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ABSTRACT

This paper describes an approach for decomposing a signal into the sum of an oscillatory component and a
transient component. The method uses a newly developed rational-dilation wavelet transform (WT), a self-
inverting constant-Q transform with an adjustable Q-factor (quality-factor). We propose that the oscillatory
component be modeled as signal that can be sparsely represented using a high Q-factor WT; likewise, we
propose that the transient component be modeled as a piecewise smooth signal that can be sparsely represented
using a low Q-factor WT. Because the low and high Q-factor wavelet transforms are highly distinct (having low
coherence), morphological component analysis (MCA) successfully yields the desired decomposition of a signal
into an oscillatory and non-oscillatory component. The method, being non-linear, is not constrained by the limits
of conventional LTI filtering.

Keywords: wavelets, sparsity, morphological component analysis, constant Q, Q-factor

1. INTRODUCTION

Many natural signal are comprised of temporally overlapping oscillatory and transient components. For example,
EEG signals are composed of the superposition of: 1) a rhythmic signal, and 2) a transient signal. The rhythmic
components exist in several frequency bands. For example, ‘alpha’ is the rhythmic activity in the 8-12 Hz range,
‘theta’ is the 4-7 Hz range, etc. The transient component comes from unwanted measurement artifacts and from
non-rhythmic brain activity (spikes, spindles, and vertex waves of varying amplitude and duration). Note that
the rhythmic component may have both low and high frequencies. Likewise, the transient component is not
well contained in any single frequency band. The rhythmic and transient components overlap in both time and
frequency.

The alpha activity is normally extracted from an EEG signal by filtering the EEG signal with an appropriately
designed band-pass filter. However, the alpha waveform obtained in this way may be corrupted by the presence of
the transient component. Indeed, transients have energy at a broad range of frequencies including the pass-band
of the band-pass filter used. Filtering a transient with a band-pass filter designed to pass 8-12 Hz will produce
an output signal consisting of several oscillations having frequency 8-12 Hz. Therefore, when band-pass filtering
an EEG to obtain alpha activity, a transient will produce a spurious short-duration alpha-like waveform in the
output. The phenomenon can not be avoided as long as one uses linear time-invariant filters.

In this paper, we describe a method for the separation of the oscillatory and transient components of a
signal. The proposed method uses morphological component analysis (MCA)23,24,42–44 together with new wavelet
(constant-Q) transforms.1 The method is non-linear, so it is not constrained by the limits of LTI filters.

The proposed signal decomposition method may be useful as an EEG preprocessing step. After the separation
is accomplished, the rhythmic component can be filtered (using a conventional LTI band-pass filter) to obtain
an improved measurement of the alpha activity, for example. That in turn is useful for other basic procedures
in EEG signal analysis, for example, tracking how the power in a specific frequency band varies as a function
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of time. An improved measurement of the rhythmic component may also benefit the investigation of changes in
synchrony between different parts of the brain as a subject performs mental tasks.

We note that notching out the dc component of an EEG signal using a dc-notch filter does not achieve the
sought separation. Such filtering can be used to remove the base-line drift; however, spikes, step-like jumps, and
other transients, will remain. For our problem — the decomposition of an signal into transient and rhythmic
components — neither a frequency-domain nor a time-domain method alone is adequate. Even though the alpha
activity (for example) is confined to a specific frequency band, the transients are not; therefore, conventional
(LTI) filtering cannot solve the problem. Similarly, time-domain methods that rely on detecting and removing
spikes (e.g. Ref. 36) according to a set of templates must account for a variation in transient morphology
(shape); therefore, such methods are limited to a specific set of transients. In our approach, we model the
transient component as a generic piecewise smooth signal.

The decomposition of a signal into transient and non-transient components has been addressed by several
authors, especially for audio coding and processing.18,19,25,34,35 In Ref. 34, it is proposed that sines, transients,
and noise be coded separately for efficient audio compression. The separation of transient and tonal compo-
nents using sparse signal representations with the wavelet transform and the modified discrete cosine transform
(MDCT) is described in Refs. 18,35 for audio compression. Note that the MDCT, used in Refs. 18,35 to model
the tonal part, is not a constant-Q transform; and that the decomposition method is different than MCA. In
Ref. 19, an algorithm is described for the sparse representation of audio using overcomplete modulated complex
lapped transform (MCLT) dictionaries. Ref. 17 introduces the molecular matching pursuit algorithm for the
efficient decomposition of audio into a tonal part (as clusters of MDCT atoms), a transient part (clusters of
wavelet atoms), and a residual. In Ref. 25, a fully Bayesian approach for audio signal representation is described,
and an example given where a MDCT basis with long time resolution is used to model the tonal component
and a MDCT with short time resolution is used to model the transient component. Ref. 32 introduces the time-
frequency jigsaw puzzle and provides an example of its use for tonal/transient separation in audio. Distinct from
these approaches, is the time-scale method of Ref. 6, which introduces an algorithm for separating transients
that exploits the multi-scale characterization of transients.

1.1 Morphological Component Analysis

In this paper we will utilize morphological component analysis (MCA).42 Given an observed signal x that is the
superposition of two signals,

x = x1 + x2, x, x1, x2 ∈ RN ,

MCA provides an approach to recover the components x1 and x2 individually. MCA utilizes a flexible and
effective signal model: the sparsity of x1 with respect to one signal representation, and the sparsity of x2 with
respect to a second, substantially different, signal representation. MCA relies on each of x1 and x2 having
a sparse representation; otherwise, MCA is not applicable. The signal model is based on the specification of
the two signal representations, and relies on the two representations providing sparse representations only for
substantially different types of signals (signal morphologies).

If x1 is represented as a weighted sum of the columns of a matrix S1, and x2 is represented using S2 likewise,
then the MCA approach, in one form (the synthesis form), asks that the objective function,

J(a1,a2) = ‖x− S1a1 − S2a2‖2
2 + λ1 sparsity(a1) + λ2 sparsity(a2) (1)

be minimized with respect to a1 and a2, where sparsity(u) denotes a measure of sparsity of the vector u. Then
the estimated components, x̂1 and x̂2 are given by

x̂1 = S1a1, x̂2 = S2a2, (2)

where (a1, a2) minimizes the objective function (1). The sparsity measure could be, for example, the `0-norm,
in which case sparsity(u) = ‖u‖0. Because the `0-norm is not convex, the `1 norm is often used instead; in
which case sparsity(u) = ‖u‖1. More general forms of MCA allow the sparsity measures for x1 and x2 in



(1) to be different from each other; additionally, the data fidelity term need not be an `2 norm. Examples in
Refs. 23,24,42–44, illustrate the use of MCA with several transforms playing the role of S1 and S2: the curvelet
transform, the block DCT, and wavelet transforms. In this case, S1 and S2 represent inverse transforms.

Another form of MCA uses a slightly different formulation. In this form (the analysis form), MCA asks that
the objective function,

J(x1,x2) = ‖x− x1 − x2‖2
2 + λ1 sparsity(A1x1) + λ2 sparsity(A2x2) (3)

be minimized with respect to x1 and x2, where again, sparsity(u) denotes a measure of sparsity of the vector u.
The matrices A1 and A2 represent forward transforms.

The success of MCA relies on x1 and x2 having sparse representations (few non-zero coefficients) in their
respective representations. Iterative algorithms for (approximately) solving the MCA optimization problem are
given in Ref. 42. Appendix B describes simple algorithms for minimizing the two objective functions where
sparsity is measured using the `1 norm.

In the decomposition of an EEG signal into rhythmic and transient components, x is the EEG signal, x1 is
the rhythmic component, and x2 is the transient component. We need signal representations providing sparse
representations of the rhythmic and transient components respectively. We propose that newly developed wavelet
frames based on rational (non-dyadic) dilation factors1 be used for both.

1.2 Constant-Q Transforms

The dyadic wavelet transform (WT) has become a well recognized tool in signal processing for image coding,
noise reduction, deconvolution, and other applications. The success of the WT is due to its ability to sparsely
represent piecewise smooth signals (for example, a scan line from a typical photographic image). However, the
WT is used much less often for audio signals and other signals that, like audio, are quasi-periodic over short-time
intervals. For such signals, the dyadic WT does not provide a sparse representation. Indeed, audio coding
generally uses signal decompositions (the MDCT, etc) that have a much finer frequency resolution than the
conventional dyadic WT.

However, the WT is attractive because it is a constant-Q transform where Q denotes ‘quality factor’. The
quality-factor (Q-factor) of a filter is the ratio of its center frequency to its bandwidth. The frequency res-
olution of a constant-Q transform varies with frequency. We suggest that the dyadic WT fails to provide a
sparse representation of ‘short-time quasi-periodic’ signals (like speech) because of its very low Q-factor; that is,
because it has very poor frequency resolution. Transforms like the MDCT or short-time Fourier transform, with
uniform frequency bands, usually work better for such signals than the dyadic WT, but they are not constant-Q
transforms. The low-frequency subbands have low quality factors, while the high-frequency subbands have high
quality factors.

The design and implementation of an easily invertible discrete WT that allows high quality factors (equiv-
alently, good frequency resolution) was one of our motivations for developing overcomplete wavelet transforms
based on rational (non-dyadic) dilation factors.1

For the sparse representation of the transient component of a signal we propose to use a WT with a low
quality factor (like the conventional dyadic WT) because the transient component can be modeled as a piecewise
smooth signal. On the other hand, for the sparse representation of the oscillatory (rhythmic) component of a
signal we propose to use a WT with a high quality factor (which must be a non-dyadic rational WT) because
the rhythmic component is quasi-periodic over short-time intervals.

2. RATIONAL-DILATION WAVELET TRANSFORMS

The continuous wavelet transform (CWT) computes the inner products of a signal with {
√
aψ(at − b)} where

a and b are allowed to change continuously.14 As such, it maps a function on the real line to a function on
the plane (the variables being a and b). Using the CWT, one can choose the wavelet function quite freely (it
may have a low or high quality factor). For instance, all of the functions in Fig. 1 qualify as admissible wavelet
functions for the CWT. Note that varying the scale parameter ‘a’ changes the frequency of

√
aψ(at − b), but
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Figure 1. Wavelets of the rational-dilation wavelet transform (Ref. 1) for several parameter values.

preserves its shape and its Q-factor. The wavelet transform is therefore a constant-Q transform. However, the
CWT is highly redundant and an implementation for discrete-time data is not easily inverted. (An efficient,
stable inverse is important when performing MCA.)

Letting {a, b} take the values {2n, k}n,k∈Z and using a valid function ψ(t), one obtains the orthonormal
(critically-sampled) dyadic wavelet basis. Because ‘a’ is only allowed to be powers of 2, the wavelet dilation from
scale to scale is not always as gradual as might be desired. Moreover, the dyadic WT is highly shift-varying in the
sense that a slight shift of the input causes the wavelet coefficients to vary substantially. Lastly, orthonormality
and the restriction of ‘a’ to 2n constrains the allowed wavelet functions to have low Q-factors.

To alleviate these issues, we have recently introduced a new family of overcomplete wavelet (constant-Q)
transforms with a flexible range of quality factors and redundancy factors.1 Specifically, they allow {a, b} to
take values from {qn/pn, spk/q}n,k∈Z where p, q and s are integers. These overcomplete transforms (frames)
are redundant by a factor of 1

s
1

q/p−1 and have several attractive properties. These transforms are: developed
for discrete-time data, nearly shift-invariant, dilate the wavelet more gradually from scale to scale, permit the
design of wavelets with both low and high quality factors as illustrated in Fig. 1, and are easily invertible (in
fact, self-inverting). Because it has a simple, stable inverse (unlike the CWT) it can be easily used for MCA.

We use the new rational-dilation wavelet transform with low quality factor to model the transient component.
The transient component has previously been modeled using the dyadic (low Q-factor) WT.38 The new rational
WT with a low Q-factor is similar, however, it allows for a more gradual dilation of the wavelet function from
scale to scale. That is beneficial because some transients may be best matched to dilations of the wavelet ψ(t)
falling between the dyadic scales.12,13



In contrast to the transient signal, the rhythmic signal contains quasi-periodic structures of varying duration,
calling for a transform with better frequency resolution (higher quality factor). The MDCT or STFT could
be used; however, the analysis/synthesis functions of those transforms are all of the same duration — the low
frequency analysis/synthesis functions may not have sufficient frequency resolution, while the high frequency
analysis/synthesis may not have sufficient time resolution. For that reason, we utilize the new rational-dilaiton
rational WT with higher Q value to model the rhythmic (oscillatory) component.

3. EXAMPLES
Example 1: To illustrate the decomposition of a signal into an oscillatory component and a transient component,
we construct the test signal x(n) illustrated in Fig. 2. The test signal consists of four pulses, non-overlapping in
time, generated in MATLAB using the commands:

N1 = 80; x1 = cos(0.20*pi*(1:N1)) .* hamming(N1)’;

N2 = 10; x2 = cos(0.50*pi*(1:N2)) .* hamming(N2)’;

N3 = 20; x3 = cos(0.20*pi*(1:N3)) .* hamming(N3)’;

N4 = 45; x4 = cos(0.42*pi*(1:N4)) .* hamming(N4)’;

x = [x1 x2 x3 x4];

The first and last pulses are oscillatory. The second and third pulses we consider transient, in the sense that
these pulses are less oscillatory than the first and last pulses. Our goal is to decompose the signal x(n) into
x1(n) + x2(n) where x1(n) contains the oscillatory component (pulse 1 and 4), and where x2(n) contains the
transient component (pulse 2 and 3). The decomposition can not be performed using low-pass and high-pass
filters because pulses 1 and 3 are of the same frequency (0.2π) and because pulses 2 and 4 are of nearly the
same frequency. However, using the rational-dilation wavelet transform with different Q-factors, the test signal
can be decomposed as desired (approximately). Specifically, we use the rational-dilation wavelet transform with
parameters (p = 5, q = 6, s = 2) to represent the oscillatory component; this is a ‘high Q-factor’ wavelet
transform; it is denoted as A1. Similarly, we use the rational-dilation wavelet transform with parameters (p = 2,
q = 3, s = 1) to represent the transient component; this is the ‘low Q-factor wavelet transform; it is denoted
as A2. The discrete-time wavelet functions are illustrated in Fig. 3. To perform MCA, we used formulation
(3) with `1-norm regularization, namely (11). We set λ1 = 0.13 and λ2 = 0.1. To minimize (11) we used 400
iterations of algorithm (22)-(28) initialized with all-zero signals. The value of the objective function, J(x1,x2)
is illustrated in Fig. 2 for each iteration.
Example 2: Like Example 1, we construct a test signal consisting of two oscillatory pulses (at two frequencies)
and two transient (non-oscillatory) pulses (also at two frequencies). However, in this example, the pulses overlap
in time as illustrated in Fig. 4. The test signal is constructed in MATLAB with the command

x = [x1 x4] + [zeros(1,40) x2 zeros(1,32) x3 zeros(1,23)];

where x1, x2, x3, and x4 are as constructed in Example 1. We use the same two rational-dilation wavelet
transforms as in Example 1 and the same λi. Fig. 4 illustrates the decomposition of the test signal into oscillatory
and non-oscillatory components, obtained after 400 iterations of algorithm (22)-(28). Although the decomposition
is not exact, it exhibits the sought behaviour.

Example 3 (EEG): Figure 5 illustrates the decomposition of a 10-second EEG signal into rhythmic and
transient components using MCA and the new rational WT.1 The signal is sampled at 200 samples per second.
To represent the rhythmic component we use an 18-level rational WT with p = 5, q = 6, s = 2. For the transient
component, we use the a 9-level rational WT with p = 2, q = 3, s = 1. The wavelets are illustrated in the
first and second panels of Fig. 1. The obtained rhythmic component is quasi-periodic over short time durations.
In addition, the obtained transient component is almost perfectly piecewise linear (the utilized wavelet has two
vanishing moments). It turns out that for this example, the empirical mode decomposition (EMD)29,31 can be
used to produce a result very similar to that shown in Fig. 5∗. Grouping the intrinsic mode functions (IMFs) 2
to 4 gives a rhythmic component, and grouping modes 5 to 10 gives a transient component.

∗Personal communication: Patrick Flandrin, École Normale Supérieure de Lyon, France.
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Figure 2. Example 1: Decomposition of a test signal into an oscillatory (high Q-factor) component and a transient (low
Q-factor) component.
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Figure 3. Wavelets at first several scales as implemented by the fully-discrete rational-dilation wavelet transform. High
Q-factor and low Q-factor wavelets are obtained with different transform parameters; see Ref. 1.

4. CONCLUSION

In this paper we model the transient component of a signal (for example, EEG) as a piecewise smooth signal
which can be sparsely represented using a low Q-factor wavelet transform. We model the oscillatory (rhythmic)
component as a signal that can be sparsely represented using a high Q-factor wavelet transform. We then propose
that the transient and oscillatory components of a signal can be separated using these two representations in
conjunction with morphological component analysis (MCA). This non-linear separation procedure may be used
as a preprocessing step to reduce transients in a signal for more accurate spectral estimation.
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APPENDIX A. TWO `1-NORM REGULARIZATION PROBLEMS

In this Appendix, we summarize two simple algorithms for `1-norm regularized signal restoration. Namely,
Section A.1 considers deconvolution with an `1 sparsity prior; and Section A.2 considers denoising with a general
linear `1 analysis prior. These two algorithms will be used in turn in Appendix B to describe algorithms for
performing MCA using the `1-norm.
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Figure 4. Example 2: Decomposition of a test signal into an oscillatory (high Q-factor) component and a transient (low
Q-factor) component. The transient and oscillatory components overlap.
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A.1 `1-norm regularized deconvolution
An algorithm for minimizing the objective function

J(w) = ‖y −Hw‖2
2 + λ‖w‖1 (4)

is given by iterative thresholding:

w(i+1) = soft
(
w(i) +

1
α
Ht (y −Hw(i)), λ/(2α)

)
(5)

where the superscript i is the iteration index, and soft(x, T ) is the soft-threshold function with threshold T ,

soft(x, T ) := sign(x) max(0, |x| − T ) (6)

In (5), the soft-threshold function is applied element-wise. Setting α ≥ maxeig(HtH) ensures monotone conver-
gence to the minimizer of (4).

Algorithm (5) is known as the iterated soft-thresholding (IST) algorithm or as the thresholded-Landweber
(TL) algorithm.15,16,26,27 For some problems this algorithm converges slowly. Numerous algorithms have been
proposed having faster convergence properties.3,5, 9, 21,28,33,46

A.2 `1-norm regularized denoising using an analysis prior
An algorithm for minimizing the objective function

J(x) = ‖y − x‖2
2 + λ‖Ax‖1. (7)

is given by the algorithm:

z(i+1) =
(
c z(i) + A(b(i) −At z(i))

)
./

( 2
λ
|Ax(i)|+ c

)
(8)

x(i+1) = y(i) −At z(i+1) (9)

where the superscript i is the iteration index. The operations ./ and | · | in (9) are element-wise division and
element-wise absolute value. To ensure convergence, we can set c > maxeig(AAt).

Algorithm (8)-(9) is a special case of Chambole’s algorithm.4,10 This algorithm can have slow asymptotic
convergence and the development of faster algorithms for minimizing objective functions of this type is an active
area of research.2,8, 30,37,40,45,47



APPENDIX B. ALGORITHMS FOR MCA BASED ON THE `1 NORM

In the morphological component analysis (MCA) approach, the sought signal x is represented as a sum of two
(or more) signals, x = x1 + x2. The observed signal, y, is given by y = x + noise. The goal is to recover both x1

and x2. The idea of MCA is that, if x1 and x2 are sparsely represented in distinct domains, then they can be
(approximately) recovered by solving a suitable sparsity-regularlized linear inverse problem. MCA is developed
in Refs. 23, 24, 42–44. As emphasized in Ref. 43, two approaches to MCA are (1) synthesis-prior formulation,
and (2) the analysis-prior formulation.

MCA using an synthesis prior, asks that the objective function,

J(w1,w2) = ‖y − S1w1 − S2w2‖2
2 + λ1‖w1‖1 + λ2‖w2‖1, (10)

be minimized with respect to w1 and w2. Then x1 = S1w1 and x2 = S2w2.

MCA using an analysis prior, asks that the objective function,

J(x1,x2) = ‖y − x1 − x2‖2
2 + λ1‖A1x1‖1 + λ2‖A2x2‖1. (11)

be minimized with respect to x1 and x2.

The distinctions between synthesis and analysis formulations of the sparsity-based approach for signal restora-
tion has been discussed by several authors, see Refs. 7, 8, 11,22,39.

B.1 MCA with Synthesis Prior

In this section, we describe the derivation of a simple algorithm for the minimization of (10). The derivation
uses the IST iteration in Appendix A.1. Note that (10) can be written as

J(w1,w2) = ‖y −Hw‖2
2 + λ1‖w1‖1 + λ2‖w2‖1

where

H =
[
S1 S2

]
, w =

[
w1

w2

]
.

Using majorization-minimization approach,26 an iterative algorithm for finding the minimizer is:

bi = wi +
1
α
Ht(y −Hwi)

wi+1 = argmin
w

[
α‖bi −w‖2

2 + λ1‖w1‖1 + λ2‖w2‖1

]
where α > maxeig(HtH). Note that we can write bi as

bi =
[
wi

1

wi
2

]
+

1
α

[
St

1

St
2

](
y −

[
S1 S2

] [
wi

1

wi
2

])
=:

[
bi

1

bi
2

]
.

Therefore, using the IST algorithm (5) for each of w1 and w2, an iterative algorithm to minimize J(w1,w2) is:

ri = y − S1wi
1 − S2wi

2 (12)

bi
1 = wi

1 +
1
α
St

1 ri (13)

bi
2 = wi

2 +
1
α
St

2 ri (14)

wi+1
1 = soft(bi

1, λ1/(2α)) (15)

wi+1
2 = soft(bi

2, λ2/(2α)). (16)



B.2 MCA using Analysis Prior
In this section, we describe the derivation of a simple algorithm for the minimization of (11). The derivation
uses the iteration in Appendix A.2. Note that (11) can be written as

J(x1,x2) = ‖y −Hx‖2
2 + λ1‖A1x1‖1 + λ2‖A2x2‖1

where

H =
[
I I

]
, x =

[
x1

x2

]
.

Using the majorization-minimization approach,26 an iterative algorithm for finding the minimizer is:

bi = xi +
1
α
Ht(y −Hxi)

xi+1 = argmin
x

[
α‖bi − x‖2

2 + λ1‖A1x1‖1 + λ2‖A2x2‖1

]
where α > maxeig(HtH) = 2. Equivalently, we can write[

bi
1

bi
2

]
=

[
xi

1

xi
2

]
+

1
α

[
I
I

](
y −

[
I I

] [
x1

x2

])
xi+1 = argmin

x

[
α‖bi

1 − x1‖2
2 + α‖bi

2 − x2‖2
2 + λ1‖A1x1‖1 + λ2‖A2x2‖1

]
.

Note x1 and x2 are uncoupled in the minimization problem, so this can be rewritten as:

ri = y − xi
1 − xi

2 (17)

bi
1 = xi

1 +
1
α

ri (18)

bi
2 = xi

2 +
1
α

ri (19)

xi+1
1 = argmin

x1

[
α‖bi

1 − x1‖2
2 + λ1‖A1x1‖1

]
(20)

xi+1
2 = argmin

x2

[
α‖bi

2 − x2‖2
2 + λ2‖A2x2‖1

]
. (21)

Using a single step of algorithm (8)-(9) suggests the iteration:

ri = y − xi
1 − xi

2 (22)

bi
1 = xi

1 +
1
α

ri (23)

bi
2 = xi

2 +
1
α

ri (24)

zi+1
1 =

(
c1 zi

1 + A1bi
1 −A1At

1 zi
1

)
./(

2α
λ1

|A1xi
1|+ c1) (25)

xi+1
1 = bi

1 −At
1 zi+1

1 (26)

zi+1
2 =

(
c2 zi

2 + A2bi
2 −A2At

2 zi
2

)
./(

2α
λ2

|A2xi
2|+ c2) (27)

xi+1
2 = bi

2 −At
2 zi+1

2 (28)

where c1 > maxeig(A1At
1) and c2 > maxeig(A2At

2).

An example of MCA is illustrated in Fig. 6. The test signal is the sum of the ‘blocks’ signal,20 a sparse
signal, and independent white Gaussian noise. Because x1 is piecewise constant, we choose A1 to be the first
difference operator (so that ‖A1x‖1 is the total variation41 of x). Because x2 is itself sparse, we choose A2 to
be the identity matrix. The algorithm (22)-(28) was used to perform simultaneous denoising and decomposition.
The components are illustrated in the figure.
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Figure 6. MCA Example: the decomposition of a noisy signal (piecewise constant plus sparse) using the iteration (22)-
(28).
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