
The Federal Bureau of Investigation uses wavelet
transforms to compress digitally scanned fingerprints.
NASA’s Mars rovers use them to compress images acquired
by their 18 cameras. The new JPEG 2000 format is based on
wavelet transforms; the smaller files allow one to store im-
ages using less memory and to transmit those images faster
and more reliably. Researchers also use wavelet transforms
to clean signals and images—that is, to reduce unwanted
noise and blurring. As illustrated in the figure, some algo-
rithms for processing astronomical images are based on
wavelets and wavelet-like transforms.

A wavelet transform, like a Fourier transform, involves
integrating a product of a signal and an oscillating function.
But unlike the everlasting sines and cosines of Fourier analy-
sis, the oscillating functions in a wavelet transform are usu-
ally stretched and translated versions of a single oscillating
function of short duration; indeed that localized function is
the “wavelet.” This tutorial describes an elementary wavelet
transform, illustrates why it is effective for compression and
noise reduction, and briefly describes how the basic wavelet
and noise reduction methods can be improved. The focus is
on wavelet transforms used for image compression and re-
duction of noise and blur; such transforms must be invert-
ible. But a second type of wavelet transform is worth noting
briefly. It is designed for signal analysis—for example, to de-
tect faults in machinery from sensor measurements, to study
electroencephalograms or other biomedical signals, or to de-
termine how the frequency content of a signal evolves over
time. In those cases, the wavelet transform need not be
invertible.

A Haar’s breadth
The most basic wavelet transform is the Haar transform, in-
troduced by Alfred Haar in 1910. It is easiest to describe for
a function of a small number of points, so consider the eight-
point signal x(n)

which may be written as the eight-component “vector”
x(n) = (3, 4, 5, 5, 7, 6, 4, 2). The basis of the Haar transform is

to express x(n) in terms of an average of signal-value pairs,
c(n) = (3.5, 5, 6.5, 3), and a signal that encompasses differ-
ences, d(n) = (−0.5, 0, 0.5, 1).

The average and difference functions may be written in
the form 

c(n) = 0.5 x(2n − 1) + 0.5 x(2n),
d(n) = 0.5 x(2n − 1) − 0.5 x(2n),

and represented by the block diagram 

The decomposition into average and difference signals can
be reversed, and so the original function can be reconstituted
from the shorter signals c(n) and d(n).

The Haar transform is obtained by sequentially repeat-
ing the average and difference process on each output aver-
age function. For the eight-point signal x(n), the process 
may be repeated up to three times, as expressed in the block
diagram

The Haar wavelet representation of x(n) is thus the set of four
output signals:

c3 = (4.5)
d3 = (−0.25)

d2 = (−0.75, 1.75) 
d = (−0.5, 0, 0.5, 1).

Note that the single value c3 is simply the average of the eight
values in the original function x.

To be useful for compression and noise reduction, a
wavelet representation must contain many small values; in
the language of the field, it must be sparse. The first step in
most signal- and image-compression algorithms is to obtain
such a representation. The preponderance of zeros—in prac-
tice, small non-zero values—in sparse representations means
that fewer bits need to be stored in memory. As discussed
below, sparseness also facilitates noise reduction.

x n( )
d n( )

d n2( )

c n3( )
d n3( )

AVE/
DIFF

AVE/
DIFF

AVE/
DIFF

x n( )
c n( )

d n( )
AVE/
DIFF

3
4

5 5

7
6

2

4

78 October 2007    Physics Today © 2007 American Institute of Physics, S-0031-9228-0710-350-1

Wavelets, 
a modern tool for
signal processing
Ivan W. Selesnick

Ivan Selesnick is an associate professor in the department of electrical and computer engineering at Polytechnic University in Brooklyn,
New York.

quickquick
study

The simplest wavelet transform is based on sums and differences of nearby points in a function. 
A variety of sophisticated variations allow signals and images to be effectively compressed, 
cleaned, and analyzed.



The Haar transform provides a relatively sparse wavelet
representation for signals that are approximately piecewise
constant. Many commonly encountered signals are not piece-
wise constant, but they are composed of smooth bits sepa-
rated by jumps. An exemplar is a photographic scan line—
that is, a single row taken from a photographic image. For
signals such as scan lines, one must use the newer transforms
to obtain sparse wavelet representations.

For example, in 1988 Ingrid Daubechies constructed a
family of easily invertible transforms that, like the Haar
transform, are readily implemented as a succession of de-
compositions. Daubechies’ method allows for the construc-
tion of sparse wavelet representations for signals that are
piecewise polynomial. By now, mathematicians and engi-
neers have developed a great number of decompositions
from which useful wavelet transforms can be built. 

Wavelets are particularly valuable in that they preserve
the jumps in scan lines and similar signals. For smooth 
signals without jumps, highly oscillatory signals, and other
signals that confound attempts to build sparse wavelet rep-
resentations, Fourier transforms or conventional low-pass fil-
ters may lead to superior compression and noise abatement.

Noises off
In addition to allowing for efficient compression, sparse rep-
resentations can also be effective for noise reduction. Suppose
you have a noise-free signal and have obtained a sparse
wavelet representation. Now imagine adding noise to the orig-
inal signal in the form of a zero-mean Gaussian random vari-
able of standard deviation σ. The wavelet representation of the
noisy signal would itself be noisy, but it is possible to imple-
ment the wavelet transform so that the transformed noise is
also a zero-mean Gaussian with standard deviation σ.

The simplest wavelet-based method for reducing noise
is just to zero out all terms in the wavelet representations
whose absolute values are less than some threshold, say 2σ
or 3σ. After that modification, one could invert the wavelet
transform. On comparing the inverted transform with the
original noise-free signal, one typically observes that much
of the added noise has indeed been removed, though some
noise spikes remain due to the few values in the noisy
wavelet representation that exceeded the threshold. One way
to reduce those unwanted noise spikes is to choose a larger
threshold and so set more values to zero. Setting the thresh-

old too high, however, will cause distortions in the processed
signal. Another option is to use a different threshold rule—
for example, a “soft-threshold” rule that not only sets small
values to zero but also shrinks the remaining values toward
zero. With the soft-threshold approach, values in the noisy
wavelet representation that slightly exceed the threshold are
reduced in magnitude. The signal obtained by inverting the
wavelet transform suffers less from spurious noise spikes.
But the soft-threshold process can compromise the detail of
the original signal that one is trying to reproduce.

Scientists, engineers, and statisticians have actively
been developing new transforms and algorithms for pro-
cessing, analyzing, and storing signals and images. One 
avenue of research centers on so-called data-adaptive 
transforms that can automatically find a good transform for a
specific signal. Some new decompositions generate redun-
dant data and can offer improved results. For many images
and data, a different kind of transform is needed because the
conventional wavelet transform provides an optimally sparse
representation only for pointlike discontinuities. Many im-
ages, though, have discontinuities along curves—the edges of
objects. The curvelet transform, introduced by Emmanuel
Candes and David Donoho, is designed to provide sparse rep-
resentations specifically in that case. For some images, it is dif-
ficult to obtain a sparse representation with any single trans-
form. In those cases, as illustrated in the figure, it may be use-
ful to use several transforms simultaneously.
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Galaxy NGC 2997 thrice viewed. (a) This image gives the conventional view. The galaxy’s image has been separated into its
stars (b) and vapor (c). Jean-Luc Starck and colleagues implemented the decomposition with a combination of wavelets and
their variations. (Images courtesy of Jean-Luc Starck.)

The online version of this Quick Study includes a discussion of the
Daubechies transforms and a detailed example of how wavelets can
be used to clean up a noisy signal.


