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INTRODUCTION

The impact of wind farms on radar systems, such as air traf-
fic control (ATC), air defense (AD), and weather radars, is 
a significant issue, especially considering that demand for 
wind power and wind farms is increasing dramatically. Ac-
cording to the American Wind Energy Association, more 
than 51,630 MW of wind power capacity are installed in the 
United States [1]. There are also more than 8,900 MW of wind 
power capacity under construction, involving more than 90 
separate projects spanning 31 states and Puerto Rico [2].

Wind farms have up to several hundred wind turbines 
with blades up to 100 ft in length. The size and rotation of 
these blades present technical challenges to the effectiveness 
of ATC, AD, and weather radar systems. Several studies 
have documented the adverse effect of wind turbines and 
wind farms on radar returns (echoes) [3], [4], [5]. The Dop-
pler shift because of the rotating blades may share many 
characteristics with small targets, which causes false alarms. 
Echoes from targets may be masked by radar returns created 
by the rotating wind turbine blades or wind turbine towers. 
Wind turbine blades may obstruct the radars’ coverage view 
[6]. These effects are known as masking and shadowing, re-

spectively. Wind turbine clutter may cause track reduction 
and a rise in the detection thresholds in AD radars. Wind 
turbine clutter has not had a major negative impact on fore-
cast operations; however, misidentification of thunderstorm 
features, false estimates of precipitation accumulation, and 
incorrect storm identification and tracking have been report-
ed near large wind turbine installations [7]. Thus, methods 
to mitigate wind turbine clutter effects are becoming impor-
tant to maintain the national airspace system and national 
weather service capabilities.

Planning wind farm locations to minimize possible dis-
turbances to local radar and communications systems is pos-
sible. However, this method is not applicable for installed 
systems. Possible solutions have been proposed to mitigate 
wind turbine clutter effects, including the development of 
radar-friendly low radar cross-section (RCS) turbines and 
turbine blades using stealth technology. However, this meth-
od is expensive and may degrade the efficiency of the light-
ning protection of turbines [8]. Mitigation of wind turbine 
clutter by advanced signal processing techniques is more 
practical and may involve minor modification of installed 
hardware systems.

This article explores the use of sparse-optimization tech-
niques to separate dynamic wind turbine clutter from terrain 
or topographical features (static clutter) and moving targets. 
It is assumed that moving targets and dynamic clutter (pro-
duced by wind turbines) can be distinguished by the degree 
to which their Doppler spectra vary with time. Because of 
the rotation of their blades, wind turbines are seen to pro-
duce radar returns with strongly time-varying Doppler 
spectra. It is further assumed that constant-velocity targets 
exhibit stationary (or slow-varying) Doppler spectra (rela-
tive to that of wind turbines). We aim to express the radar 
IQ data as the explicit sum of two such “morphologically” 
distinct components, and we apply morphological compo-
nent analysis (MCA) [9] to achieve their separation. MCA 
is applicable only when the two components admit sparse 
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representations with respect to distinct transforms. To this 
end, we model radar returns produced by moving targets as 
sparse with respect to the Fourier transform (FT), assuming 
targets are moving at a constant velocity during the coher-
ent processing interval (CPI). Because of the time-varying 
Doppler characteristics of rotating blades, we model radar 
returns produced by wind turbines as sparse with respect 
to the short-time Fourier transform (STFT), where the STFT 
window is chosen appropriately.

This article more generally considers the problem of 
separating radar returns into distinct components based on 
distinguishing time-varying Doppler characteristics, even 
when the components overlap in time, frequency, and time–
frequency. To illustrate the generality of the MCA approach 
for this purpose, we also illustrate its use to suppress tran-
sient interference, which causes Doppler streaking in range–
Doppler profile images [10].

MODELING WIND TURBINE CLUTTER

The time-domain and Doppler signatures of rotating objects 
have been well studied, and numerous approaches have 
been proposed to define suitable mathematical models [11], 
[12], [13]. In this article, we assume the time-domain signa-

ture of wind turbine clutter follows the simplified mathe-
matical model of rotating blades given in [12, Sec. 3.2.1]. Al-
though more sophisticated modeling is required to represent 
the real-life wind farms shown in Figure 1, the following ap-
proach helps to illustrate the time-varying Doppler present 
in the wind turbine clutter returns.

For a set of B blades, which are rotating with angular ve-
locity νo, have a length of L, and are at elevation angle β with 
respect to the radar line of sight (for simplicity, the azimuth 
angle is assumed to be zero), the total radar return is mod-
eled by

	 (1)

for a typical transmit waveform centered at frequency ωo and

	
(2)

Expanding (1) in terms of Bessel functions shows that 
the spectrum of a scatterer on the turning blades consists of 
multiple spectral lines around the center frequency, with a 
spacing of νo/2π between adjacent lines [11]. However, be-
cause of the various aspect angles generated at the multiple 
scattering centers situated along each blade, this results in 
a continuous distribution for the wind turbine spectrum, as 
shown in Figure 2a. Consequently, returns from wind tur-
bines cannot be sparsely represented using the FT.

We use the preceding mathematical model to simulate a 
wind turbine with three blades, which are rotating with an 
angular velocity of νo = 12 rpm, have a blade length of L = 60 
m, are at an elevation angle β = 45° with respect to the radar 
line of sight, and are at a range of 707 m. The simulated tur-
bine’s power spectral density is shown in Figure 2a. Other 
simulation parameters are chosen similar to an S-band side-
looking stationary radar with a pulse repetition frequency 
of 3 kHz.

Figure 1. 
Radar and wind turbines.



JULY 2014	 IEEE A&E SYSTEMS MAGAZINE	  39

Uysal et al .

We simulate moving targets using a narrowband signal 
model, assuming ideal scatterers, as described in [14]:

	 (3)

where Rtar is the target range, θ is the target angle, and νtar is 
the target velocity. As seen from (3), returns from the moving 
target can be sparsely represented in the frequency domain. 
Figure 2b shows the frequency spectrum of the simulated 
radar return that comprises two moving targets, T1 and 
T2, with constant Doppler frequencies (0.6 and −1.2 kHz, 
respectively) and stationary ground clutter (0 Hz). As seen 
in Figure 2b, constant-velocity targets and stationary clutter 
can be represented sparsely in the frequency domain.

Figure 2c shows the total simulated radar return s(t) com-
prising two moving targets, stationary ground clutter, rotat-
ing blades (to mimic wind turbine clutter), and noise:

	 (4)

In the simulation, the noise power is set as 0 dB. For each 
target, the target-to-noise ratio is 5 dB. The ground clutter–
to–noise ratio is 20 dB, and the wind turbine clutter–to–noise 
ratio is 40 dB. In the simulation, we have set the velocity of 

target T1 (shown in Figure 2b at 0.6 kHz) so that its Dop-
pler frequency is within the wind turbine clutter spectrum, 
as shown in Figure 2c. It is possible to separate target T2 
(shown in Figure 2b at −1.2 kHz) from the wind turbine clut-
ter by conventional frequency filtering. However, because 
target T1 is buried in the wind turbine clutter, it cannot be 
separated by frequency filtering.

As noted earlier, assuming the targets have a constant ve-
locity during the CPI, the radar returns they produce can be 
sparsely represented in the frequency domain using the FT. 
In contrast, the radar returns produced by the rotating blades 
have a continuous distribution in the frequency domain. The 
radar echoes from the rotating blades (i.e. wind turbine clut-
ter) produce time-varying Doppler signatures; hence, they 
are more sparsely represented in the time–frequency domain 
using the STFT than in the frequency domain using the FT. 
Unlike the FT, the STFT is suitable for nonstationary signals 
comprising time-varying frequency components.

Time–frequency analysis of the simulated wind turbine 
radar returns for one full rotation of turbine blades (i.e., 5 s) 
is shown in Figure 3a using the STFT. In contrast to the non-
sparse frequency domain representation shown in Figure 2a, 
(idealized) wind turbine clutter can be sparsely represented 
in the time–frequency domain. The returns from the rotat-
ing blades generate strong periodic “flashes” because of the 
high RCS when the face of the blade is directed to the radar. 
These flashes are visible in the spectrogram as vertical lines 
in Figure 3a. Energy along the horizontal line at the direct 
zero frequency is because of returns from the body of the 
wind turbine.

As an alternative representation to Figure 2c, Figure 3b 
shows the time–frequency representation of the total radar 
return for a 5-s interval. By taking advantage of time–fre-

Figure 3. 
(a) Spectrogram of wind turbine radar returns for 5 s. (b) Spectro-
gram of the simulated radar return, including targets, stationary 
ground clutter, wind turbine clutter, and noise.

Figure 2. 
(a) Power spectral density of simulated wind turbine clutter. (b) 
Frequency spectrum of simulated targets and stationary ground 
clutter. (c) Frequency spectrum of simulated radar return, including 
targets, stationary ground clutter, wind turbine clutter, and noise.
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quency analysis, it is possible to mostly separate targets T1 
and T2 from the wind turbine clutter by applying conven-
tional band-pass filters ~0.6 and −1.2 kHz. However, this 
method is only applicable if the target moves with a constant 
velocity in the given CPI.

From the total signal s(t) in (4), we aim to recover compo-
nents star(t) and swtc(t) individually. The MCA separation ap-
proach method relies on each of star and swtc having a sparse 
representation; otherwise, it is not applicable. Moreover, the 
domains must be incoherent (i.e., contain features with dif-
ferent morphologies that are sparse in their respective rep-
resentations [15]) to recover star and swtc from radar returns s. 
Returns from moving targets star can be sparsely represented 
using the FT domain, provided that they can be assumed 
to be moving at constant velocity during the CPI. However, 
radar echoes produced by wind turbine clutter, swtc, which 
constitute a time-varying Doppler component, are more 
sparsely represented by using the STFT than by using the FT.

SIGNAL SEPARATION

To suppress wind turbine clutter in radar returns, we con-
sider the explicit representation of the radar return as a sum 
of the two components. For that purpose, we consider the 
generic problem where an observed signal, , is to be 
modeled as the sum of two components signals, x1 and x2:

	 (5)

The recovery of xi from x is ill conditioned: there are infi-
nite solutions. One may set x1 arbitrarily and set x2 = x − x1. 
Hence, the estimation of xi from x can be meaningfully per-
formed only when (1) they have distinct properties and (2) 
these properties are known or approximately known.

In this article, we use the MCA approach, which assumes 
only that the signals of the two components x1 and x2 admit 
sparse representations with respect to distinct transforms 
F1 and F2, respectively [9]. One formulation of MCA aims 
to find coefficients ai with respect to transforms Fi. In this 
formulation, the component signals are represented (synthe-
sized) in terms of the coefficients, as1

	 (6)

Therefore, instead of finding x1 and x2 such that x = x1 + 
x2, this formulation of MCA seeks a1 and a2 such that

	 (7)

This problem is just as ill conditioned as (5). To find a par-
ticular solution, MCA follows a variational framework and 
minimizes a cost function chosen so as to promote sparsity 

1	 	In (6), matrix Fi is usually considered an inverse transform, because 
it maps a set of coefficients in the transform domain to a signal. 
The notation here emphasizes the use of the transform to represent 
(synthesize) the sought component signals.

of ai. Once the optimal coefficients a*
1 and a*

2 are obtained, 
MCA then estimates the components xi as follows:

	 (8)

We assume that the columns of F1 and F2 form Parseval 
frames [16], i.e.,

	 (9)

where FH denotes the complex conjugate transpose of F. 
Many classic transforms for digital signal processing, such 
as the discrete Fourier transform (DFT), discrete cosine 
transform, modified discrete cosine transform, and ortho-
normal wavelet transforms, satisfy (9). Numerous over-
complete transforms—the STFT [17], the steerable pyramid 
[18], and others [19]—satisfy (9) as well. An overcomplete 
transform is one that represents a signal of length N sam-
ples by a set of M coefficients with M > N. Hence, it is repre-
sented by a “wide” matrix F of size N × M; i.e., F is neither 
square nor invertible. In this article, we use unitary and 
overcomplete transforms satisfying (9), because (9) simpli-
fies the subsequent sparse optimization by which MCA is 
implemented.

INAPPLICABILITY OF LEAST SQUARES

To find optimal coefficients a*
i satisfying (7), one may con-

sider a least squares (LS) approach. The LS approach may be 
formulated as

	 (10a)

	 (10b)

where  denotes the energy of ; i.e., .

The solution to the LS problem in (10) can be found  
explicitly and is given by

	 (11a)

	
(11b)

	 (11c)

where b is a vector of Lagrange multipliers. Assuming the 
transforms Fi satisfy (9), the LS solution in (11) can be written 
in a simplified form:
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	 (12a)

	 (12b)

Hence, the LS-optimal components , according to (8), 
are given by

	 (13a)

	 (13b)

However, these estimated component signal x̂i are only 
scaled versions of x. That is, x̂1 and x̂2 both have the same 
shape as x. They are only different from each other by a scal-
ing factor. Specifically, the LS solution has the property

	
(14)

In particular, no useful signal decomposition is accom-
plished using the LS formulation given in (10).

SPARSE OPTIMIZATION

Similar to the LS approach, one may consider an L1-norm 
minimization approach to find the optimal coefficients a*

i  
satisfying (7). The L1-norm approach may be formulated as

	 (15a)

	 (15b)

where  denotes the L1 norm of ; i.e., .

In contrast to the LS approach, the L1-norm approach in 
(15) is frequently effective for signal decomposition, as dem-
onstrated in the examples in the Experiments section later in 
this article and in the MCA literature [9], [20]. The minimiza-
tion of the L1 norm corresponds to the prior knowledge that 
the distribution of coefficients ai is non-Gaussian; in particu-
lar, they have “fatter” tails and more mass around zero in 
comparison with the Gaussian distribution.

The MCA concept, i.e., modeling a signal as the sum 
components that are efficiently (sparsely) represented in dis-
tinct domains, originated in image processing [21], [22], es-
pecially for the problem of separating spatially overlapping 
texture and geometry [23], [24], [25]. These techniques have 
also been used for audio [26], speech [27], and radar [10].

The solution to the L1-norm minimization problem in 
(15) cannot be obtained by solving a system of linear equa-

tions. That is, the L1-norm approach necessarily produces 
estimates x̂i that are nonlinear functions of x. It may be 
said that the L1-norm minimization provides a principled 
approach to nonlinear signal separation. However, the L1-
norm cost function in (15) is nondifferentiable (because the 
absolute value function is not differentiable at zero). Hence, 
the solution to (15) can be obtained only by iterative algo-
rithms.

In addition, the nonsmooth problem in (15) is a large-
scale problem: the number of optimization variables is at 
least 2N, where N is the length of the signal x. In this article, 
because we use the STFT with 50% overlapping (which is 
two times overcomplete) as one of the two transforms, there 
are 3N optimization variables.

For the sparse optimization approach in (15) to be useful 
in real-time applications, including radar, a fast algorithm 
must be available to compute its solution. Large-scale, nons-
mooth optimization problems are typically difficult to solve 
quickly and reliably. Fortunately, fast matrix-free algorithms 
are available to minimize L1-norm functions with guaran-
teed global convergence properties, e.g., [28], [29], [30]. The 
minimization of L1-norm cost functions, such as in (15), is 
a key computational problem in sparsity-based methods in 
signal processing and statistics, and the development of fast, 
robust algorithms to solve such problems has been an active 
research area [31]. For general nonsmooth convex problems, 
algorithms based on proximity operators [32] have been de-
veloped [33], [34] that are applicable to a range of problems.

SPARSE SIGNAL SEPARATION WITH SPLIT AUGMENTED 

LAGRANGIAN SHRINKAGE ALGORITHM

A particularly effective (fast, globally convergent) algorithm 
for L1-norm signal separation in (15) is based on the split aug-
mented Lagrangian shrinkage algorithm (SALSA) [35]. This 
algorithm is suitable for numerous ill-conditioned inverse 
problems arising in signal and image processing, particu-
larly, when the LS form of the problem admits a fast solution 
(SALSA is based on solving a sequence of LS problems). An 
adaptation of SALSA leads to an efficient algorithm for MCA, 
particularly when the utilized transforms Fi satisfy (9) [36]. 
SALSA, in turn, is based on the alternating direction method 
of multipliers (ADMM) [35], [37], which can be viewed as an 
application of the Douglas-Rachford algorithm [32], [38].

The first step of SALSA reformulates (15) by introducing 
auxiliary variables u1 and u2:

	 (16a)

	 (16b)

	 	 (16c)

	 	 (16d)
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This reformulation leads subsequently to a decoupling 
between the L1-norm cost function and the constraint in 
(7). The next few steps of SALSA invoke the augmented La-
grangian and the ADMM to obtain the iterative algorithm:

	

Repeat

	 (17a)

	
(17b)

	 (17c)

until convergence.
This algorithm alternates between minimizing with re-

spect to ui and ai. The convergence of ADMM to the global 
optimal solution, in a general setting, is proven by Eckstein 
and Bertsekas [39]. The positive parameter μ is analogous 
to a step size parameter. The vectors di are analogous to La-
grange multipliers. We initialize di = 0, but the algorithm is 
globally convergent, regardless of the initialization.

The solution to the minimization subproblem in (17a) is 
given in closed form by [ui]n = soft([ai + di]n, λ/μ), where soft 
is the soft-threshold function. In the complex plane, the func-
tion  is defined as

	 (18)

where T is the threshold value. This definition, when restrict-
ed to the real line, coincides with the usual soft-threshold 
function. The subproblem in (17b) is a constrained LS prob-
lem: the solution can be expressed explicitly in matrix form, 
which is further simplified using (9). With further simplifica-
tions [36], [40], the algorithm in (17) can be implemented as 
follows:

	 i = 1, 2

Repeat

	 i = 1, 2	 (19a)

			  (19b)

		  i = 1, 2	 (19c)

		  i = 1, 2	 (19d)

until convergence.

Each iteration of the algorithm in (19) calls for soft-
thresholding and forward and inverse transforms Fi and 
Fi

H. If the transforms admit fast implementations, then the 
algorithm in (19) is fast. Here, the optimization parameter μ 
dictate the convergence of the algorithm. The optimum val-
ues of λ1 and λ2 are data dependent and need to be selected 
based on the task at hand. In all examples discussed later 
in the Experiments section, we use the DFT and the STFT, 
both implemented using fast Fourier transforms (FFTs). For 
convenience, we also use a fixed number of 100 iterations 
of the algorithm, which we find sufficient for convergence. 
Because FFTs can be implemented efficiently, especially with 
parallel processors, and because a fixed number of iterations 
is effective, the algorithm in (19) can be used in applications 
requiring a fast, predictable run time.

ACCOUNTING FOR NOISE

Often, a noise component should be included in the signal 
model. In this case, the observed signal y is written as

	 (20)

where w is white Gaussian noise. Sparse optimization can 
again be used to estimate the component signals xi when 
they admit sparse representations with respect to distinct 
transforms. To account for the presence of noise, the L1-
norm approach may, in this case, be formulated as follows:

	 (21)

The use of the L1 norm to penalize a LS data fidelity term 
is sometimes called basis pursuit denoising [41] or the least 
absolute shrinkage and selection operator [42]. Fast algo-
rithms, as discussed earlier, including a SALSA-like algo-
rithm such as in (19), are also available for (21).

TRANSFORMS FOR SPARSE SIGNAL MODELING

For the experiments performed, we use the inverse DFT and 
the inverse STFT as transforms F1 and F2, respectively. The 
DFT may be implemented with or without zero padding; 
hence, F1 may be either a wide or a square matrix, respec-
tively. In the examples, the STFT is always implemented 
with 50% overlapping; hence, F2 is twice as wide as it is tall. 
The nonlinear separation algorithm in (19) depends on the 
transforms satisfying (9), which our DFT and STFT imple-
mentations satisfy in each example. The implementation of 
the STFT, so as to satisfy (9), is described in [17].

According to the first simulation discussed in the Experi-
ments section, the DFT can be used to sparsely represent the 
radar returns star(t) generated by constant-velocity targets. 
Likewise, the STFT can be used to sparsely represent the re-
turns swtc(t) generated by wind turbines, because the STFT is 
suitable for the representation of time-varying Doppler char-
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acteristics. Even if the coefficients a*
i, optimized according to 

(15), are not sparse in an ideal sense, the L1-norm methodol-
ogy achieves a degree of useful separation because of the 
relative sparsity of the component signals xi with respect to 
each of the transforms Fi. (That is, star is sparser with respect 
to the DFT than with respect to the STFT, and swtc is sparser 
with respect to the STFT than with respect to the DFT.)

EXPERIMENTS

In the following examples, the effectiveness of nonlinear 
L1-norm signal separation for the purpose of wind turbine 
clutter mitigation is demonstrated. The examples com-
prise (1) simulations; (2) radar data collected in house, 
wherein a customized fan (with turbinelike blades) serves 
as a stand-in for a wind turbine; and (3) wind turbine ra-
dar data provided by the U.S. Air Force Research Labora-
tory (AFRL).

Figure 4. 
(a) Frequency spectrum of estimated component Ŝtar(ω), includ-
ing targets and stationary ground clutter. (b) Frequency spectrum 
of estimated component Ŝwtc(ω), including wind turbine clutter 
and target–clutter residuals.

Figure 5. 
(a) Spectrogram of estimated component ŝtar(t) comprises targets 
and stationary ground clutter. (b) Spectrogram of estimated 
component ŝwtc(t) comprises wind turbine clutter and residual 
target–clutter.

Figure 6. 
Customized fan (wind turbine proxy) and radar used for experiment.
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SIMULATED ROTATING 

BLADE

We consider the simulated ra-
dar data s(t) described earlier 
and illustrated in Figures 2c 
and 3b. We use the algorithm 
in (19) to decompose the total 
signal, s(t) in (4), into a com-
ponent signal due to targets 
star(t) and a component sig-
nal due to the wind turbine 
swtc(t). The estimated signal 
components ŝtar(t) and ŝwtc(t) 
are obtained using 100 itera-
tions of the algorithm in (19), 
at which point the algorithm 
was found to have converged. 
In this simulation, we used l1 
= 0.8, l2 = 0.2, and μ = 0.5.

The frequency spectra 
Ŝtar(ω) and Ŝwtc(ω) of the esti-
mated signal components are 
illustrated in Figure 4. Ob-
serve in Figure 4a that Ŝtar(ω)  
comprises moving targets, 
ground clutter, and stationary 
noise. However, as shown in 
Figure 4b, Ŝwtc(ω) comprises 
wind turbine clutter (distin-
guished by its time-varying 
Doppler characteristics), a 
fraction of the target energy, 
and stationary noise. This noise arises in both estimated sig-
nals because we have used (19) rather than (21). In this sim-
ulation, we have set the parameter l so that the estimated 
target signal component star contains negligible observable 
wind turbine clutter. Depending on the selected l value, 
there may be more or less leakage between the two estimat-
ed components signals; i.e., a fraction of ŝtar(t) may be visible 
in ŝwtc(t), or vice versa.

To further illustrate the simulation result, the spectro-
grams of the estimated component signals ŝtar(t) and ŝwtc(t)  
are shown in Figure 5. In Figure 5a, the wind turbine clut-
ter has been effectively suppressed and the moving targets 
and ground cutter are clearly visible. There is no residual 
simulated wind turbine clutter in Figure 5a. As a final step, 
the ground clutter component can be suppressed using tra-
ditional band-pass filtering, Doppler filtering, or adaptive 
Doppler filtering.

EXPERIMENTAL RADAR

To complement the simulation, an experiment was conduct-
ed at C&P Technologies using an in-house S-band frequen-
cy-modulated continuous wave Doppler radar centered at 

2.4 GHz with 10 mW of power, similar to that described in 
[43], [44]. We used a large customized fan with three blades 
as a proxy for a wind turbine, as shown in Figure 6. Its dis-
tance to the radar was adjusted appropriately so that it pre-
sented a large surface area.

The radar unit is powered by a 5-V battery supply and is 
connected via an audio cable to a computer running MAT-
LAB. The computer samples the output of the Doppler radar 
using its sound card at a sampling rate of 96 k samples/s. A 
15-kHz antialiasing low-pass filter is installed between the 
radar and the computer. Single- and multiblade experiments 
have been conducted using the fan as a stand in for a wind 
turbine.

To evaluate the MCA approach for interference mitiga-
tion, a flying metal object was employed as a moving tar-
get in the presence of the rotating blade (fan). Figures 7a–7c 
show the acquired radar data time series s(t), its frequency 
spectrum S(ω), and its spectrogram S(t, ω). (A 40-dB dynam-
ic range is used for displaying the spectrograms.) Figure 7 
shows that the signatures of the target and fan overlap in 
the time domain, in the frequency domain, and in the time–
frequency domain. Conventional frequency-filtering tech-
niques are ineffective for the separation of the fan and target, 

Figure 7. 
Separation of signal components that overlap in time, frequency, and time–frequency. The acquired 
radar data comprise returns produced by a rotating blade and an accelerating object. (a), (d), and (g) 
Raw acquired radar data s(t) and components ŝwtc(t) and ŝtar(t). (b), (e), and (h) Frequency spectra of 
the data and components signals. (c), (f), and (i) Spectrograms of the data and component signals. The 
separation is achieved based on distinct time-varying Doppler signatures.
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because the target is mostly buried within the return due to 
the fan.

We applied the algorithm in (19) to the radar data s(t). 
For transform F1, we used the DFT with no zero padding; for 
transform F2, we used the STFT with a frame length of 256 
samples and 50% overlapping. We set l1 = 0.3, l2 = 0.7, and 
μ = 10. The algorithm was run for 100 iterations, at which 
point the algorithm was found to have converged. The esti-
mated component signals ŝwtc(t) and ŝtar(t) are obtained using 
the DFT and STFT, respectively. Figures 7d–7f show ŝwtc(t), 
and Figures 7g–7i show ŝtar(t). As illustrated, the algorithm is 
able to achieve reasonable separation of the accelerating ob-

ject from the fan clutter. Inter-
estingly, any thresholding op-
eration in the time, frequency, 
or STFT domains is unable to 
separate the target from the 
clutter.

In the in-house experi-
ment, the target component 
is estimated using the STFT, 
whereas in the simulation of 
the rotating blade discussed 
previously, the target compo-
nent was estimated using the 
DFT. Thus, the roles of FFT 
and STFT are reversed in the 
experimental data set, and it 
follows that the model in (3) 
also reverses the roles of the 
two transforms. This is under-
standable because by design, 
the target was accelerating 
and consisted of only a short 
burst, whereas the single 
wind turbine model was ro-
tating with a constant velocity. 
Nevertheless, the experiment 
is supportive of the notion 
that components with distinct 
time-varying Doppler spectra 
signatures can, in many cases, 
be separated using the MCA 
approach in (15), as imple-
mented by the algorithm in 
(19).

 WIND FARM CLUTTER

Figure 8 shows radar data 
containing wind turbine clut-
ter provided by the AFRL 
(Wright-Patterson Air Force 
Base, Dayton, OH). For this 
analysis, we set l1 = 0.45, l2 = 
0.55, and μ = 0.05. For F1, we 
used the DFT; for transform 

F2, we used the STFT with a frame length of 16 samples and 
50% overlapping. The algorithm was run for 100 iterations, 
at which point the algorithm was found to have converged.

The area of detail is outlined with dashed lines in Figure 
8a. In the figure, the locations of known wind turbines, and 
their distances from the radar, are indicated. Figures 8b, 8d, 
and 8f show the area of detail of Figures 8a, 8c, and 8e, respec-
tively. As seen in Figure 8b, returns from the wind turbines 
result in Doppler streaking. These streaks have the potential 
to obscure moving targets. The success of the mitigation of 
wind turbine clutter is shown in Figure 8d. To simulate a 

Figure 8. 
Real radar data containing wind turbine clutter provided by the AFRL.
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target masking scenario, a moving target (vtar = 9 m/s) was 
injected at a distance of 43.44 km from the receiver, where its 
Doppler signature exactly overlaps with the dynamic wind 
turbine clutter (Figure 8a and 8b). Figure 8b shows the area 
of detail of the injected target region. The Doppler streak-
ing because of the wind turbine obscures the detection of the 
injected target. The success of the proposed algorithm under 
this scenario can be seen in Figure 8d, where the target is 
clearly visible, in contrast to Figure 8b.

OTHER APPLICATIONS

In addition to the wind turbine clutter mitigation, the pro-
posed method may be useful to mitigate other types of dy-
namic clutter. One such application is illustrated next in the 
context of over-the-horizon radar (OTHR).

OVER-THE-HORIZON RADAR

This section considers the problem of suppressing Doppler-
streak artifacts arising in range–Doppler profile images 
when strong transient interferences are present. An example 
of Doppler streaking, when conventional Doppler process-
ing is used, is shown in Figure 9a. These data were acquired 
from an OTHR system. These Doppler streaks hinder the 
utility of the range–Doppler profile and may obscure mov-
ing targets of interest. This section demonstrates that MCA 
can be used as a preprocessing step to attenuate Doppler 
streaks [10]. The method consists first of using MCA to de-
compose the IQ data for each range bin into the sum of a two 
components: component s1(t) is modeled as sparse with re-
spect to the STFT, and component s2(t) is modeled as sparse 
with respect to the FFT. After the decomposition is per-
formed using the sparse optimization algorithm in (19), the 
range–Doppler profile is generated using component s2(t) by 
conventional Doppler processing. Using this technique on 
the IQ data of each range bin, we obtain the range–Doppler 
profile shown in Figure 9b, in which the streaking artifacts 
are substantially attenuated.

To clarify the cause of the Doppler streaking and to illus-
trate the role of MCA, it is informative to inspect the IQ data 
for one of the range bins. Range bin 52 in Figure 9a exhibits 
a fair degree of Doppler streaking. The complex IQ data s(t), 
corresponding to this range bin, is shown in Figure 10a (only 
the real part is shown). It can be seen that s(t) exhibits a fairly 
nonstationary behavior. During the first half of the dwell, 
s(t) is essentially a single low-frequency component, perhaps 
because of stationary clutter. In the second half of the dwell, 
s(t) also consists of higher-frequency energy, part of which 
is bursty. The nonstationary behavior leads to the Doppler-
streak artifact.

Figures 10c and 10e show the optimized component sig-
nals s1(t) and s2(t), respectively. The components satisfy the 
constraint, s(t) = s1(t) + s2(t). The component s1(t) comprises 
the most nonstationary characteristics of s(t); it does not 
exhibit sustained oscillations but consists of brief pulses of 
energy at disparate frequencies. However, the component 
s2(t) is more nearly stationary. The decomposition of the IQ 
data can be further illustrated in the frequency domain. The 
spectra of s(t) and of the component signals s1(t) and s2(t) are 
shown in Figures 10b, 10d, and 10f, respectively. The spectra 
of the two components overlap, yet the algorithm achieves 
an effective separation. This decomposition is achieved with 
minimal modeling; only the relative sparsity in two respec-
tive transform domains is assumed.

Using MCA in this way, nonstationary interference can 
be (partially) attenuated in the IQ data. Conventional Dop-
pler processing (taper+FFT) can then be applied to the more 
stationary component. The result of applying this pre-Dop-
pler processing procedure, as illustrated in Figure 9b, sub-
stantially reduces Doppler streaks, yet the procedure does 
not appear to adversely affect the features and potential tar-
gets of interest.

Figure 9. 
Range–Doppler profile formed using raw IQ data and IQ data 
preprocessed with nonlinear signal separation to suppress Dop-
pler streaking.
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CONCLUSION

This article considers the problem of detecting moving tar-
gets buried in nontraditional wind turbine clutter using 
sparse optimization, specifically the MCA framework. Two 
transform domains—the FT and the STFT domains—are lev-
eraged, wherein the constant-velocity targets and the wind 
turbine-like clutter, respectively, are (relatively) sparse. 
SALSA, adapted to MCA, is prescribed for solving the cor-
responding large-scale, nonsmooth L1-norm optimization 
problem.

We validate the approach using an experimental in-
house system consisting of a custom-built radar and a cus-
tomized fan. The results suggest that sparse optimization is 
a promising approach for separating radar return compo-
nents by exploiting their time-varying Doppler characteris-
tics. A numerical experiment is presented using a set of radar 
data exhibiting wind farm clutter. In addition, the method is 
applied to OTHR data for transient interference mitigation.

The L1-norm minimization approach shows promise as 
a methodology for addressing the detection of targets and 
challenging clutter. The minimization involves appropriate 
selection of certain optimization parameters. How to adap-
tively select them for a specific data set is an open question 
that requires further investigation. 
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