on the single parametér In this section we ,

will show a relationship between the original (transcendental) p, (A(z+1/2)) = H (3(z+1/2) = Lz +1/2))
formulation of the PWM problem [in terms @s(2: — 1)/] iy

3

and the converted (algebraic) formulation (in termsc&f1). noog
As a result, we obtain an expression for the funci@fi /z) =11 27((7:2 +1) = 2(z +1/2))
that is important for developing a recursion for generating the i=1 "
coefficientsg, that are needed for computirtg, in the recur- 1 - 1
SION Pyt = 2Py + CpPo_y. =g 1[G =2 =1/2)
In this section, we show how the transcendental case can be 1 =1
explicitly expressed using the introduced notationg7¢f /z) = o P, (2)Py(2).
and P, (x). The basic transformation is *
Therefore
—1(, ‘

cos I = (2 +1/2) Po(2)P(z) 1y P, (3(2+1/2))
with z; = ¢/, With the previous transformatiatvs 3; = x; Po(—2)Py(—2) P, (=3(z+1/2))
one hase; = 1/2(z; + 1/z). Solving forz; gives Combining this with (25) and the identity (16) gives

zi = xi+ V=1 Gn(l/x)|x:1/2(z+l/z) =y O(l/zn+l)
Note that, agos n3; = 1/2(e/™% 4 ¢=9m5), one gets from which we determine tha@,(1/z) = Ga(1/7) +

O(1/x*>"*1) whereG 4(1/z) is given by
cosnf; = $(2 +1/27)
Ga(l/z) = 4V,
so that the equations (4) and (5) can now be written as
The algorithm for computing; is of complexityO(n) only.
214+ 1)z + 2+ 120+ + 2, +1/2, =24  (23) This algorithm follows the general power series algorithms de-
I Y NI 7 SR % g scribed in [46_3],_[47]. The key to this _algorith_m is to_notice th_at
G.4(1/x) satisfies a second order linear differential equation
(with singularities at: = —1, 1, oo and an apparent singularity

P A - atz = 0):

+1/25" T 22T 12T =00 (24) w2 — Dy + (8Ax(2? — 1) + 1)y’ + 4A(1 — 4Az)y = 0.
Therefore, if we define If we look at the expansion & 4(1/x) atz = oo
. . 1 — n
n@=1lc-= Ae-=I] (+- ) Gallf) =3 %
then, the product P,(») - F(z) has the roots then we get the fourth-order recurrencegn
{#1, .-+, #Zn, 1/21, ..., 1/2,} and as such the key identity

n+2 —
d (n? +3n+2-16A2)g 11 + ABn +4)gn— (0> —1)g,1
8A(n+2) '

M = @*22::1,7710(1(5“/"’”) The initial conditions arg,, = 0 for n < 0 and
Po(=2)Py(—2)

(16) can be applied directly to this problem—as it is of th
“sums of odd powers” form. One gets

g=1 g =-24, g =24% .. ..

where
m From these values and the equation ggrone derives th&,
t = Z 21/ factors in the three-term recurrence for orthogonal polynomials
i=1 P, (z). The first fewC,, are
-~ 2 = 2 4
-9 cosmf3;. Cie—A C :4A -3 :40—60A + 164
; 0 ro 12 72 60(4A2 — 3)
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All C,, are rational functions ini of rather special structure. to this is the representation (14). Indeed, according to Brent's
Since the case of the continued fraction expansiof gf1/z) theorem,N terms of the power series expansione$f® can
is not “explicitly solvable,” C,, is not a “known” function be computed in only)(N log N) steps from the power series
of A andn; it belongs to the category of “higher Painleve’expansion of’(x) (see [43, Sec. 4.7, Example 4]). This algo-
transendencies (see examples of such functions in [48]). Athm requires only FFT-techniques for fast convolution [50].
important consequence of the “insolubility” 6f, is the growth Similar complexity considerations can be applied to the
of coefficients ofC,, as rational functions iM with integer problem of fast computation of polynomial,(xz) that give
coefficients. According to standard conjectures about explitite solution to the PWM problem of consecutive odd power
and nonexplicit continued fraction expansions (cf., [49]), theums. A naive method of computation of Padé approximants
coefficients ofC,, as a rational function imi overZ grow as by solving dense systems of linear equations give a very high
2% for largen. In fact, already for. = 12, the coefficients complexity bound ofO(n?). A classical Levinson algorithm
of C, in A are large integers. This makes it impractica®f solving systems of Toeplitz linear equations, or algorithms
to precompute with full accuracg, for large n. It is also based on three-term recurrence relations satisfied’pyz),
unnecessary to analytically determifig = C,,(A) explicitly, 9give the complexity of computations of (all coefficients of)
since we need to know,,(A) only in the range ofd that is »(x) at O(n?). These algorithms are, perhaps, the best for
significant for applications—this is the range where the weigAtoderaten because of their simple nature and the fact that
of the orthogonal polynomial®, (z) is positive. In this case a they use almost no additional space. Also, @h@?) algorithm
much simpler best fit polynomial or rational approximation ifyields not only the single, (x) but all P, (z) for m < n.

Ato C(A) suffices. However, for largen these algorithms became impractical and
The recursive algorithm for computirig, () can be summa- fast algorlthm§ are needed. _ -
rized as follows. A fast algorithm for computing (all coefficients of, (x)
Algorithm RECSOL:Given A andn, the polynomialg?, () with total_ complexity ofO(nlog”n) works as follows. First,
for be recursively computed as follows. one appll_es Brent's _theorem_ to computén) terms of the
1) Setgo = 1,91 = —24, g2 = 2A” and fork = 1t02n—3 power series expansion (at infinity) of
let m
G(l/x) = CiQZmOdd(Sm/mm )
gk+2 =

(k2 + 3k + 2 — 16A2)grp1 + A8k + 4)gp — (k2 — 1)gr_s from the first O(n) terms s, with the complexij[y of onl_y
8A(k +2) - O(nlogn). Then, one uses fast Padé approximation algorithms

(or equivalently, fast polynomial gcd algorithms). There is a
2) SetPy(z) = 1andPi(z) = 2 — Aand fork = 1ton — 1 variety of such algorithms (for the earliest of Knuth, see [51]),

let with the most popular belonging to Brent, Gustavson, and

Yun [52] with O(nlog? n) complexity. Thus, we can compute

k ; P,(x) in at mostO(nlog® n) operations. Of course, this

;0(_1) 92k+1-iPk, i method should be used only for a larggwith additional pre-
Cr =— o1 cision of calculations) since it relies on a variety of extensions
Yo (—1)igok—1—ipr—1,i of FFT methods that become advantageous only for very long
=0 arrays.

P (z) = wFi(2) + O Prr (). We wish to note also that in [22] Sun and Grotstollen present

] a Newton'’s iteration directly on the transformed variahtes
Find the rootse; of Pﬁ(x)- _ and furthermore they note that the Jacobian in that case is a
3) Setp; = arccoswi, @ = 1,...,m, With §; € (0, 7). vandermonde matrix, and that efficie@n?) algorithms are
Forfi; € (0, 7/2), sete; = f5;. Forf3; € (n/2, ), et ayailable. [In factO(n log? n) algorithms are available, which
a; = — f3;. Sort the angles;. become efficient for large]. However, Newton’s iteration can
Step 3 of algorithm RECSOL is the same as step 3 of algbe very sensitive to initial values.
rithm HESOL. Using a computer algebra system, such as Maple
or Mathematica, this recursive algorithm allows one to obtain
P,(z) as an explicit function oft. A Maple program that im- VII. CONCLUSIONS

plements algorithm RECSOL is given in the Appendix. This paper presents a contribution to the theory of optimal

pulse-width modulation and gives algorithms for efficient
VI. COMPLEXITY OF THE PWM PROBLEM on-line calculation of PWM switching patterns. Some specific

What is the complexity (in the simplest definition, an Opert;esults for the harmonic elimination problem are also presented.
ation count) of the problem of “sums of odd powers’—of thé number of new results regarding the PWM problem are
optimal PWM problem discussed above? In the algebraic féferived in this paper. Itis shown that:
mulation one can first ask the same question about Newton'’s ¢ by a transformation of variables the solution to the optimal
identities. If one uses Newton identities directly, the complexity =~ PWM problem is given by the roots of a polynomidJ ()
isO(n?), but a significantly faster scheme can be found. The key  that are appropriately sorted;
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« the polynomialsP, (x) satisfy APPENDIX A
FIRST FEW P, ()

Using the recursive algorithm HESOL, the polynomials

Po(z) = (—1)"Py(—x) expg —2 Z Sm P, (z) as explicit functions ofd can be obtained for the har-
1<m " monic elimination problem using computer algebra software.
m odd Here are the first few?,, (z) forn =0, 1, 2, 3, 4
where Py(z) =1
Pl (37) =z — A
n Pg(x):xQ—Ax—1/4—|—1/3A2
Sm = Z x® 4 - 2
i 1 (16A* +15 — 304%)z
i=0 Py(z) =23 — Ax? 4+ —
10 -3+ 44?2
andz; are the roots of-degree monic polynomia?, (z); 1 A(45-604% 4 164%)
« the polynomials’,, (z) can be found by solving a Toeplitz 60 -3+ 442

system of linear equations; 3 (64A° + 5604% — 336A* — 315)a”

Py(z) =zt — Az® +

« the polynomialsP, () give also the solution to a Padé * 28 45 — 60A% + 16A*
approximation problem and, therefore, constitute a set of 1 A(64A%—-504A* + 126042 —945)x 1
orthogonal polynomials; T 42 45 — 60A2 + 1644 + 1680

« the polynomialsP, (x) are obtained through a simple re- 4725 — 1260042 + 10080A4% — 288046 + 206A8
currence ’ 45 — 6042 + 16A*

Poyi(z) =P, +Cy, - Pya(z) APPENDIX B
MAPLE PROGRAM
where an expression fd,, is given in (21); The following Maple program implements algorithm

* the complexity of a fast algorithm for the optimal PWMRECSOL for solving the PWM harmonic elimination problem.

problem isO(nlog” n). Other programs are available from the authors.

An important consequence of the solution of the transcen-
dental “sums of odd cosines” problem in PWM applicationg specify n and A.
lies in the ability to construct high-quality digital (step-funcy := 10;
tion) approximations to arbitrary harmonic series. In this paper,.= 0.6;
we have paid particular attention to the PWM harmonic elimin@-igi:CS :=20; # or desired precision
tion problem in which coefficients,,,,_; in (6) depend only on
the fundamental componeht = A. In general, optimal PWM 4 compute expansion of Gy (%)
coefficientsss,, —1 depend on the amplitudes of other harmonicg[o] —1-
hox—1 which do not add to the complexity of the problem sincg[i] c— 2% A
system (6) is linear. Since the proposed algorithms can be gfe] .= 2 A%
ecuted quite fast on any processor with high-performance D8Fr x from 1 to 2 xn — 3 do
capabilities, it opens a possibility of better on-the-fly construc- gh = glk — 1] % (k% — 1):
tion of arbitrary (analog) waveforms using simple digital logic. gB := g[k] * A * (8 * k + 4);
Areas of application include not only power electronic con- gc := glk 4 1] * (k> + 3%k + 2 — 16 % A?):
verters but also, for instance, control of microelectromechan-g[k +2]:=(gC+gB—gh)/(8x A% (k+2)):
ical systems and digital audio amplification. It should be noted glk 4 2] := simplify(glk + 2]);
that the design equations corresponding to optimal PWM wity-
bi-level waveforms [1] have the same structure as (2) and (3),
therefore the results presented in this paper are directly appli-compute polynomials P, (x)
cable. P[0] := 1:
While applying these basic algorithms, one should be awatf] := x — A:
of the well-known inherent ill-conditioning of the corre-for k from 1 ton — 1 do
sponding Toeplitz matrix and Padé approximation calculations.num := sum((—1)* * g[2*k + 1 — i]
Techniques for the regularization of the basic algorithms scoeff(Pk],x,k —i),1 = 0..k);
presented here will be dealt with in detail in future publications. den := sum((— ) xg[2xk — 1 — i
Future work will also focus on such practical applications as  xcoeff(P[k — 1],x,k—1—1i),1 = 0.k — 1);
three-phase inverters which eliminates harmonics with ordersC[k] := —num/den;
divisible by three in (2) and (3). Clk] := simplify(C[k]);
A more detailed description of this work is given in the tech- P[k + 1] := x % P[k] + C[k] = P[k — 1];
nical report [45]. Pk + 1] := simplify(P[k + 1]);
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od: Now, if we write the normalized (monic) polynomial3, (x)
andQg(x) in terms of their roots

# compute roots x[i] and transform back to alphal[i] . 4

x := fsolve(P[n]): P _ . _ .

pi = evalf(Pi): n() zl;[l (@ —@i); Qulx) kI;[:L (=)

forifrom1ltondo

beta[i] := arccos(x[i]): we get an identification of symmetric funct_io_n_s in;
if beta[i] < pi/2 then and yy ng?w th(e /seqyg;ence ofs,, in the definition of
alpha[i] := betalil: g(x) = e~ Lem=1"""/""") Namely, we get
else " d
alpha[i] := pi — beta[i]: Z al — Z yi = s,
fi; i=1 k=1
od: )
forj =0, ..., n+d(wheresy = n — d).

In the casel = 0, one simply recovers Newton’s identities.
The casel = n (the “diagonal” Padé approximations) is the
case that solves the problem of “sums of odd powers”: Consider
the “anti-symmetric” case whesy = —z; fori = 1---n and
d = n. In this case, in the notations abowe,, = 0 for m > 0.

We, therefore, obtain the Padé approximation of ofder) to
the following function:

# sort alpha[i]
alpha := sort([seq(alphalk], k = 1..n)]);

# check:
for ifrom1tondo
sum(—(—1)" * cos((2% i — 1) * alphalm|),m = 1..n);

od;
G(1/z) = €2 Lo aaa G/ ™),
APPENDIX C The Padé approximant3,(z)/Q,, () are related in this case by
RELATION TO THE THEORY OF PADE APPROXIMATION Qn(z) = (—1)"P,(—z). This relation between the numerator

The solution to the modified Newton problem, where one h&§'d the denominator of the Padé approximants tb/x) must
the firstn sums ofodd powers, can also be obtained using thBold becausé(1/x) satisfies the simple functional identity:
theory of Padé approximation. Moreover, using the theory §f(—#) = 1/G(x). This gives the main result:

Padé approximation, we find that the polynomiBlg«) are or- _1heorem 1: The solution{z;} (¢ = 1---7) to the problem
thogonal polynomials with respect to a specific weighting fun@f “sums of odd powers”

tion that depends or only. Consequently, we can draw upon n
methods developed for orthogonal polynomials to develop nu- Z 23 = S0, m=1--n
merically stable fast algorithms for computing both the polyno- i=1

mials £, (x) for n > 0 and their roots. is given by the roots of the numeratdy,(z) = [[_, (= — z;)

We start with the general relation between Padé approXimgine padé approximation of ordt, n) to the function
tions and the generalization of Newton relations between power

and elementary symmetric functions. Let us look at the Padé G(1/z) =72 Do qaa(sm/ma™)

approximation of the ordg, d) to the serieg(z) atz = co.

Here the functiory(x) is defined via the generating function Another way to verify this approximation without specializa-
of the sequence,,: g(x) = ¢ S Ge/mE™) The Padé ap- tion from the case of general sequengg is to take the identity

proximation of the ordefr, d) to g(z) at (the neighborhood of) (16). . 3 .
& = oo is & rational functionP, () /Qq(x) with P, () a poly- .Proof .of Theorem 1:First of all, the Padé approxi-
nomial of degreer andQ4(z) a polynomial of degreé—such mation rational functlonPn(a:)/Qn(a:) Of, order (n, ”_) IS
that the expansion aP, ()/Qu(x) matches the expansion ofunique. [Indeed, if there Wou!d be two rational ilg)p_r?xmatlons
g(x) ate = oo up to the maximal order. This means that ~ Pt/@ andpz/g» that approximatey(z) up to z™~%, then
(p1/q1) — (p2/q) = O(z~21), and since degrees of
P, (z) e Code1 p1, 41, P2, g2 Are boundeq by, theﬁpl/_m = p2/q2.] Then,
Qul) " g(x) = O (x ) if P,(z)/Qn(x) is a Padé approximation of ordén, n) to
G(1/x), we assume that this representation of the rational
or function is irreducible [i.e., thab, (z) and@,.(x) are relatively
prime]. Then,Q,,(z)/P,.(z) is a Padé approximation of order
Po(z) — Qu(x)z"4g(z) = O (a;—d—l) . (n, n) to 1/G(1/x), and P, (—x)/Q.(—z) is a Padé approxi-
mation of order(n, n) to G(—1/z). Because of the functional
After taking the logarithmic derivative of this definition, we ob-equationG(—z) = 1/G(z), and the uniqueness of the Padé
tain the following representation of this definition: approximations, we geQ,.(z)/Pn(z) = Pu(—2)/Qn(-2).
This equation means thét, (x) = «P,(—z). Moreover, since
p,oQ, d log 27— O g—n—d=2 the expansion off(1/xz) atex = oo Startsat 1 [i.e.(7#(1/x) — 1
P, Qu dr B° g(w) +0(z )- asz — o0, we haveP,(z)/Q.(z) — 1 asz — oc. This
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means thatr = (—1)" andQ,,(z)
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(-=1)*P,(—x). Taking

into account the above-mentioned “main” identity

Pn — o z= " /m Togr
(_1)" . T(—xg)j) =ec 2Emodd( / )Eizl i

(8]

9]

we see that the right-hand side of this identity and the exparf*!

sion

z~?~1 This means we havg|_, =

1.

of G(1/x) atx = oo must agree up to (but not including)
gmil = Som—1 form =
n.

Notice that in the definition of#(1/x), the value(s) 0&s,,,—1
for m > n have no impact on the definition d@f,(x) because

they enter the expansion
1. This is obvious becau

6f(1/z) only atz—* for k > 2n +
fo7 ,ﬁkwik W: ,ﬁkwik
=1 CLak=1 —+

O(.’L’fm*l).
This completes the proof of Theorem 1.
Since we identified the solution to the “sums of odd powers”[14]

problem with numerator (or denominator) in the (diagonal)

[

11]

(12]

[

13]

Padeé approximation problem, we infer from the standard theor);s
of continued fraction expansions that the rational functions

P, (z

)/ P, (—x) are partial fractions in the continued fraction

expansion of the generating functiéf(1/x) atz = oo. This
also means (see Szego for these and other facts of the theory
of continued fraction expansions and orthogonal polynomialé’]
[53]) that the sequence of polynomials () is the sequence

of orthogonal polynomials [with respect to the weight that is

[

16]

Hilbert transform ofG(1/z)], and that the sequence of poly- 18]

nomials P, (z) satisfies three-term linear recurrence relation.

Since the same recurrence is satisfied both by numerators afd]
denominators of the partial fractions, the recurrence is satisfied

(20]

by two sequences#,(x) and (—1)"

- P,(~z). With the

leading coefficient ofP,,(z) is 1, one obtains the particularly
simple three-term recurrence relation amdndz)

Poi1(z) =2 P(2)+C, - Py_1(x)

[

21]

for n > 0, which was introduced above where it was developedzz]
using the matrix notation.
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