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Abstract—Vibration monitoring is one of the most effec-
tive ways for bearing fault diagnosis, and a challenge is
how to accurately estimate bearing fault signals from noisy
vibration signals. In this paper, a nonconvex sparse regu-
larization method for bearing fault diagnosis is proposed
based on the generalized minimax-concave (GMC) penalty,
which maintains the convexity of the sparsity-regularized
least squares cost function, and thus the global minimum
can be solved by convex optimization algorithms. Further-
more, we introduce a k-sparsity strategy for the adaptive
selection of the regularization parameter. The main advan-
tage over conventional filtering methods is that GMC can
better preserve the bearing fault signal while reducing the
interference of noise and other components; thus, it can
significantly improve the estimation accuracy of the bear-
ing fault signal. A simulation study and two run-to-failure ex-
periments verify the effectiveness of GMC in the diagnosis
of localized faults in rolling bearings, and the comparison
studies show that GMC provides more accurate estimation
results than L1-norm regularization and spectral kurtosis.

Index Terms—Bearing fault diagnosis, convex optimiza-
tion, condition monitoring, generalized minimax-concave
(GMC) penalty, nonconvex sparse regularization (NSR).

I. INTRODUCTION

CONDITION monitoring is the process of monitoring phys-
ical quantities related to machinery during its operation, in
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order to identify changes that indicate developing faults, which
is the basis of condition-based maintenance. Diagnosis and
prognosis are two important aspects of a condition-based main-
tenance program. Condition monitoring techniques are used to
investigate a wide range of machinery, such as wind turbines [1],
aero-engines [2]–[4], and high-speed trains [5]. Rolling bearings
are extensively used in all types of rotating machinery and often
operate under nonideal conditions; thus, minor problems some-
times cause bearings to fail quickly [6]–[13]. Vibration-based
techniques have proved to be one of the most effective ways
for bearing fault diagnosis among various techniques [14], [15],
and thus have become popular.

Bearing fault signals with localized faults can be modeled
as pseudo-cyclostationary [16], and measured vibration signals
with localized bearing faults always contain series of short tran-
sients, which occur periodically (at least quasi-periodically with
random slip) [15]. Moreover, measured vibration signals always
combine with interference components or noise in the time do-
main and frequency domain. Therefore, bearing fault diagnosis
requires fault feature extraction techniques, and an effective
method is signal filtering. After bearing fault signals are ex-
tracted, an envelope spectrum is calculated to indicate bearing
faults by comparing the fault characteristic frequencies [17],
[18]. However, a challenge is how to accurately estimate bear-
ing fault signals from noisy vibration signals. Several signal
filtering methods have recently been studied for bearing fault
diagnosis, such as spectral kurtosis (SK) [19]–[21] and wavelet
transforms [22]. In the frequency domain, the noise is distributed
over the whole frequency range, while bearing fault signals are
in a specific frequency range, which motivates the envelope
technique for bearing fault diagnosis. SK is a statistical tool that
can indicate the presence of bearing fault signals and their loca-
tions in the frequency domain, even when they are buried in a
strong noise [19]. Similarly, in the wavelet domain, the noise is
distributed throughout, while bearing fault signals are concen-
trated in a few large-amplitude wavelet coefficients (i.e., wavelet
transform provides sparse representation for bearing fault sig-
nals). Therefore, the bearing fault feature can be extracted or
identified by these wavelet coefficients. These studies provide
insights on how to extract fault features for bearing fault diagno-
sis. However, the denoising performance of conventional filter-
ing methods heavily depends on the characteristics of measured
signals. If the measured signals are complex or the noise is too
strong, then the denoising performance is hindered. For exam-
ple, some interference or noise may be present after denoising,
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or the signal of interest is attenuated or annihilated, which may
cause missed alarms or may underestimate the fault severity for
bearing fault diagnosis, especially in an early stage of faults
[23], [24]. How to improve the denoising performance of fil-
tering methods to provide better noise filtering capability and
accurately estimate bearing fault signals is a key problem for
bearing fault diagnosis.

Sparsity-assisted filtering methods have been recently studied
for condition monitoring and machine fault diagnosis [25]–[30].
L1-norm regularization methods have become widely used in
various applications due to the convexity of the L1 norm. How-
ever, L1-norm solutions often underestimate the high-amplitude
components, yet these comprise the signal of interest in most
cases. Thus, L1-norm solutions are not ideal for certain ap-
plications, including bearing fault diagnosis. Moreover, one of
the key problems is how to adaptively set the regularization
parameter to balance data fidelity and sparsity in the sparsity-
regularized least squares cost function: a larger value of the regu-
larization parameter makes the optimal solution sparser and less
noisy, but reduces the coefficient amplitudes; a smaller value
increases the coefficient amplitudes of the optimal solution, but
makes the solution less sparse and noisier.

In order to enhance sparsity and overcome the underesti-
mation characteristic of L1-norm regularization, many noncon-
vex sparse regularization (NSR) methods have been proposed
and widely used for compressive sensing and signal processing
[31]–[34]. However, most NSR methods forgo the convexity
of the cost function; thus, the cost function to be minimized
generally has extraneous local minimizers. NSR that maintains
the convexity of the cost function has been recently studied, to
capture the advantages of both nonconvex regularization and
convex optimization [35], [36].

In this paper, we propose an NSR method for bearing fault
diagnosis, which uses a nonconvex penalty and simultaneously
maintains the convexity of the least squares cost function to be
minimized. Thus, we solve convex optimization problems for
their global minimizers to obtain sparse solutions. The main
advantage compared to conventional filtering methods is that
the proposed method can better preserve the bearing fault sig-
nal while reducing noise and other interference components;
thus, it can significantly improve the estimation accuracy of the
bearing fault signal. The contribution of this paper is twofold.
First, we use the generalized minimax-concave (GMC) penalty
[36] as a nonconvex penalty that maintains the convexity of the
sparsity-regularized cost function, which we minimize using a
forward–backward splitting algorithm. Second, we introduce a
k-sparsity strategy for the adaptive selection of the regularization
parameter. We present a simulation study and two experiment
studies to validate the effectiveness of the proposed method in
the diagnosis of localized faults in rolling bearings.

This paper is organized as follows. Section II recalls the spar-
sity formulation. In Section III, we propose the NSR method
based on the GMC penalty (the GMC method for short)
and introduce the k-sparsity strategy for adaptive parameter
selection. Section IV presents the simulation study, and
Section V presents application verifications for localized bear-
ing fault diagnosis. Finally, Section VI presents the conclusion.

II. REVIEW OF SPARSITY FORMULATION

In this section, we briefly review the formulation of the sparse
signal model, L1-norm regularization, and the tunable Q-factor
wavelet transform (TQWT).

A. Sparse Signal Model and L1-Norm Penalty

Vibration signals measured from machinery with a faulty
bearing generally contain bearing fault signals and noise [15].
Thus, the noisy vibration signal y ∈ RM can be modeled as

y = y0 + n (1)

where y0 ∈ RM represents the bearing fault signal, which is
repetitive transients caused by localized bearing faults, and n ∈
RM is white Gaussian noise and other unwanted components.
A challenge of bearing fault diagnosis is how to accurately
estimate the bearing fault signal y0 from the noisy vibration
signal y.

Research works show that the bearing fault signal y0 admits
a sparse representation with respect to an invertible linear trans-
formation [25]–[27], i.e.,

y0 = Ax and x = ATy0 (2)

where the matrix A ∈ RM×N represents the linear transforma-
tion, and x ∈ RN represents a sparse set of transform coeffi-
cients. Here, AT represents the transpose of the matrix A. We
usually haveM < N , i.e., the transform coefficients outnumber
the signal values.

Sparse regularization is used to find the sparse approximate
solution x from the noisy signal y. The L1 norm is usually used
as a penalty (regularizer) for sparse approximation and represen-
tation, since it induces sparsity most effectively among convex
penalties. The L1-norm-regularized least squared problem is

min
x

{
F (x) =

1
2
‖y −Ax‖2

2 + λ‖x‖1

}
(3)

where ‖x‖1 =
∑

n |xn | is the L1 norm of x ∈ RN and λ > 0
is the regularization parameter, which balances data fidelity
and sparsity. Problem (3) is known as basis pursuit denoising
[37] and lasso [38], which is a convex optimization problem,
and extensive optimization methods have been developed to
solve such problems [39], including a forward–backward split-
ting algorithm, alternating direction method of multipliers, etc.
Algorithm 1 is the example of the forward–backward splitting
algorithm for solving problem (3), where the notation ‖A‖2 de-
notes the square root of the maximum eigenvalue of ATA, and
the soft-thresholding operator is defined as

soft(x; λ) = x · max{|x| − λ, 0}
max{|x|, λ} (4)

which is element-by-element for any vector input x.
There are two problems when applying the L1-norm method

for bearing fault diagnosis and other sparse filtering purposes.
First, L1-norm penalty always underestimates of the signal of
interest. Second, how to adaptively select the regularization pa-
rameter to balance data fidelity and sparsity is a key problem. In
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Algorithm 1: Iterative algorithm for (3).

1: Initialize x(0) , 0 < μ < ‖A‖−2
2

2: for i = 0, 1, 2, . . . do
3: w(i) = x(i) − μAT(Ax(i) − y),
4: x(i+1) = soft(w(i) ; λμ),
5: end for
6: return x(i+1)

the next section, we propose the GMC method to avoid the un-
derestimation of the L1-norm method and provide a k-sparsity
strategy for adaptive parameter selection.

B. TQWT for Sparse Representation

The linear transformation A is important for sparse repre-
sentation. An effective transformation can promote the sparsity
of coefficients. For bearing fault diagnosis, we use TQWT as
the linear transformation A in this paper. The reason is three-
fold. First, TQWT can effectively represent a periodic or quasi-
periodic impulse response, as demonstrated by recent research
on the application of the TQWT to machine fault diagnosis [28],
[40]. Second, TQWT is a type of discrete wavelet transform
that is well-suited for the fast solution of sparse regularized in-
verse problems, because it is a tight frame, easily invertible, and
efficiently implemented using radix-2 fast Fourier transforms
(FFTs). Third, the advantage of TQWT over classic discrete
wavelet transforms is that the Q-factor Q and asymptotic re-
dundancy (over-sampling rate r) of the transform are easily and
independently specified. The oscillatory behavior of the wavelet
can be chosen to match the oscillatory behavior of the signal of
interest, so as to enhance the sparsity of a sparse signal represen-
tation. The detailed description of TQWT can be found in [41].

For the sake of consistency with sparse formulations, we
denote TQWT by AT and inverse TQWT by A. It is noted that
TQWT is not a “uniform” tight frame, which means that the
wavelet functions do not all have the same L2 norm. That is, the
rows of A do not all have the same L2 norm. Thus, considering
this fact, we set the parameter λ as

λj = θ‖ψj‖2 , j = 1, 2, . . . , J + 1 (5)

where ψj , j = 1, 2, . . . , J is the wavelet function in scale j, and
ψJ+1 is the scaling function in scale J .

III. GMC REGULARIZATION METHOD AND K-SPARSITY

STRATEGY

In order to enhance sparsity, many NSR methods have been
proposed, and a general way to model the problem is the non-
convex regularization least squares problem:

min
x

{
F (x) =

1
2
‖y −Ax‖2

2 + λψ(x)
}

(6)

where ψ : RN → R is a nonconvex sparsity-inducing penalty.
In this section, we use the nonconvex GMC penalty [36] and
analyze the convexity of the GMC-regularized cost function.
Moreover, we introduce a k-sparsity strategy to solve a key

problem of sparse regularization, i.e., how to adaptively set the
regularization parameter λ.

A. GMC Penalty

We describe a particular nonconvex sparsity-inducing penalty
called GMC penalty, which maintains the convexity of the cost
function, thereby avoiding the presence of spurious local minima
in the cost function (6).

The minimax-concave penalty [42] with parameter γ > 0 can
be defined as

φ(x) =

{ |x| − γ
2 x

2 , |x| < 1
γ

1
2γ , |x| � 1

γ .
(7)

A separable multivariate minimax concave penalty may be de-
fined as ψsep(x) =

∑N
n=1 φ(xn ). We can rewrite the penalty as

a Moreau envelope [43]

ψMC(x) = ‖x‖1 − min
v

{
‖v‖1 +

γ

2
‖x− v‖2

2

}
. (8)

Using ψMC as the penalty in (6) gives

F (x)=
1
2
‖y−Ax‖2

2 + λ‖x‖1 − λ min
v

{
‖v‖1 +

γ

2
‖(x− v)‖2

2

}

=
1
2
xT(ATA− λγI)x+ λ‖x‖1 + max

v
{g(x, v)} (9)

where the function g is affine in x. The convexity of F is main-
tained if ATA− λγI � 0. However, for TQWT, A is a matrix
such that ATA is singular. Consequently, we must set γ = 0 to
maintain the convexity of the function F . Yet, when γ = 0, the
penalty in (8) reduces to the L1 norm. In this case, we achieve
no benefit in comparison to a conventional sparse regularization
using L1-norm regularization.

In order to maintain the convexity of the cost function F in
(6) to be minimized, we use the GMC penalty ψGMC, which is
defined as

ψGMC(x) = ‖x‖1 − min
v

{
‖v‖1 +

γ

2λ
‖A(x− v)‖2

2

}
(10)

where the matrixA is introduced to maintain the convexity of the
cost function F and the parameter γ controls the nonconvexity
of the GMC penalty.

Using the GMC penalty in (10), the cost function F in (6)
can be expressed as

F (x) =
1
2
‖y −Ax‖2

2 + λ‖x‖1

− min
v

{
λ‖v‖1 +

γ

2
‖A(x− v)‖2

2

}

= max
v

{
1
2
‖y −Ax‖2

2 + λ‖x‖1 − λ‖v‖1

−γ
2
‖A(x− v)‖2

2

}

= max
v

{
1
2
(1 − γ)‖Ax‖2 + λ‖x‖1 + g(x, v)

}

=
1
2
(1 − γ)‖Ax‖2 + λ‖x‖1 + max

v
{g(x, v)} (11)
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where the function g is affine in x. The last term is convex as it
is the pointwise maximum of a set of convex functions (see [ 43,
Prop. 8.14]). Thus, the cost function F is convex if 0 < γ � 1.

B. Solving the GMC Regularization Problem

Because the GMC penalty does not have a closed-form for-
mula and so cannot be directly evaluated, it may appear neces-
sary to use an iterative algorithm comprising a double nested
loop: an inner loop to solve for the optimal solution vopt and
an outer loop to iteratively solve for the optimal solution xopt.
Fortunately, because F can be expressed as a saddle function
convex in x and concave in v, a global minimizer can be read-
ily calculated using proximal algorithms. It is not necessary to
explicitly evaluate the GMC penalty or its gradient.

The minimization of the GMC-regularized least squares prob-
lem can be written as a saddle-point problem:

(xopt, vopt) = arg min
x

max
v

F (x, v) (12)

where

F (x, v) =
1
2
‖y −Ax‖2

2 + λ‖x‖1 − λ‖v‖1 − γ

2
‖A(x− v)‖2

2

with 0 < γ < 1. This saddle-point problem can be solved by the
forward–backward splitting algorithm, as listed in Algorithm 2,
where the constant μ > 0 should be smaller than the constant
2/max{1, γ/(1 − γ)}‖A‖−2

2 , which ensures that the iterative
algorithm converges.

It can be observed from the w-update in Algorithms 1 and 2
that the main difference between the GMC method and the L1-
norm method is that the term μγATA(x(i) − v(i)) is added in
the w-update in the GMC algorithm. This is the reason why the
GMC regularization avoids underestimating high-amplitudes
values, in contrast to the L1-norm method.

C. K-Sparsity Strategy for Adaptive Threshold

In this section, we introduce a k-sparsity strategy for the
adaptive selection of the regularization parameter λ.

It can be observed in Algorithm 2 that the parameter λ af-
fects only the threshold value in the soft thresholding operator.
Therefore, the parameter λ determines how many coefficients at
each iteration will be set to zero and how many coefficients will
be preserved in the soft thresholding step. Moreover, the value
of λ does not directly affect the convergence of the algorithm
or the convergence speed of the algorithm. Thus, according to
the k-sparsity prior, we can set λ adaptively such that, in each
iteration, an adaptive threshold T (i) is set as the kth largest co-
efficient in the vector w(i) , i.e., T (i) = w

(i)
[k ] , where the notation

w
(i)
[k ] represents the kth largest coefficient (in absolute value)

of the vector w(i) . This adaptive threshold T (i) will preserve
only the k largest coefficients via soft thresholding and set the
other coefficients to zero. The iterative algorithm with an adap-
tive parameter for solving the saddle point problem in (12) is
summarized as Algorithm 3.

Algorithms 2 and 3 involve only simple computational steps,
i.e., soft thresholding and the operatorA andAT. Moreover, the

Algorithm 2: Iterative algorithm for GMC problem.

1: Initialize x(0) , v(0) ,
0 < μ < 2/max{1, γ/(1 − γ)}‖A‖−2

2
2: for i = 0, 1, 2, . . . do
3: w(i) = x(i) − μAT(Ax(i) − y)

+ μγATA(x(i) − v(i)),
4: u(i) = v(i) + μγATA(x(i) − v(i)),
5: x(i+1) = soft (w(i) ; λμ),
6: v(i+1) = soft (u(i) ; λμ),
7: end for
8: return x(i+1)

Algorithm 3: K-sparsity iterative algorithm for GMC
problem.

1: Initialize x(0) , v(0) ,
0 < μ < 2/max{1, γ/(1 − γ)}‖A‖−2

2
2: for i = 0, 1, 2, . . . do
3: w(i) = x(i) − μAT(Ax(i) − y)

+ μγATA(x(i) − v(i)),
4: u(i) = v(i) + μγATA(x(i) − v(i)),
5: T (i) = w

(i)
[k ] ,

6: x(i+1) = soft (w(i) ;T (i)),
7: v(i+1) = soft (u(i) ;T (i)),
8: end for
9: return x(i+1)

operation of TQWT is matrix-free and efficiently implemented
using radix-2 FFTs; hence, Algorithms 2 and 3 are also matrix-
free. Thus, the algorithm is efficient for minimizing the cost
function F in (6). The computational cost of radix-2 TQWT is
O(rM log2 M), where M is the length of the input signal, and
r is the redundancy factor [41]. Thus, the total computational
cost of Algorithms 2 and 3 is O(rLM log2 M), where L is the
number of iterations.

It is noted that, in Algorithm 3, an assumption is that the
matrix consists of uniform column vectors, i.e., ‖Ai‖2 = ‖Aj‖2
for any 1 � i �= j � N , whereAj represents column j of matrix
A. However, TQWT used in this paper is not a “uniform” tight
frame. Thus, TQWT should be normalized beforehand such
that ‖Ai‖2 = ‖Aj‖2 for any 1 � i �= j � N ; or, alternatively,
the wavelet coefficients should be normalized before setting the
kth largest coefficient as the threshold for soft thresholding and
using a nonuniform threshold for soft thresholding, i.e.,[

w̃(i)]
j

=
[
w(i)]

j
/‖Aj‖2 , j = 1, 2, . . . , N, (13)

[
T (i)]

j
= w̃

(i)
[k ] · ‖Aj‖2 , j = 1, 2, . . . , N. (14)

IV. SIMULATION STUDY

In this section, we use a simulation study to verify the ef-
fectiveness of the GMC method and the k-sparsity strategy in
bearing fault diagnosis. First, we analyze the simulation signal
using Algorithm 2 with a fixed regularization parameter λ to
verify the performance of the GMC method for the estimation
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Fig. 1. Simulation signal with and without noise: (a) the waveform in
the time domain, and (b) its spectrum.

of a bearing fault signal. Then, we analyze the same signal using
Algorithm 3 to verify the effectiveness of the k-sparsity strategy
for adaptive parameter selection.

We consider the following noisy signal to simulate the bearing
fault signal:

y[i] = s[i] + n[i] =
∑
k

h(iΔt − kT − ΔTk − τ0) + n[i]

where i = 1, 2, . . . ,M , s is quasi-periodic, i.e., the period T =
0.01 with random fluctuation ΔTk drawn from the uniform
distribution on the open interval (−0.001, 0.001), and consists
of a series of double-side asymmetric transients h(t)

h(t) =

⎧⎪⎪⎨
⎪⎪⎩

e

−ζ L√
1−ζ 2

L

(2πf1 t)2

cos(2πf1t), t < 0

e

−ζ R√
1−ζ 2

R

(2πf1 t)2

cos(2πf1t), t � 0

(15)

with f1 = 2000, ζL = 0.02, ζR = 0.005, and τ0 = 0.002. The
symbol Δt is the sampling interval, the sampling frequency
is 20.48 kHz, and the signal length is M = 4096. The noise
n is white Gaussian noise N (0, σ2) with standard deviation
σ = 0.6. In this simulation, the random fluctuation of the time
interval between adjacent transients is considered to simulate
speed fluctuations or random slipping of rolling elements [15],
[16]. The simulation signal and its spectrum are shown in Fig. 1.
It can be seen that the true signal is heavily corrupted by noise.
The SNR of the noisy signal is −8.43 dB, and the kurtosis value
of the noisy signal is 3.046, which is very near to the kurtosis
value of white Gaussian noise.

A. Fixed Regularization Parameter λ

We first use Algorithm 2 with a fixed regularization param-
eter λ to analyze the simulation signal. In order to explore the
effect of λ on the performance of the sparse regularized method,
we vary λ from 0.5 to 3.5 (with increment 0.1) and use 100
realizations of the random parameter of the simulation signal,
including the random fluctuation ΔTk and random noisen0 . The

Fig. 2. Average RMSE values of the denoised signal for 100 random
realizations obtained by GMC regularization and L1-norm regularization
with fixed regularization parameter.

performance is evaluated by the average root-mean-squared er-
ror (RMSE), as shown in Fig. 2, where the RMSE of the L1-norm
method is also included for comparison. In this case, the GMC
nonconvexity parameter is set to γ = 0.8, the TQWT parameters
are Q = 2, r = 5, and J = 10 (leading to N = 24 576 wavelet
coefficients). We find that the performance of both methods de-
pends on the parameter λ [i.e., θ according to relation (5)]. The
minimal average RMSE of the GMC and L1 methods is 0.1267
and 0.1460, respectively, and the “best” parameter is θ = 2.0
for the GMC method and θ = 1.5 for the L1 method, respec-
tively. The improvement of GMC regularization over the L1
regularization is 13.2%.

The tradeoff between data fidelity and sparsity is realized by
adjusting the parameter λ. Generally speaking, a larger value
makes the optimal solution sparser but reduces the coefficient
amplitudes; a smaller value increases the coefficient amplitudes
of the optimal solution but makes the solution less sparse and
noisier. How to set the regularization parameter λ effectively in
practical applications is a key problem for sparsity regularization
methods.

B. Adaptive Thresholding Via a k-Sparsity Strategy

We use the GMC method with the k-sparsity strategy (i.e.,
Algorithm 3) to analyze the simulation signal. In this case,
except the k-sparsity parameter, other parameters are the same as
the parameters used in the previous section for the method with
fixed regularization parameter. That is, the GMC nonconvexity
parameter is set to γ = 0.8, the TQWT parameters are Q = 2,
r = 5, and J = 10. We also use 100 realizations of the random
parameter (i.e., the random fluctuation ΔTk and random noisen)
of the simulation signal to evaluate the performance of the GMC
method and vary the k-sparsity parameter k from 40 to 600 (with
increment 10). The performance is evaluated by the average
RMSE. For comparison purposes, we also use the L1-norm
method with the k-sparsity strategy to analyze the simulation
signal. Fig. 3 compares the average RMSE of GMC and L1-
norm regularization methods. The minimal average RMSE of
the GMC and L1-norm methods is 0.1277 and 0.1459, and the
“best” k-sparsity parameter is k = 100 for GMC and k = 240
for L1 norm, respectively. The improvement of GMC over L1
norm is 12.5%. The comparison results show that the GMC
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Fig. 3. Average RMSE values of the denoised signal obtained by GMC
regularization and L1-norm regularization for 100 random realizations.

Fig. 4. Results by GMC regularization and L1-norm regularization with
k-sparsity strategy: (a) the GMC denoised signal, (b) the L1-norm de-
noised signal, and (c) their envelope spectra.

is more accurate and uses fewer coefficients and yields more
accurate denoising result. Moreover, it can be observed that
the accuracy of the GMC and L1-norm methods is basically the
same as Algorithm 2 with a fixed regularization parameter when
each method has the “best” parameter to minimize the average
RMSE. However, we find in Fig. 3 that the k-sparsity strategy is
more intuitive to illustrate the performance of the GMC method
that uses fewer coefficients and yields more accurate denoising
result compared to the L1-norm method.

In order to further illustrate the effectiveness of the method
with the k-sparsity strategy, the analysis results are shown in
Fig. 4, including the denoised signal using GMC and L1 norm,
and their squared envelope spectra (SES). In this case, the pa-
rameter k is set to minimize the average RMSE, i.e., k = 100
for the GMC method and k = 240 for the L1-norm method.
It can be observed that, compared to L1 norm, GMC pre-
serves the signal’s amplitude while reducing noise, i.e., the

amplitude-preserving performance of GMC is much better than
the L1-norm method.

It should be noted that, even though the GMC method can
remove the most of noise from the noisy signal, a low level of
noise cannot be removed, which causes the phenomenon that
the amplitude of some denoised signals using GMC is larger
than that of the noise-free signal, and some smaller, which may
cause a misunderstanding that the GMC may amplify the signal
of interest. But the fact is that the noise is distributed throughout,
even though the bearing fault signals are concentrated in a few
large-amplitude wavelet coefficients, these coefficients are also
polluted by noise: some coefficients are larger than the true value
and some coefficients are smaller than the true value. When
the signal of interest is reconstructed from these coefficients,
the amplitude of some transients may be larger than that of the
noise-free signal.

For comparison, SK is also used to analyze the signal. As is
well-known, if the resonance frequency band can be determined,
the SES is useful for bearing fault diagnosis. For example, in
this simulation case, if we manually set the bandpass filter with
passband (1000, 3000) Hz, which covers the central frequency
2000 Hz of the simulation signal, the SES can identify the
characteristic frequency (100 Hz) of the simulated bearing fault
signal, as shown in Fig. 5. In practical applications, SK is useful
to determine the filter passband. The SK results are also shown
in Fig. 5, which can also indicate the characteristic frequency,
where the filtering band is selected adaptively by the maximum
kurtosis. However, the amplitude of the signal is significantly
reduced and the denoised signal is also noisy. The GMC result
shown in Fig. 4 indicates that the proposed method can preserve
the amplitude of the signal and provide more accurate estimation
result.

The favorable behavior of GMC with the k-sparsity strategy is
maintained over a range of noise levels, as shown in Fig. 6, which
shows the average RMSE a function of k-sparsity for values σ
in the interval 0.3 � σ � 0.6. We calculate the average RMSE
using 20 noise realizations for each noise level. The behavior
of the k-sparsity strategy is robust to noise, and GMC compares
favorably to L1 norm. The improvements of GMC over L1 norm
in different noise levels are 24.1% (σ = 0.3), 24.0% (σ = 0.4),
20.6% (σ = 0.5), 12.5% (σ = 0.6). Moreover, the noise level
has a negligible effect on the selection of the “best” parameter
k for GMC and L1-norm regularization. Thus, considering that
the signal length is different in the practical applications, we can
prescribe a straightforward strategy by setting the k-sparsity pa-
rameter such that only 0.5–2% of the coefficients in the wavelet
domain are preserved (the other coefficients are set to zero by
thresholding).

V. APPLICATIONS IN BEARING FAULT DIAGNOSIS

We present two case studies to verify the effectiveness of the
GMC method in bearing fault diagnosis.

A. Case Study I

In the first case study, we analyze vibration signals collected
during a bearing run-to-failure experiment. In this experiment,
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Fig. 5. SES and SK result. (a) The spectrum of the noisy signal and
the filtered signal (the specified frequency band [1000, 3000] Hz), (b) the
SES of the filtered signal, (c) the kurtogram (the filter band indicated by
the arrow is determined by the maximum kurtosis), (d) the filtered signal
via SK, and (e) its SES.

vibration data were collected every 10 min at the sampling fre-
quency of 20.48 kHz; the data length in each sampling is 20 480
samples. At the end of the run-to-failure experiment, an outer
race failure occurred on one bearing (the fault characteristic fre-
quency being 236.4 Hz), and 984 files were acquired during the
experiment with a total duration of 163.8 h. For more detailed
information about this experiment, refer to [44].

Fig. 6. Average RMSE values of 20 realizations of GMC and L1 norm
for different noise levels.

Fig. 7. Root-mean-square (RMS) of the vibration in the run-to-failure
experiment (left) and the vibration signal in different stages: early-stage
defect (right top), medium-stage defect (right middle), and last failure
(right bottom).

Fig. 7 depicts the root-mean-square feature of vibration sig-
nals for the entire life cycle, and three segments of vibration
signals during different stages: the early-stage defect (file no.
558, about 70 h before the bearing failure), the medium-stage
defect (file no. 703, about 45 h before the bearing failure), and
the last failure stage (file no. 973). It can be observed that the
vibration signals collected at the medium stage and last failure
stage exhibit strong periodic impulses, while the amplitude of
impulses at the medium stage is smaller than the amplitude at
the last failure stage. However, during the early stage, obvious
periodic impulses in the vibration signal do not exist, and the
transient feature generated by the early defect is masked by
noise.

First, we apply the GMC method with the k-sparsity strategy
to analyze the vibration signal with an early-stage defect. We
set the GMC nonconvexity parameter to γ = 0.8, the TQWT
parameters to Q = 2, r = 5, and J = 10 (there are M = 4096
signal samples in the time domain and thus N = 24 576 coef-
ficients in the wavelet domain). We set the k-sparsity strategy
to preserve only 2% of the total coefficients in the wavelet do-
main, i.e., k = 492. The GMC denoising results are shown in
Fig. 8. It can be observed that the bearing fault signal is extracted
from the vibration signal. The zoomed-in comparison shows that
the amplitude of the bearing fault signal is almost preserved,
and the period is consistent with the outer race fault, as marked
with the red arrow. The SES also shows that the characteristic
frequency is consistent with the outer race fault.

For comparison purposes, we also apply the L1-norm method
(see Fig. 8) and SK (see Fig. 9) to analyze the same signal. It can
be observed that the L1-norm result is under-estimated; it is not
as accurate as the GMC result. The SES of SK-filtered signal
can also indicate the outer race fault. However, it is affected
by the heavy noise, and the amplitude is much smaller than the
GMC result.
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Fig. 8. Denoised result for vibration with the early-stage defect ob-
tained by the GMC (left) and L1 norm (right), including the denoising
signal and its zoomed-in version, the spectrum and SES.

Fig. 9. SK result for vibration with the early-stage defect: (a) the kur-
togram (the filter band indicated by the black arrow is determined by the
maximum kurtosis), (b) the filtered signal via SK, and (c) its SES.

Then, the proposed method is used to further analyze the
vibration signals collected during the later stages in this ex-
periment. If we use the GMC method with fixed parameter λ

(i.e., Algorithm 2), the regularization parameter λ should be
adjusted for different stages to rebalance the signal of interest
and noise. Since the simulation study shows that the noise level
has a negligible effect on the selection of the best k-sparsity
parameter, when we use the GMC method with the k-sparsity
strategy, the same parameters used for the early-stage defect
are used here to analyze the vibration signals collected during
the later stages. The GMC results of the vibration signals with
medium-stage defect and with failure bearing (shown in Fig. 7)
are shown in Fig. 10. Even though the k-sparsity parameter is not
adjusted, the GMC method with the k-sparsity strategy can also
preserve the bearing fault signal while reducing noise. Hence,
the adaptive k-sparsity strategy is more easily used in practical
applications. For comparison purposes, SK is also used to an-
alyze the same signals, and the results are shown in Fig. 11. It
can be observed that the SK results significantly reduce the am-
plitude of the vibration signal while reducing the interference.
Even the amplitude of the SK result for failure bearing is much
less than that of the GMC result for the early-stage defect. The

Fig. 10. GMC results for vibration at different stages, i.e., medium-
stage defect (left) and last failure (right), including the denoising signal,
its zoomed-in plot, and SES.

Fig. 11. SK result for vibration at different stages. (a) Kurtogram of the
vibration signal with the medium-stage defect, (b) the filtered signal, and
(c) its SES; (d) kurtogram of the vibration signal with failure bearing,
(e) the filtered signal, and (f) its SES.

application for different stages of defects and the comparisons
further demonstrates that the proposed method preserves the
amplitude of the signal and improves the estimation accuracy,
which is a promising tool for providing effective features to
assess the severity of bearing faults.

B. Case Study II

In this section, we validate the GMC method using another
run-to-failure experiment. The test rig consists of a mechanical
system, a loading system, a lubrication system, an electrical
control system, and an industrial PC, as shown in Fig. 12. A
radial load of 11 kN and an axial load of 2 kN were applied to
the test bearing by the load system. Two accelerometers were
mounted on the sleeve that was connected to the outer ring of
the tested bearing. Vibration signals were sampled at 20.48 kHz
by a data acquisition system.
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Fig. 12. Bearing test rig.

Fig. 13. (a) A spall on inner race of the failure bearing and (b) the area
of the spall.

Fig. 14. Original vibration signal and its spectrum.

Fig. 15. Denoised result obtained by the GMC and L1 norm, including
the denoising signal and its zoomed-in version, the spectrum, and SES.

After about 146 working hours, a spall formed in the inner
race (see Fig. 13), and the area of the spall was measured to
be about 3 mm2 . The tested bearing was an H7018C angular
contact ball bearing. The bearing has 27 balls, a pitch diameter
of 117 mm, ball diameter of 11.12 mm, and a contact angle of
15◦. The shaft rotation speed was about 6000 r/min. The ball-
passing frequency on the inner raceway was about 1475 Hz.

We use the GMC method to analyze the vibration signal (see
Fig. 14) collected during the experiment. The signal is of length
M = 32 768. The GMC results are shown in Fig. 15. In this
case, we set the GMC nonconvexity parameter to γ = 0.8, the

Fig. 16. SK result: (a) the kurtogram (the filter band indicated by the
white arrow is determined by the maximum kurtosis), (b) the filtered
signal via SK, (c) zoomed-in version for comparison, and (d) the SES of
the filtered signal.

TQWT parameters toQ = 1, r = 5, and J = 10 (then there are
N = 208 896 coefficients in the wavelet domain). We set the
k-sparsity parameter such that each iteration preserves 2% of
the total coefficients in the wavelet domain, i.e., k = 4178. The
result shows that the GMC method preserves the bearing fault
signal while reducing noise. Moreover, because the fault occurs
on the inner race, the periodic change of the load leads to a
clustering/grouping phenomenon of the transients, as illustrated
in the zoomed-in comparison in Fig. 15. The fault characteristic
frequency (1475 Hz) and the rotating frequency (99.8 Hz) are
dominant in the SES, which verifies that the GMC method can
effectively extract the bearing fault feature.

For comparison, the L1 norm (see Fig. 15) and SK (see
Fig. 16) are also applied to analyze the same vibration sig-
nal. The SES of the L1 norm and SK also indicate the inner race
fault. However, the amplitude of results of L1 norm is much
less than that of the original vibration signal. It can be observed
that, besides the amplitude difference of the filtered signal be-
tween GMC and SK, the fault characteristic frequency is more
dominant in the GMC result than the SK result. If we further
observe the waveform of the filtered signal via the GMC and the
SK method, it can be observed that the main part of the bearing
fault signal is preserved and the noise is better suppressed in
the GMC filtered signal. However, in the SK-filtered signal, it
can be observed that we cannot observe the clustering/grouping
phenomenon of the transients caused by the periodic change
of the load, and the bearing fault signal is heavily reduced and
more of the noise remains. The proposed method behaves better
than these methods.

VI. CONCLUSION

In this paper, we presented the NSR method for bearing fault
diagnosis based on the GMC penalty [defined in (10)]. The
main advantage of the GMC regularization over conventional
filtering methods is that GMC can better preserve the bearing
fault signal while reducing the interference of noise and other
components; thus, it can significantly improve the estimation
accuracy of the bearing fault signal. The GMC penalty itself is a
nonconvex function; thus, the GMC regularization can enhance
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sparsity compared to convex penalty. Moreover, the GMC reg-
ularization can maintain the convexity of the cost function to be
minimized, thus allowing convex optimization to be used to find
the global optimal solution (e.g., using the forward–backward
splitting algorithm). The k-sparsity strategy was introduced for
the adaptive selection of the regularization parameter, which is
useful for practical applications, where the k-sparsity parame-
ter can be prescribed simply, e.g., 0.5–2% of the total number
of coefficients in the sparsity domain. The simulation example
and two application case studies verified the effectiveness of
the GMC method in the diagnosis of localized faults in rolling
bearings. The comparisons to L1 norm and SK demonstrated
the advantage of GMC regularization in preserving the signal
and improving the estimation accuracy.

The GMC method is useful for the feature extraction of repet-
itive transients, and the paper focused on the application of
single-point bearing fault diagnosis. However, the application
of the method is not limited to this topic. It could also be useful
for other applications whose vibration signals have a similar
feature, for example, gearbox fault diagnosis, compound fault
diagnosis. Moreover, because of the performance in preserv-
ing the signal of interest while reducing the interference, it is
a promising preprocessing method to assess fault condition of
bearings and gearboxes.

Because the GMC method provides a unified framework of
NSR and convex optimization, several extensions of the GMC
method are of interest. For example, the idea may admit exten-
sion to more signal models and more general convex regular-
izers for machinery fault diagnosis or other purposes, such as
morphological component analysis [28] or union of multidic-
tionary [29], weighted sparse model [40], group sparsity [27],
and cosparse regularization [45].
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detection by means of statistical processing of the stray flux measure-
ment,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1846–1854, Mar.
2015.

[8] M. Hamadache, D. Lee, and K. C. Veluvolu, “Rotor speed-based bearing
fault diagnosis (RSB-BFD) under variable speed and constant load,” IEEE
Trans. Ind. Electron., vol. 62, no. 10, pp. 6486–6495, Oct. 2015.

[9] M. Amar, I. Gondal, and C. Wilson, “Vibration spectrum imaging: A novel
bearing fault classification approach,” IEEE Trans. Ind. Electron., vol. 62,
no. 1, pp. 494–502, Jan. 2015.

[10] H.-T. Yau, S.-Y. Wu, C.-L. Chen, and Y.-C. Li, “Fractional-order chaotic
self-synchronization-based tracking faults diagnosis of ball bearing sys-
tems,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3824–3833, Jun.
2016.

[11] Y. Li, M. Xu, X. Liang, and W. Huang, “Application of bandwidth EMD
and adaptive multiscale morphology analysis for incipient fault diagnosis
of rolling bearings,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6506–
6517, Aug. 2017.

[12] H. Shao, H. Jiang, H. Zhang, and T. Liang, “Electric locomotive bearing
fault diagnosis using novel convolutional deep belief network,” IEEE
Trans. Ind. Electron., vol. 65, no. 3, pp. 2727–2736, Mar. 2018.

[13] W. Ahmad, S. A. Khan, and J.-M. Kim, “A hybrid prognostics tech-
nique for rolling element bearings using adaptive predictive models,” IEEE
Trans. Ind. Electron., vol. 65, no. 2, pp. 1577–1584, Feb. 2018.

[14] R. B. Randall, Vibration-Based Condition Monitoring: Industrial,
Aerospace and Automotive Applications. New York, NY, USA: Wiley,
2011.

[15] R. B. Randall and J. Antoni, “Rolling element bearing diagnostics—
A tutorial,” Mech. Syst. Signal Process., vol. 25, no. 2, pp. 485–520,
2011.

[16] J. Antoni and R. Randall, “Differential diagnosis of gear and bearing
faults,” J. Vib. Acoust., vol. 124, no. 2, pp. 165–171, 2002.

[17] V. C. Leite et al., “Detection of localized bearing faults in induction
machines by spectral kurtosis and envelope analysis of stator current,”
IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1855–1865, Mar. 2015.

[18] M. Kang, J. Kim, L. M. Wills, and J.-M. Kim, “Time-varying and multires-
olution envelope analysis and discriminative feature analysis for bearing
fault diagnosis,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7749–
7761, Dec. 2015.

[19] J. Antoni, “The spectral kurtosis: A useful tool for characterising non-
stationary signals,” Mech. Syst. Signal Process., vol. 20, no. 2, pp. 282–
307, 2006.
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