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The wavelet transform has become a useful computational tool for a variety of signal and image

processing applications. For example, the wavelet transform is useful for the compression of digital

image files; smaller files are important for storing images using less memory and for transmitting

images faster and more reliably. The FBI uses wavelet transforms for compressing digitally scanned

fingerprint images. NASA’s Mars Rovers used wavelet transforms for compressing images acquired

by their 18 cameras. The wavelet-based algorithm implemented in software onboard the Mars

Rovers is designed to meet the special requirements of deep-space communication. In addition,

JPEG2K (the newer JPEG image file format) is based on wavelet transforms. Wavelet transforms

are also useful for ‘cleaning’ signals and images (reducing unwanted noise and blurring). Some

algorithms for processing astronomical images, for example, are based on wavelet and wavelet-like

transforms.

This Quick Study describes the wavelet transform, illustrates why it is effective for noise re-

duction, and briefly describes several improvements of the basic wavelet transform and basic noise

reduction method used in the illustration. We describe what the wavelet transform is, and we

describe algorithms for processing a signal after its wavelet transform has been computed. First we

should point out that there are two basic types of wavelet transform. One type of wavelet transform

is designed to be easily reversible (invertible); that means the original signal can be easily recovered

after it has been transformed. This kind of wavelet transform is used for image compression and

cleaning (noise and blur reduction). Typically, the wavelet transform of the image is first com-

puted, the wavelet representation is then modified appropriately, and then the wavelet transform

is reversed (inverted) to obtain a new image. The second type of wavelet transform is designed

for signal analysis; for example, to detect faults in machinery from sensor measurements, to study

EEG or other biomedical signals, to determine how the frequency content of a signal evolves over

time. In these cases, a modified form of the original signal is not needed and the wavelet trans-

form need not be inverted (it can be done in principle, but requires a lot of computation time in

comparison with the first type of wavelet transform). In this Quick Study we will focus on those

wavelet transforms that are easily invertible.

The most basic wavelet transform is the Haar transform described by Alfred Haar in 1910. It

serves as the prototypical wavelet transform. We will describe the (discrete) Haar transform, as it
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encapsulates the basic concepts of wavelet transforms used today. We will also see its limitation,

which the newer wavelet transform (in 1988 by Ingrid Daubechies) resolves. The basis of the Haar

transform is the decomposition of a signal, say the eight-point signal x(n),
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into two four-point signals. One being the average of pairs of signal values, c(n):
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The other signal being their differences, d(n):
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This decomposition can be written as

c(n) = 0.5x(2n) + 0.5x(2n+ 1)

d(n) = 0.5x(2n)− 0.5x(2n+ 1)

and represented by a block diagram:

AVE/

DIFF

c(n)

d(n)
x(n)

It should be clear that this decomposition can be reversed. The original signal x(n) can be recon-

stituted from the two shorter signals using

y(2n) = c(n) + d(n)

y(2n+ 1) = c(n)− d(n)

which we represent by a block diagram

INV
c(n)

d(n)
y(n)

2



When we repeat the simple AVE/DIFF signal decomposition procedure a number of times, each

time on the average signal c(n), we get the Haar transform. For our toy example eight-point signal,

the AVE/DIFF decomposition can be repeated up to three times. In this case the Haar transform

can be expressed clearly in block diagram form as

AVE/

DIFF d(n)
x(n)

AVE/

DIFF d2(n)

AVE/

DIFF

c3(n)

d3(n)

The Haar wavelet representation of the eight-point signal x(n) is simply the set of four output

signals produced by this three-level operation. Four our example, the four signals (or vectors) have

lengths 1, 1, 2, and 4. Specifically,

c3 = [4.5]

d3 = [−0.25]

d2 = [−0.75, 1.75]

d = [−0.5, 0, 0.5, 1]

These values, taken together, are called the ‘wavelet representation’ of the signal x. Note that the

single value c3 is simply the average value of the original signal values, x(n).

In general, if the original signal is of length 2M , then the decomposition can be repeated up to

M times. (In case the length of the original signal is not a power of two, there are several way to

accommodate that.) The Haar transform can be very easily reversed by successive use of the INV

block.

If we take the three-level Haar transform of the 128-point signal:

we obtain the following wavelet representation:
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which can be reversed to retrieve the original signal. The three-level wavelet representation consists

of four vectors of lengths 16, 16, 32, and 64. Notice that many of the values of the wavelet

representation are small in value; we have what is called a sparse representation of the signal.

That property is precisely what makes the wavelet transform useful for compressing images. For

compression, the preponderance of zeros (in practice, small values) in the wavelet representation

means that fewer bits need to stored in memory. Admittedly, the signal we have used here is chosen

so as to exaggerate this property. Specifically, the signal we have used is constant over much its

extent, and therefore the differencing part of the AVE/DIFF decomposition produces zeros. The large

values in the wavelet representation are produced by the discontinuities in the signal and by those

parts of the signal that are not constant. The Haar transform works well (provides a relatively sparse

wavelet representation) for signals that are approximately piecewise constant. For more general

(and more commonly encountered) piecewise-smooth signals (not necessarily piecewise-constant)

one must use the newer (1988) wavelet transforms to obtain sparse wavelet representations.

In 1988 Daubechies constructed a family of easily implemented and easily invertible wavelet

transforms that, in a sense, generalize the Haar transform. Like the Haar transform, the wavelet

transform is implemented as a succession of decompositions. The only difference is that the

AVE/DIFF decomposition is replaced by a new one. For the simplest of the Daubechies wavelet

transforms, the new decomposition is given by

c(n) = h0 x(2n) + h1 x(2n+ 1) + h2 x(2n+ 2) + h3 x(2n+ 3)

d(n) = h3 x(2n)− h2 x(2n+ 1) + h1 x(2n+ 2)− h0 x(2n+ 3)

where the multipliers are:

h0 =
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√
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3 +

√
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4
√
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√
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4
√
2

, h3 =
1−

√
3

4
√
2

.

The INV block that reverses this decomposition uses the same multipliers and is given by

y(2n) = h0 c(n) + h2 c(n− 1) + h3 d(n) + h1 d(n− 1)

y(2n+ 1) = h1 c(n) + h3 c(n− 1)− h2 d(n)− h0 d(n− 1).
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The new decomposition has the property that when the original signal x(n) is a linear signal,

x(n) = an+ b, then the output signal d(n) will be identically zero. Moreover, for the linear signal,

the output signal c(n) will also be linear, and therefore, by induction, the wavelet representation

will be entirely zero, for the exception of the c(n) output signal of the last stage. (In contrast, for a

linear signal, no values of the Haar representation will be zero.) Therefore, the wavelet transform

using the Daubechies decomposition provides a sparse representation for piecewise-linear signals. In

fact, Daubechies gave a method to construct new decompositions with this property for polynomial

of any order. (The constant signal, for which the Haar transform is well suited, is a polynomial of

degree 0, etc.) There are now, in addition to Daubechies’ decomposition, a great number of other

decompositions from which wavelet transforms can be built.

We now illustrate why a sparse representation is effective for noise reduction. Consider the

1024-point signal:
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and its four-level wavelet representation:

NOISE−FREE SIGNAL SUBBANDS

The wavelet representation illustrated here consists of five vectors of lengths 64, 64, 128, 256, and

512; and was computed with a Daubechies-like wavelet transform. Many of the values are small

in absolute value; the wavelet representation is sparse, as desired. Note that each of the signals
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illustrated here is individually scaled to maximize the visibility of the values. In case only a noisy

version of the signal is available, we might wish to retrieve the original signal as far as is possible.

For example, suppose we have only the following noisy signal, which has been obtained by adding

a zero-mean Gaussian random variable, of standard deviation σn, to the original signal:
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NOISY SIGNAL. RMSE = 0.23629

Then the wavelet representation of the noisy signal is itself noisy:

NOISY SUBBANDS

The addition of zero-mean Gaussian noise to the original signal has the effect of adding zero-mean

Gaussian noise to the wavelet representation as well. Furthermore, because of the way we have

implemented the wavelet transform here, the standard deviation of the noise in the wavelet rep-

resentation is the same as the standard deviation of the noise that was added to the signal. The

red lines displayed in this noisy wavelet representation indicates ±2σn. Note that relatively few

values in the wavelet representation extend outside the red lines. To accomplish wavelet-based noise

reduction, we would like to somehow modify the noisy wavelet representation so that it resembles,

as closely as possible, the wavelet representation of the noise-free signal illustrated above. After

such a modification, we could reverse the wavelet transform to obtain a less noisy signal. The most

basic wavelet-based method for reducing signal noise is to simply set the small values in the wavelet

representation to zero. For example, we might set those values within the red lines to zero, in which
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case, we obtain the following, modified wavelet representation:

HARD−THRESHOLDING OF SUBBANDS

The new wavelet representation is relatively sparse. Comparing this wavelet representation to that

of the original noise-free signal, we notice some values slightly exceeded the red line threshold (two

are indicated) where in the noise-free wavelet representation the true value is almost zero. By the

way, setting the small values to zero, can be represented by a nonlinear function:
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HARD−THRESHOLD FUNCTION

This function is commonly called the ‘hard-thresholding’ rule. We reverse the wavelet transform

to obtained the noise-reduced signal:
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PROCESSED SIGNAL (HARD−THRESHOLD). RMSE = 0.13939

Comparing with the original noise-free signal, we see that much of the noise has been removed.

However, there are some noise spikes remaining in the processed signal. These are due exactly to

values in the noisy wavelet representation that slightly exceeded the red line threshold. To reduce

these unwanted noise spikes, one option is to use a larger threshold so that more values are set

to zero. However, increasing the threshold too high will cause other distortion artifacts in the

processed signal. Another option is to use a different nonlinear threshold rule, for example the

‘soft-threshold’ rule:
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which, in addition to setting small values to zero, also shrinks the remaining values towards zero, so

that the nonlinearity is now a continuous function. Using this rule, any values in the noisy wavelet

representation that slightly exceed the threshold, will be reduced in absolute value. If we process

the noisy wavelet representation with the soft-threshold rule instead of the hard-threshold rule, we

obtain the following modified wavelet representation:
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SOFT−THRESHOLDING OF SUBBANDS

Now the values that exceeded the red line threshold in the noisy wavelet representation are reduced.

Reversing the wavelet transform produces the following noise-reduced signal:
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PROCESSED SIGNAL (SOFT−THRESHOLD). RMSE = 0.14765

which suffers less from spurious noise spikes. On the other hand, soft-thresholding can sometimes

lead to the loss of more detail than the hard-threshold rule. There are now many different nonlin-

earities that have been proposed for wavelet-based noise reduction. Some nonlinearities are derived

from statistical models of the distribution of wavelet representation values; some are based on other

mathematical models. The best performing nonlinearities are multivariate.

Wavelet-based nonlinear thresholding is effective for noise reduction only to the extent to which

the wavelet representation of the noise-free signal is sparse. In general, the more zeros there are

in the wavelet representation of a signal, the better compression, noise reduction, blur reduction,

etc. can be accomplished. Certainly, for some signals, the wavelet transform does not provide a

sparse representation at all. The most appropriate transform to use depends on the type of signal

being processed. For some signals the Fourier transform will be superior. One avenue of research

has been the development of algorithms that can automatically find a good transform for a specific

signal; these are ‘data-adaptive transforms’.

The development of additional related transforms and of specialized algorithms for processing,

analyzing, and storing signals and images using such transforms has been an active topic in applied

mathematics, statistics, science, and engineering. For example, the design of other signal decom-

positions using the theory of digital filter banks has been an active area in digital signal processing
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research. Also, decompositions that expand the amount of data provide further improvements for

noise reduction and other applications; such transforms are called frames in mathematics. One

example of an effective ‘frame’ is the dual-tree complex wavelet transform which overcomes some of

the limitations of the conventional wavelet transform. Additionally, it turns out that for images and

higher-dimensional images, a different kind of decomposition can perform better than conventional

wavelets. That is because the two-dimensional form of the conventional wavelet transform provides

an optimally sparse representation for images with only point-like discontinuities, yet many images

have discontinuities along curves (these are the edges of objects in the image). On the other hand,

the curvelet transform, introduced by Candes and Donoho, is designed specifically to overcome

this problem; it does provide sparse representations of two-dimensional curve-discontinuities. The

curvelet transform has inspired contourlets, shearlets, and other transforms. For some kinds of

image it is not so easy to obtain a sparse representation with any one transform. In this case, it can

be useful to use several transforms together. For example, Jean-Luc Starck et al. used the isotropic

wavelet, ridgelet, and curvelet transforms together to automatically separate the astronomical im-

age of galaxy NGC 2997:

into two images, one with containing the stars, the other containing the vapor:
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For further reading, a few of the many books on wavelets transforms and their applications are

listed in the references.
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