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Wavelet Transform with Tunable Q-Factor
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Abstract—This paper describes a discrete-time wavelet trans-
form for which the Q-factor is easily specified. Hence, the
transform can be tuned according to the oscillatory behavior of
the signal to which it is applied. The transform is based on a real-
valued scaling factor (dilation-factor) and is implemented using a
perfect reconstruction over-sampled filter bank with real-valued
sampling factors. Two forms of the transform are presented.
The first form is defined for discrete-time signals defined on all
of Z. The second form is defined for discrete-time signals of
finite-length and can be implemented efficiently with FFTs. The
transform is parameterized by its Q-factor and its oversampling
rate (redundancy), with modest oversampling rates (e.g. 3-4 times
overcomplete) being sufficient for the analysis/synthesis functions
to be well localized.

Index Terms—wavelet transform, constant-Q transform, filter
bank, Q-factor.

I. INTRODUCTION

Ideally, the Q-factor! of a wavelet transform should be
chosen in part according to the oscillatory behavior of the
signal to which it is applied. For example, when using wavelets
for the analysis and processing of oscillatory signals (speech,
EEQG, etc), the wavelet transform should have a relatively high
Q-factor. On the other hand, when processing signals with
little or no oscillatory behavior (such as a scan-line from
a photographic image), the wavelet transform should have
a low Q-factor. However, other than the continuous wavelet
transform, most wavelet transforms provide little ability to tune
the Q-factor of the wavelet. The dyadic wavelet transform has
a low Q-factor and is therefore suitable for non-oscillatory (i.e.
piecewise-smooth) signals [14].

This paper develops a wavelet transform for discrete-time
signals for which the Q-factor is easily tunable. The transform,
which we denote as the tunable-Q wavelet transform (TQWT),
is parameterized by its Q-factor and its oversampling rate
(redundancy). The TQWT is developed using perfect recon-
struction over-sampled filter banks with real-valued scaling
factors. Two forms of the transform are presented. The first
form is defined for discrete-time signals defined on all of Z.
The second form is defined for discrete-time signals of finite-
length and can be implemented efficiently with FFTs. Modest
oversampling rates (e.g. 3-4 times overcomplete) are sufficient
for the analysis/synthesis functions of the TQWT to be well
localized.
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IThe Q-factor of an oscillatory pulse is the ratio of its center frequency to
its bandwidth.

The TQWT is closely related to the rational-dilation wavelet
transform (RADWT) [5]. Like the RADWT, the TQWT is fully
discrete, has the perfect reconstruction property, is modestly
overcomplete, is developed in terms of iterated two-channel
filter banks, and implemented using the DFT. In contrast to
the RADWT, the TQWT is simpler conceptually, can be more
efficiently implemented using radix-2 FFTs, and its parameters
are more easily related to the Q-factor of the transform. The
user can directly specify the Q-factor and redundancy of the
TQWT.

The filters, on which the TQWT is based, do not have
rational transfer functions. They are specified directly in the
frequency domain. Like the fractional spline wavelet transform
[9] which is also based on filters with non-rational transfer
functions, the DFT provides 1) a means for defining the
transform for finite-length discrete data which preserves the
perfect reconstruction property exactly, and 2) an efficient
implementation using FFTs.

A. Related work

A discrete-time wavelet transform with a continuous scaling
parameter is presented in [30]. The transform, based on scaling
of discrete-time signals by arbitrary scaling factors using the
DTFT, is similar to the continuous wavelet transform, but
developed specifically for discrete-time signals. However, the
transform of [30] lacks a computationally efficient imple-
mentation. Additionally, the scaling parameter needs to be
discretized in practice, which requires a departure from the
theory presented in [30].

A two-channel perfect reconstruction critically-sampled fil-
ter bank with arbitrary scaling factors has been described
in [23]; however, the filter bank consists of ideal low-pass
and high-pass filters, hence the time-domain responses (sinc
functions) are not well localized. If the filter bank of [23] is
used to implement a wavelet transform, the wavelets will not
be well localized.

Another method to develop wavelet transforms with ad-
justable Q-factors constrains the scaling factor to be rational
[2], [4], [7], [16]. In this case, the transform can be constructed
using perfect reconstruction filter banks with fractional rate
samplers [5], [6], [8], [18], [21], [22]. Other than [5], [6], pre-
vious work taking this approach concentrate on the critically-
sampled case, hence do not benefit from advantages that come
with some redundancy (near shift-invariance, more flexibility
in design of filter bank/wavelets, etc).

Several other methods are useful and relevant to mention.
For example, wavelet packets possess the computational effi-
ciency and perfect reconstruction properties of the filter banks
from which they are constructed, while providing flexibility for
designing customized frequency decompositions, as in [13],
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[17], [27] for example. Other filter bank structures, and their
combination with FFT processing, have been proposed for
constant-Q transforms [10], [11], [15], [24], [28]. Finally, dis-
crete/approximate implementations of the continuous wavelet
transform, such as described in [19], are easily tunable and can
be designed to approximately satisfy the perfect reconstruction
property. In comparison, the TQWT is the result of exploring
how well one can develop a tunable Q-factor wavelet trans-
form based on the structure of the discrete (dyadic) wavelet
transform (DWT) [14].

B. Organization of paper

Section II defines low-pass and high-pass scaling of
discrete-time signals, on which the tunable-Q wavelet trans-
form is based. Section III introduces a two-channel filter
bank with real-valued scaling factors, develops the perfect
reconstruction (PR) conditions, and gives a low-pass/high-pass
pair of filters satisfying the PR conditions. Section IV presents
the discrete-time wavelet transform with real-valued scaling
(dilation) factor, and analyzes its relevant parameters (Q-factor,
etc). This form of the TQWT, developed using the DTFT, and
defined for discrete-time signals defined on all of Z, is not
readily implemented. Section V presents a second form of the
TQWT that is defined for discrete-time signals of finite-length.
This form is readily implemented using the DFT. In Sec. V
we also show how the TQWT may be implemented using only
radix-2 FFTs, in order that the transform be computationally
efficient.

C. Notation

This paper deals exclusively with discrete-time signals, i.e.,
x(n) defined on n € Z. The discrete-time Fourier transform
(DTFT) of the discrete-time signal x(n) is defined as

oo

Z x(n) exp (—=jnw).

n=—oo

X(w) =

Note that the DTFT X (w) of a discrete-time signal x(n) is
always a 2m-periodic function of w; therefore, it is sufficient
to specify X (w) for |w| < .

A finite-length discrete-time signal x(n) defined for 0 <
n < N — 1 will be denoted by a lower case bold letter, x =

[2(0),..., (N — 1)]. The discrete Fourier transform (DFT)
of the N-point sequence x is defined as
N-1 o
X0 = et ew (k).

for 0 < k < N — 1. The DFT of a finite-length signal x
will be denoted by an upper case letter, X = DFT{x}, with
X =[X(0),..., X(N —1)]. The unitary DFT (uDFT) is the
DFT normalized so as to be unitary:

N-1
X(k) = Tlﬁ Z x(n) exp (—j?\?nk) , (2)
n=0

for 0 < k < N — 1. We use the notation X = uDFT{x}.
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(c) Low-pass scaling with ac > 1.

Fig. 1. Low-pass scaling with parameter . The output signal has a sampling
rate of o fs where fs is the sampling rate of the input signal.

II. SCALING
A. Low-pass Scaling

By low-pass scaling, we refer to frequency-domain scaling
that preserves the low-frequency content of the signal. For low-
pass scaling with scaling parameter «, denoted as in Fig. 1,
the output signal has a sampling rate of « fs; where f; is the
sampling rate of the input signal. Depending on the scaling
parameter, low-pass scaling either increases or decreases the
sampling rate of the signal.

When 0 < a < 1, low-pass scaling with parameter « is
defined as:

Y(w)=X(aw), |w| <.

When a > 1, low-pass scaling is defined as:

Y(w) = X(aw), |w|<7/a
0, /o < |w| <.
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(a) High-pass scaling block diagram
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(c) High-pass scaling with 8 > 1.

Fig. 2. High-pass scaling with parameter /3. The output signal has a sampling
rate of 3 fs where fs is the sampling rate of the input signal.

Note that for low-pass scaling, Y (0) = X(0). Low-pass
scaling preserves the signal behavior around dc (w = 0).

Low-pass scaling is essentially the conventional discrete-
time rate changer where the interpolation filter is an ideal low-
pass filter [20, Eqn. 13.27]. However, here we allow the rate-
change « to be non-rational.

B. High-pass Scaling

By high-pass scaling, we refer to frequency-domain scaling
that preserves the high-frequency content of the signal. For
high-pass scaling with scaling parameter /3, denoted as in
Fig. 2, the output signal has a sampling rate of J f; where
fs is the sampling rate of the input signal.

When 0 < S < 1, high-pass scaling with parameter 3 is

(RO}l

Fig. 3. The systems are equivalent when Feq(w) is defined by (3).

= —{Fa}wsi}

Fig. 4. The systems are equivalent when Feq(w) is defined by (4).
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The systems are equivalent when Feq(w) is defined by (5).
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Fig. 6. The systems are equivalent when Feq(w) is defined by (6).

Fig. 5.

4’ Fi(w

<~ —»’ Feq

defined as:
_ ) X(Bw+(1-p)m),
v ={ Xtoo 0B,

When £ > 1, high-pass scaling is defined as:
0, wl < =1/8)=

X(Bw+ (1 =p)m),
1-1/)r<w<m

X(Bw—(1=p)m),

T <w<

O<w<m
—T<w<0

Y(w) =

—(1=1/B)m.

Note that for high-pass scaling, Y (w) = X(m). High-pass
scaling preserves the signal behavior around the Nyquist
frequency (w = ). High-pass scaling is illustrated in Fig. 2
for # < 1 and for g > 1.

C. Scaling Identities

Several identities will be useful in subsequent sections. First,
when o < 1, we have the system equivalence illustrated in
Fig. 3 where the ‘equivalent’ frequency response is given by

Paww—{FW”

0, am < |w| <.

lw| < am

3)

Similarly, when 8 < 1, we have the system equivalence
illustrated in Fig. 4 where

R = { G WSO

Fw), Q1-p0)m<|w| <.
The wavelet transform is implemented by concatenating
filter banks; therefore we need the following identity. When

“4)
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Analysis and synthesis filter banks for the tunable-Q wavelet transform. The subband signal vg(n) has a sampling rate of o fs where fs is the

sampling rate of the input signal x(n). Likewise, the subband signal v;(n) has a sampling rate of 3 fs. LPS and HPS represent low-pass scaling and high-pass
pling p g g pling P p g gn-p

scaling respectively.

a1 <1, ag < 1, we have the system equivalence illustrated
in Fig. Swhere

Fg(w) = {51(W)F2(w/a1),

Similarly, when o < 1, 8 < 1, we have the system equivalence
illustrated in Fig. 6 where

|w| S Q10 T
oo < |w| <.

(&)

0) ‘W|<(1—B)aﬂ'
F(w)khw/a), 1-Bar<|wf<ar
0, ar < |w| < 7.

Foq(w) ==

(6)

IITI. FILTER BANK

The tunable-Q wavelet transform will be based on the
multirate filter bank illustrated in Fig. 7. The low-pass sub-
band signal vg(n) and high-pass subband signal v;(n) have
sampling rates of afs and S fs respectively, where f; is the
sampling rate of the input signal z(n). The scaling parameters
satisfy

0<pB<1, 0<axl

so as to ensure the wavelet transform will not be overly
redundant. In order that perfect reconstruction be possible,
it is necessary that o + S > 1. In order that the filter
responses be well localized, we ask that the filter bank be
strictly oversampled; so we require that

a+ 5> 1

For perfect reconstruction, the frequency responses H;(w),
¢ =0, 1, must be chosen so that the reconstructed signal y(n)
equals the input signal z:(n). Using the low-pass and high-pass
scaling relations defined in Sections II-A and II-B, the Fourier
transforms (DTFT) of yo(n) and y; (n) in Fig. 7 are given by

_ [ HoWPX(w), |wl<an
Yo(w)—{ 0,0 an < |w| <7 )
and
_ 10 wl < (1 =)
0 ={ Iy xw, 6o premen ©
Hence, the Fourier transform of y(n) is given by
| Ho(w)[* X (), weP
Y(w) = { (How)]* + [Hi(w)]*) X (w), weT
| H(w)? X (w), wes

where the intervals are defined as

P={lwl<(-p)7}
T={1-8)7m<|w|<ar}
S={ar <|w| <7}

Note that these three sets are a partition of {|w| < 7}, as
illustrated in Fig. 8.

Perfect reconstruction requires that Y (w) = X (w). There-
fore, for perfect reconstruction, the low-pass filter Ho(w)
should satisfy

[Ho(w)| =1, |w[<(Q-=8)7 ©)
Hy(w) =0, arm <|w| <7 (10)
and the high-pass filter H; (w) should satisfy
Hy(w) =0, lw < (1-=-p)7 (11)
|Hqi(w)| =1, ar < |wl <7 (12)

as illustrated in Fig. 8b. Additionally, the transition bands of
Hy(w) and of H;(w) must be chosen so that

|Ho(w)]? + [Hy (W) =1, weT. (13)

The interval P constitutes the pass-band of Hy(w) and the
stop-band of H;(w). The interval S constitutes the stop-band
of Hy(w) and the pass-band of H;(w). While the interval T
constitutes the transition-bands of the filters.

The transition bands of Hy(w) and H;(w) can be con-
structed using any 2w-periodic power-complementary func-
tion. If a function f(w) satisfies

0?(w) + 0% (1 —w) =1, (14)

then by scaling and translating #(w) and O(m — w) from
the interval [0, 7] to the interval [(1 — 3) 7, an] we obtain
transition functions for Hy(w) and H;(w) respectively so that
(13) is satisfied. Specifically, the transition bands are given in
terms of 6(w) by

How) =o( 0=, (15)
Hy(w) = a(a‘fﬁ_“’ 1) , (16)

for (1—8)7m < w < aw. As in [5, Eqn. 28], we choose to use
the Daubechies frequency response [14] with two vanishing
moments,

O(w) =0.5 (1 +cosw) V2 —cosw, |w| <, (17)
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(d) Fourier transforms after scaling.

Fig. 8.

which satisfies (14).

Given « and $3, the low-pass filter Hyp(w) given by (9), (10)
and (15), and the high-pass filter H;(w) given by (11), (12)
and (16), together form a perfect reconstruction pair of filters
for the two-channel filter bank illustrated in Fig. 7.

As illustrated in Fig. 8b, the two frequency responses are
identically unity in their pass-bands and identically zero in
their stop-bands. But they are not ideal low-pass and high-pass
filters due their transition bands over the common interval (1—
B) 7 < |w| < aw. Note that the width of the transition band,
(a+ B — 1), is exactly the amount by which the filter bank
exceeds the critical sampling rate. If a4 8 = 1, then the filter
bank in Fig. 7 is critically-sampled, the transition-band has
width zero, Hy(w) and Hy(w) are ‘ideal’ filters, and their time-
domain responses (being sampled sinc functions) are poorly
localized; this is not the sought behavior. It is important that
a + 3 be strictly greater than unity so that the time-domain

Behavior of the two-channel analysis filter bank, illustrated using o = 0.8 and 8 = 0.6.

responses, ho(n) and hq(n), are well localized.

Figure 8 illustrates the behavior of the two-channel filter
bank. Figure 8a illustrates the Fourier transform (DTFT),
X (w), of a discrete-time signal. Figure 8b illustrates the low-
pass and high-pass frequency responses. Figure 8c illustrates
the Fourier transforms after filtering; and Fig. 8d illustrates
the Fourier transforms after subsequent low-pass and high-
pass scaling. Note that after scaling, the spectra occupy the
full frequency band.

IV. WAVELET TRANSFORM

The tunable-Q wavelet transform (TQWT) is implemented
by iteratively applying the two-channel filter bank on its low-
pass channel. For example, a three-stage wavelet transform is
illustrated in Fig. 9. The wavelet transform inherits the perfect
reconstruction property from the two channel filter bank. We
denote the wavelet subband signals by wl )(n) for j > 1, with
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stage 2 — w3

x — stage 1 — w2

> WD

Fig. 9. Wavelet filter bank. Each stage consists of the two-channel analysis
filter bank in Fig. 7.

S T T

J stages

— %Héﬁ(w)HLPS aj}—’

Fig. 10. The systems are equivalent where Héj >(w) is given by (18).

7 = 1 being the high-pass subband produced by the first stage
(as in Fig. 9). The sampling rate at subband j is given by
Bai~! f, where f, is the sampling rate of the input signal.

To derive the frequency decomposition provided by the
wavelet transform, we need to analyze the iteration (cascade)
of several filters and scalings. Using the basic scaling identities
in Section II-C, we can obtain the following identities.

When o < 1, we have the system equivalence illustrated in
Fig. 10 where

j—1
; Ho(w/a™), |wl <o
Hé])(w) — 71_:[0 0( / ) | ‘

0, ol < |w| <

(18)

When o« < 1, 8 < 1, we have the system equivalence
illustrated in Fig. 11 where the equivalent frequency response
is given by

Hl(j)(w) =
j—2
Hy(w/a?™) T] Holw/a™),
m=0
1-Baitr<|w <ad™lrn (19)
0, for other w € [—m, 7]

This frequency response relates the input signal z(n) to
the subband w®)(n). Figure 12 illustrates the frequency re-
sponse [ {j ) (w). Figure 13 illustrates the frequency responses
Hl(j)(w), for 1 < j < J of a J-level transform, for four
different values of («, 8).

P (w)

| | |
\ 1 T ] W

0 (1—6)0&7171' al—lg T

Fig. 12.  The subband-j frequency response Hi‘j)(w), given by (19), is
non-zero only on the interval indicated.

The samples of discrete-time wavelet 1(t) are obtained as
the inverse DTFT of H 1(] ) (w) in the limit as j goes to infinity.

A. Parameters

Figure 13 illustrates the frequency decomposition of the
wavelet transform for four choices of the filter bank parameters
« and B. By varying « and /3, the type of frequency decompo-
sition can be adjusted with some flexibility. In particular, the
Q-factor can be continuously tuned. The following discussion
clarifies the relationship between the parameters « and 3, and
the characteristics of the resulting frequency decomposition.

Oversampling rate (redundancy): The two-channel filter
bank illustrated in Fig. 7 is oversampled by a factor of o+ .
If the two-channel filter bank is iterated on its low-pass output
ad infinitum so as to implement a wavelet transform, then the
wavelet transform is oversampled by a factor of

B

r:l_a (20)

which we call the redundancy r of the wavelet transform.
This expression is obtained by noting that the sampling rate
at subband j (with j > 1) is given by Ba?~! f, where f is
the sampling rate of the input signal. The sum of the sampling
rates over all subbands j > 1 gives /(1 — «) fs and hence
the oversampling rate in (20).

Center frequency: From (19), the level-j frequency response,
denoted H §J )(w), is non-zero in the interval (wy,ws) where

wi=1-8)atr, w=ao"tr, (21

as illustrated in Fig. 12. The center frequency at level j is
(approximately) the average of w; and ws,

2-p
T
2«

1 .
We = §(w1 +wy) =d’ (22)

e s |

—»’ Ho(w

) }—»’ LPS o }—»’ Hi(w) }—»’ HPS 8 }—»

7 — 1 stages

= H{ ) |{Lps ar-1 || PS5 |

Fig. 11. The systems are equivalent where H§j> (w) is given by (19).
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Fig. 13.
frequency response has been normalized to have unity peak gain.

The units of w, are radians per sample. In terms of the input
signal sampling rate f,, the center frequency at level j is

i2-5

fc:a 4o

[ (23)
Bandwidth: From Fig. 12, it can be seen that the bandwidth of
the frequency response producing subband j is approximately
half the width of the interval over which the frequency
response is non-zero. Using this approximation, the bandwidth
is given by

1 1.
BW = §(w2 —wp) = §ﬁaﬁ—1 . (24)

Q-factor: As the tunability of the Q-factor is one motivation
for the wavelet transform described here, it is useful to express
the Q-factor in terms of « and (. Using (22) and (24), the Q-
factor of the level-j frequency response is given by
we 2-0

BW B

Q= 25)

FREQUENCY RESPONSES - 7 LEVELS

0 /4 /2 3n/4 T
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WAVELET
0.1
0.05r
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-0.1F
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FREQUENCY RESPONSES - 13 LEVELS

0 /4 /2
FREQUENCY (o)
WAVELET

3n/4 T

0.1
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) Q=4,7=3(a=0.867, B=0.4)

Frequency decomposition of the wavelet transform with tunable Q-factor, implemented by iteration of the filter bank in Fig. 7. In the figure, each

Note that the Q-factor does not depend on the level, j. As
expected, the wavelet transform is a constant-Q transform.
Moreover, it depends only on the filter bank parameter .
(Note, however, that (22)-(25) are not valid for the first level
(y = 1) because, as illustrated in Fig. 13, the level-1 frequency
response is wider than those of subsequent levels. From (19),
the level-1 frequency response Hl(l)(w) is just the high-pass
frequency response Hi(w).)

Selecting o and 5: The foregoing discussion suggests how
the filter bank parameters « and ( should be chosen so as
to achieve a wavelet transform with the desired Q-factor and
oversampling rate r. Namely, using (20) and (25), we can
express « and [ in terms of the Q-factor and redundancy:
2 B
8= o1 a=1 -
The specified Q-factor should be chosen subject to @@ > 1.
Setting () = 1 leads to a wavelet transform for which the
wavelet resembles the second derivative of a Gaussian, as
illustrated in Fig. 13a. Higher values of () lead to more

(26)
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oscillatory wavelets. The specified oversampling rate » must be
strictly greater than 1. If 7 is close to unity, then the transition
bands of Hy(w) and Hy(w) will be relatively narrow and the
time-domain response (wavelet) will not be well localized.
(For r =~ 1, the wavelet will resemble the sinc wavelet.) In
order to avoid this issue, it is sufficient to select » > 3. With
r > 3, the pass-band of the level-j frequency response will
not have a ‘flat top’ (wherein the frequency response is equal
to a constant over a sub-interval of its pass-band) as discussed
in [5].

Note that neither () nor r need be integers (although integer
values are used Fig. 13).

Vanishing moments: When processing piecewise smooth
(locally-polynomial) signals, the number of vanishing mo-
ments of a wavelet transform is of some interest. On the
other hand, when processing oscillatory signals, the number
of vanishing moments does not seem to be particularly rele-
vant (as vanishing moments relate specifically to polynomial
approximation properties). Therefore, we discuss the vanishing
moments properties of the TQWT only briefly. If § = 1 (that
is, @ = 1) then the TQWT has two vanishing moments due to
the use of the Daubechies filter with two vanishing moments
in (17). (Using a Daubechies filter with K vanishing moments
in (17) would yield a TQWT with K vanishing moments). If
B < 1 (that is, @ > 1), then the TQWT has infinitely many
vanishing moments; this is because the stop-band of the filter
Hy(w) is identically zero for |w| < (1 — ), an interval
containing the origin.

V. SIGNALS OF FINITE-LENGTH

The form of the tunable Q-factor wavelet transform
(TQWT) described in Sec. IV calls for unrealizable filters. (If
the frequency response of a filter is constant-valued over some
interval, as above, then the filter can not be implemented using
a finite-order difference equation.) However, the transform
can be adapted to finite-length signals in such a way that
the implementation is relatively straight-forward. This section
develops the TQWT for discrete-time signals of finite-length.
This form of the transform is readily implemented using the
DFT and maintains the perfect reconstruction property. For this
DFT-based implementation, one still has the ability to finely
tune the Q-factor of the transform.

In order to adapt the tunable Q-factor wavelet transform
to finite-length signals, the definition of low-pass scaling and
high-pass scaling in Sec. II-A and II-B is adapted to finite-
length signals in Sec. V-A and V-B. Section V-C adapts the
filter bank analysis of Sec. III to the finite-length case and
develops the corresponding perfect reconstruction conditions.
Section V-D describes the TQWT for finite-length signals.
Section V-E describes how the finite-length TQWT can be
implemented using only radix-2 FFTs.

A. Low-pass scaling: finite-length signals

To define low-pass scaling for finite-length signals, it is
convenient to specify the length of the input and output signals
explicitly. We will use the notation N : Ny where N denotes

the length of the input signal, and Ny denotes the length of
the output signal. Then, when Ny < N, scaling constitutes a
reduction of the sampling rate.

Let 2(n) be an N-point signal, defined for 0 <n < N —1.
If Ngo < N, and Ny and N are both even, then we define
low-pass scaling N : Ny as

Y(k) = X(k),

Y(No/2) = X(N/2)

Y(No— k)= X(N - k), 1<k<Ny/2-1
where X (k) and Y (k) denote the DFTs of input and output

signals. Similarly, if Ny > N, then we define low-pass scaling
N:N() as

0<k<Ny/2—1

Y (k) = X (k), 0<k<N/2-1
Y (k) =0, N/2 <k < Noj2—1
Y(No/2) = X(N/2)

Y (No— k) =0, N/2 <k < Ngj/2—1

Y(No — k) = X(N — k),

This constitutes an increase of the sampling rate. It is essen-
tially DFT-based interpolation.

Low-pass scaling is illustrated in Fig. 14. Note that if Ny >
N, then low-pass scaling N : Ny is invertible, with the inverse
being low-pass scaling Ny : N. Low-pass scaling is defined so
as to preserve X (Ny/2) so that this inverse property holds.
Note that in the filter bank of interest, low-pass scaling follows
low-pass filtering which annihilates X (Ny/2), so this DFT
value is not propagated in the TQWT.

1<k<N/2-1.

B. High-pass scaling: finite-length signals

High-pass scaling preserves the spectrum of the signal
around the Nyquist frequency. For an N-point signal, that
corresponds to the DFT coefficient with index k = N/2.

Let 2(n) be an N-point signal, defined for 0 <n < N —1.
If N7 < N, and N1, N are both even, then we define high-pass
scaling V:N; as

Y (0) = X(0)
Y(Ny/2— k)= X(N/2— k), |kl <N/2-1.

Similarly, if N7 > N, then we define high-pass scaling N : Ny
as

Y (0) = X(0)

Y (k) =0, 1<k <(Ni—N)/2
Y(N1/2 — k) = X(N/2 — k), k| < N/2 -1
Y (N, — k) =0, 1<k<(Ny—N)/2.

High-pass scaling is illustrated in Fig. 15. Note that if N7 >
N, then high-pass scaling N : N; is invertible, with the inverse
being high-pass scaling NV; : N. High-pass scaling is defined
so as to preserve X (0) so that this inverse property holds.
In the filter bank of interest, high-pass scaling follows high-
pass filtering which annihilates X (0), so this DFT value is not
present in the wavelet subbands.

Low-pass and high-pass scaling can also be defined for
signals of odd-length, but we omit it here, assuming the input
signal can be taken to be even-length.
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z(n) —{LPS N:Ng — y(n)

(a) Low-pass scaling block diagram

AEAREARE] [

0 No/2 No—1

(b) Low-pass scaling with Ny < N

X (k)

H 11 NTT HH

0 -1
Y (k)

0 No/2

No—1

(c) Low-pass scaling with No > N.

Fig. 14. Low-pass scaling N : Ng. The input and output signals are of
lengths N and Ny respectively.

C. Two-channel filter bank

Figure 16 illustrates the filter bank of Fig. 7 adapted for
finite-length signals. Referring to Fig. 16, the integer N
denotes the length of the input signal. The integers Ny and
N; denote the lengths of the respective subband signals, vy(n)
and v1(n). The filters are implemented in the DFT-domain by
point-by-point multiplication, hence Hy(k) and H; (k) need
to be defined for integers k£, 0 < k < N — 1. Instead of low-
pass/high-pass scalings by real « and f3, the filter bank uses
the low-pass/high-pass scaling operations defined in Sec. V-A
and V-B.

For a given input signal length NV, and given parameters
« and B, we would like that the filter bank in Fig. 16
closely emulates the filter bank in Fig. 7. Therefore, we should
have Ny =~ alN and N; =~ [BN. However, aN and SN
will generally not be integers, so they must be rounded. For

z(n) —HPS N:N; — y(n)

(a) High-pass scaling block diagram

RESARAREREARAE

0 Ni/2 N; -1

(b) High-pass scaling with N3 < N

Hw

\, -

0 Ny/2

X (k)

1] ]

/

Ny -1

(c) High-pass scaling with N1 > N.

Fig. 15. High-pass scaling N : Ni. The input and output signals are of
lengths N and N7 respectively.

convenience2,

integers,

we round aN and SN to the nearest even

Ny :2r0und(%N), Ny :2r0und(§N). 27
Accordingly, the effective scalings parameters are Ny/N and
N; /N instead of v and 3. That is, the scaling parameters can
not be continuously varied. However, for a signal of reasonable
length (N large), the approximation of a by Ny/N can be
quite accurate. In contrast, filter banks based on rational-
sampling factors usually require in practice that the rational
factor be a ratio of two relatively small integers. In the DFT-
based implementation described here, there is no need to
impose such a constraint. Therefore, the scaling parameter can

2In practice, the radix-2 version of the TQWT in Sec. V-E will be the most
efficient implementation, and in this version all signals are of even length
anyway.
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Fig. 16.
respectively.

be quite finely varied even though it can not be continuously
varied.

Unlike the filter bank of Fig. 7, this filter bank is readily
and exactly realized. To implement the analysis filter bank,
one proceeds as follows. Let the input signal z(n) be defined
for 0 < n < N — 1. First, one computes the N-point
DFT of the input signal x(n) to obtain DFT coefficients
X (k) for 0 < k < N — 1. Second, one performs point-
by-point multiplication to form R;(k) = X(k)H;(k), for
1 = 0,1. Third, one performs low-pass/high-pass scaling on
R;(k) to obtain the DFT coefficients V;(k), 0 < k < N,,
for ¢ = 0, 1. Finally one computes the Ny-point inverse DFT
of Vo(k) to obtain vp(n) for 0 < n < Ny — 1; and one
computes the N;-point inverse DFT of V3 (k) to obtain v;(n)
for 0 <n < Ny —1.

Perfect reconstruction: Let NV, Ny, and N; be even integers
with Ny + N1 > N. Using the definitions of low-pass and
high-pass scaling in Sections V-A and V-B, the DFT of the
N-point signals yo(n) and y1(n) in Fig. 16 can be expressed
as follows. First we define the integers

P=(N-N)/2 (28)
S = (N —Np)/2 (29)
T=(Ng+N, —N)/2—1 (30)

and the subsets of Z,

P={0<k<PYU{N-P<k<N-1}

T={P+1<k<P+T}
UN-P-T<k<N-P-1}

S={N/2-S<k<N/2+S}.

Note that these three sets form a partition of {0 < k < N—1}.
Then, after some simplification,

2
Yo(k):{|H0(k) X(k), kePUT o
0, keS
and
0 keP
Y; = ’ 2
(k) {|H1(k)|2X(l<;), keTUsS. G2

Equations (31) and (32) are analogous to (7) and (8). In
deriving (31) we have used Hp(IN/2) = 0 which is anyway
desired of Hy(k), it being a low-pass filter. Likewise, in
deriving (32) we have used H;(0) = 0, which is desired of
H,(k), it being a high-pass filter.

— I LPS Ny: N H (k) o)

O— y(n)
— +HPS N;: N Hi (k)

y1(n)

Analysis and synthesis filter banks for a finite-length N-point signal x(n). The subband signals vg(n) and vi(n) are of length No and Nj

Using (31) and (32), the DFT of the N-point output signal
y(n) is given by

| Ho(K)|* X (k), keP
Y(k) = 4 ([Ho(k)]* + [Hi(F)]?) X (k), keT
| Hi (k)[* X (k), kes.

Perfect reconstruction requires that Y (k) = X (k) for 0 < k <
N — 1. Therefore, for perfect reconstruction, the filters should
satisfy

Ho(k) =1, Hy(k)=0, keP (33)
|Ho(K)]” + [Hy(k)]* = 1, keT (34
Ho(k) =0, H(k)=1, kes. (35)

Hence, from (33), the set of indices P constitutes the pass-
band of H(k) and stop-band of H; (k). This is analogous to
the interval {|w| < (1 — )7} in (9) being the pass-band of
Hy(w) and stop-band of Hj(w) in Sec. III. Likewise, the set
of indices S constitutes the stop-band of Hy(k) and pass-band
of Hy(k). And the set of indices T constitutes the transition-
bands.

Therefore, the pass-band of Hy(k) consists of |P| = 2P+1
DFT bins, the stop-band of Hy(k) consists of |S| =25 + 1
DFT bins, and each transition-band consists of 7" DFT bins.
Note that 2P+25+2T'+2 = N, the length of the input signal
x(n). For example, as illustrated in Fig. 17b, when N = 24,
No = 20, and Ny = 16, then P = 4, S = 2, T + 5, so the
pass-band of Hy(k) consists of 9 DFT bins, the stop-band of
Hy(k) consists of 5 bins, and each transition band consists of
5 bins.

The transition bands of Hy(k) and Hy (k) can be constructed
as in Sec. 7; in this case using any 7T-point sequence, 0(k),
satisfying

k) +0*(T+1-k)=1, 1<k<T.

With such a sequence, the transition bands of the filters can
be written as

Ho(P + k) = 0(k),
Ho(N — P —k) = 0(k), 36
Hi(P+k)=0(T+1—k), (36)

H\(N—=P—k)=0(T+1—k),

for 1 < k < T. Using the Daubechies filter with two-vanishing
moments, as in (17), we obtain,

o= 31+ () o ()
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(a) DFT of input signal, X (k).
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(d) DFT after scaling.

Fig. 17. Behavior of the two-channel analysis filter bank for finite-length s

for 1 < k <T. Given N, Ny, and N7 (all even), the filters
Hy(k) and H, (k) given by (33), (35), and (36), are a perfect
reconstruction pair of filters for the two-channel filter bank
illustrated in Fig. 16.

Figure 17 illustrates the behavior of the filter bank. Fig-
ure 17a illustrates the N-point DFT, X (k), of an N-point
signal. Figure 17b illustrates the low-pass and high-pass fre-
quency responses. Figure 17c illustrates the DFT sequences
obtained by filtering; and Fig. 17d illustrates the DFT se-
quences obtained by subsequent low-pass and high-pass scal-
ing. Note that V(k) and Vi(k) occupy the full (discrete)
frequency band, for the exception of Vj(Np/2) 0 and
Vi(0) =

Analysis filter bank: The process of obtaining the DFT
sequences Vo(k) and Vi (k) from the DFT sequence X (k),
illustrated in Fig. 17, can be simplified. Specifically, sequences
Vo(k) and V4 (k) can be obtained directly from X (k) using
the following equations. It is assumed, as above, that N,
No and Nj are even integers, and that the filters Hy(k) and
H, (k) are as specified above. The integers S, P, and T are
defined in (29), (28) and (30). The Ny-point sequence Vy(k),

ignals, illustrated using N = 24, No = 20, N1 = 16.

0 <k < Npy—1,is given by

Vo(0) = X(0),

Vo(p) = X(p),

Vo(P +1t) =0(t) X(P +1),

Vo(No/2) =0,

Vo(Ng— P —1t) =6(t) X(N — P —t),
Vo(No —p) = X(N —p),

forp=1,...,Pand t=1,.
The N;- pomt sequence Vl( )

V1(0) =0
Vilt) =0T +1—-1t) X (P +1),
T+s)=XP+T+s),
N1/2) = X(N/2)
Ni—T—s)=X(N-P—-T—s),
Ni—t)=0(T+1—-t)X(N—P—1t),
fort=1,...,Tand s=1,...,85.

The Ny-point signal vg(n) is then obtained as the Ny-point

inverse DFT of V;(k). The N;-point signal v1(n) is obtained
likewise.

,T.
0 <k < N;—1,is given by

(t
(
(
(
(

SSSS
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function AFB(x, No, N1)
require: length(x) even
require: Ny, N1 even, Ny + N1 > length(x)
output: Vo,V (lengths No, N1)
N = length(x)
P=(N—-Ny)/2
T=(No+Ni—N)/2—-1
S = (N —No)/2
for 1 <k <T do
0(k) = 0.5 (1 + cos(km/(T + 1))) sqrt(2 — cos(kn /(T + 1)))
> low-pass subband:
Vo(0) = X(0)
for 1 < k<P do
Vo(k) = X (k)
Vo(No — k) = X(N — k)
for 1 <k <T do
Vo(P+k)=X(P+k)o(k)
Vo(No— P —k)=X(N—-P—k)0(k)

Vo(No/2) =0
> high-pass subband:
Vi(0) = 0

for 1 <k <Tdo
Vilk)=X(P+k)0(T+1-k)
VilNi —k)=X(N—-P—-k)0(T+1—k)
for 1 <k<Sdo
Vi(T+k)=X(P+T+k)
Vili —T—k)=X(N—-P—-T —k)
Vi(N1/2) = X(N/2)

Fig. 18. Pseudocode for analysis filter bank.

Synthesis filter bank: With reference to Fig. 16, the process
of obtaining the DFT sequences Yy(k) and Yi(k) from the
DFT sequences Vy(k) and Vi (k) can also be simplified. The
integers N, Ny, N1, S, P, and T are defined as above. The
N-point sequences Yy(k) and Y; (k) can be obtained directly
from Vy(k) and Vi (k) by

and

function SFB(Vy, V1, N)
require: Vo, V; as in AFB, N even
output: Y (length N)
No = length(Vo)
N1 = length(Vl)
P=(N—-Ny)/2
T=(No+N:—N)/2—-1
S = (N —No)/2
for 1 <k <T do
0(k) = 0.5 (1 + cos(km /(T + 1))) sqrt(2 — cos(knw /(T + 1)))
> low-pass subband:
Yo(0) = Vo(0)
for 1 < k<P do
Yo(k) = Vo(k)
Yo(N — k) = Vo(No — k)
for 1 <k <T do
Yo(P + k) = Vo(P + k) 6(k)
Yo(N —P —k)=Vo(No— P—k)O(k)
for 1 <k<Sdo
Yo(P+T+k)=0
Yo N—P—-T—-k)=0

Yo(N/2) =0

> high-pass subband:

Y1(0) =0

for 1 < k<P do
Yi(k)=0
Yi(N—-k)=0

for 1 < k<T do
Yi(P+Ek)=Vi(k)O(T+1—-k)
Yi(IN-P—-k)=Vi(Ni—k)0(T+1—-k)

for 1 <k<Sdo
ViiP+T+k)=Vi(T+k)
Yi(N—P-T—k)y=Vi(N1 —T —k)

Y1(N/2) = Vi(N1/2)

for0<k<N-1do

Y (k) = Yo(k) + Yi(k) > sum subbands

Fig. 19. Pseudocode for synthesis filter bank.

Setting Y (k) = Yo(k) + Y1 (k) for 0 < k < N — 1, the
reconstructed N-point signal y(n) is obtained as the N-point
inverse DFT of Y (k).

Pseudocode is given in Figs. 18 and 19. The function AFB
(for ‘analysis filter bank’) takes as input the N-point DFT
sequence X (k) and the parameters Ny and Np. This function
returns the DFT sequences V;(k) and V;(k) of lengths Ny
and NV respectively. The function SFB (for ‘synthesis filter
bank’) reverses the procedure. Note that neither AFB nor SFB
themselves involve computing the DFT. The functions AFB
and SFB will be called by the pseudocode for the tunable-Q
wavelet transform below. The computational cost of AFB and
SFB is quite low. Excluding the computation of #(k) which
could be precomputed, AFB requires 47 ~ 2(Ny+ N1 —N) =~
2@+ B —1)N = 28(1 — 1/r)N < 28N multiplications,
where we have used the definition of « in (26). The function
SFB requires the same number of multiplications but also an
additional N additions (or, excluding additions involving zero,
2T additions).
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D. Wavelet transform

The tunable-Q wavelet transform (TQWT) of a finite-length
signal is implemented by repeatedly applying the filter bank
of Fig. 16 to its low-pass channel, as illustrated in Fig. 9.
Note that in this case, the parameters N, Ny and N; must
be specified at each level. This is in contrast with the wavelet
transform of Sec. IV wherein « and 3 can be the same for all
levels. We use the notation N (), NO(]) and Nl(j) to designate
the level-dependent parameters, where 1 < 5 < J with J being
the number of levels. The parameter N/) denotes the length
of the input signal to the level j filter bank, and NO(] ) and
Nl(] ) denote the lengths of the subband signals produced by
the level j filter bank. At the first level, N 1) = N, the length
of the input signal x(n). As the low-pass subband produced
by level j, denoted c(¥), serves as the input signal to level
j+1, we have N = NV~ for 2 < j < J. As the high-
pass subbands constitute the wavelet coefficients, the wavelet
subband w(7) is of length Nl(]).

In order that this DFT-based tunable-Q wavelet transform
emulate the behavior (Q-factor, etc) of the wavelet transform
described in Sec. IV, we should set Néj ) ~ af N and Nl(J ) ~
a?~1BN. As in Sec. V-C, we round these values to the nearest
even integers, setting,

. J
Néj) = 21round<O%N)7 37
@) _ Bal~!
N9 = 2round< : N)7 (38)
for 1 < j < J. And, as noted above
NO =N~ NOD=NUV 2<j<) (39

Using (37), (38) and (39), the wavelet transform is fully
determined by the length N of the input signal, parameters
« and S, and the number of levels J.

The tunable-Q wavelet transform for finite-length N-point
input signal x is implemented as:

C® « DFT{x} (40)
{CO WO} app(CU-D NP NI (@41
w) « DFT H{wWU}, (42)
)« DFTH{CW (43)

for 1 < 5 < J, where AFB denotes the analysis filter
bank. Here c(/) and w()) are the low-pass and high-pass
subband signals produced by the level j filter bank. The inverse
transform is implemented as:

CY) « DFT{c"} (44)
W) « DFT{w)}, (45)
-1 . SFB(C(j),W(j),N(j)), (46)
y « DFT{C®} (47)

for 1 < j < J, where SFB denotes the synthesis filter bank.
For some signal processing algorithms, it is useful that the
transform have the energy preservation property (Parseval’s
theorem). This is easily achieved by using the unitary DFT
(2) in place of the standard DFT; the only difference being

function TQWT(x, Q, 1, .J)
require: length(x) even, @ > 1,r>1, J €N
output: c and w\), 1 < j < J

B=2/(Q+1)
a=1-p/r
X = uDFT(x)

N = length(x)

for j =1 to J do
Ny = 2round(a’ N/2)
N; = 2round(Ba/ "1 N/2)
(X, W) = AFB(X, Ny, N7)
wl) = uDFT (W)

¢ = uDFT }(X)

Fig. 20. Pseudocode for tunable Q-factor wavelet transform.

function 1TQWT(c, w9, Q, 7, .J)
require: ), v, J as in TQWT

output: y
B=2/(Q+1)
a=1-p4/r
Y = uDFT(c)

for j = J down to 1 do
W = uDFT(w())
M = 2round(a/ "1 N/2)
Y =sFB(Y, W, M)

y = uDFT(Y)

Fig. 21. Pseudocode for inverse TQWT.

the normalization of the DFT. Hence, using the unitary DFT,
the wavelet coefficients satisfy,

J NP1 NP -1

N-1
YolemP =" Y W)+ Y () (48)
n=0 j=1 n=0 n=0

Pseudocode for the N-point tunable-Q wavelet transform and
its inverse is given in Figs. 20 and 21. In the pseudocode, the
unitary DFT is used.

Recall that for the TQWT described in Sec. IV, subband
j has a sampling rate of Ba’/~!f, where f, is the input
signal sampling rate. For the finite-length TQWT described
here, fa?~! is approximated by Nl(J )/N. The approxima-
tion is unavoidable due to its being a transform for finite-
length signals; but for input signals of reasonable length, the
approximation should be more than sufficiently accurate. In
comparison, wavelet transforms based on filter banks with
time-domain fractional rate changers (using up-sampling and
down-sampling) generally have less flexibility in the scaling
parameters. Therefore, although the Q-factor can not be con-
tinuously varied, the finite-length TQWT provides a good
approximation for a wide range of Q-factors, as described
following (27).

Maximum number of levels: The number of levels is limited
by the length of the signal. After a certain number of levels
(dependent on « and [3) the signal will be too short to further



IEEE TRANSACTIONS ON SIGNAL PROCESSING (2011)

decompose into low-pass and high-pass subbands. Specifically,
the maximum number of levels J is the maximum integer J
such that N” > 2 and N{”) > 2 where N and N are
give by (37) and (38). (Simply, the subband signals produced
by the level-J filter bank must be of positive length.)

However, with this many levels, the resulting coefficients
may be difficult to interpret. To avoid that, the number of levels
J should generally be limited so that the level-J wavelet is not
longer than the signal under analysis. Based on this criterion,
the maximum number of levels can be found as follows.

The approximate duration of the wavelets in samples can be
expressed in terms of the bandwidth BW of the equivalent filter
HY(w). From (24), the bandwidth at level j is 0.53 a1 7
radians/sample. Equivalently, the bandwidth is 0.25 3 a7~ cy-
cles/sample. Approximating the duration of the level j wavelet
as 2/BW gives a duration of about 8/(a’/~!3) samples. Hence,
asking that the duration of the level 7 wavelet be less than the
length of the input signal gives the condition

RPN
ad=1g =
Therefore, it is reasonable to set the maximum number of
levels to
o _ |log(8N/s)
max — .
log(1/a)

Computational cost: Most of the computational cost of the
wavelet transform is due to the DFT computations®. The
transform requires a total of J + 2 DFT computations: one
DFT for the input signal, one DFT for each of the J wavelet
(high-pass) subbands w(7), and one DFT for the final low-pass
subband c(”). The inverse transform requires the same DFT
computations. Hence, the required DFTs are of lengths: N,
N9 for 1< j<J, and N,

The computational cost of computing the DFT of an N-
point sequence is on the order of N log N. Using the chirp
z-transform in conjunction with a radix-2 FFT (Bluestein’s
algorithm) gives a practical method to achieve N log N cost,
even for signals that are not a power of two in length [26].
However, the DFT of an N-point sequence can be computed
most efficiently when N is in fact a power of two, N = ok,
using a radix-2 FFT. Unfortunately, the TQWT described in
the preceding paragraphs require DFTs of lengths V. 1(j ) which
are not powers of two, even when the length of the input
signal x is a power of two. Therefore, in order to develop
a more computationally efficient implementation, the next
section describes a version of the transform for which all DFTs
are powers of two in length.

E. Radix-2 Tunable-Q Wavelet Transform

In order to minimize the computational cost of the tunable-
Q wavelet transform, this section describes how the transform
can be modified so that all the DFTs are powers of two in
length. Then only radix-2 FFTs are required for the imple-
mentation of this version of the transform, which we call the

3With regard to the computational cost, we do not differentiate the DFT
and inverse DFT because they have essentially the same computational cost.

radix-2 TQWT. We will denote the next power of two by
next(), defined as

next (k) := 20¢110os2(0)) — f ¢ 7

where ceil(a) rounds a to the nearest integer greater than or
equal to a.

It can be assumed that the length of the input signal x is a
power of two. (If it is not, then it can be zero-padded.) Hence,
the DFT in (40) is a power of two in length.

In order that the DFTs in (42) be a power of two in
length, prior to computing the (inverse) DFT we apply low-
pass scaling as defined in Sec. V-A to the sequence W)
to increase its length to the next power of two. Namely, we
increase its length to next(Nl(j )). As a result, the number
of samples in the wavelet subband w(/) is increased also to
that length. Note that applying low-pass scaling essentially
performs a rate-increase in the time-domain. It does not
effect the shape of the equivalent filter H §J )(w) or its center
frequency.

Similarly, in order that the DFT in (43) be a power of two
in length, we also apply low-pass scaling prior to the (inverse)
DFT, to increase the length of C) to the next power of two,
namely to next(NéJ)).

In summary, let the input signal x be of length N, a
power of two. Then the radix-2 tunable-Q wavelet transform
is implemented by the algorithm:

C” « DFT{x} (49)

{CO) W}« aprp(CU-D NP NI (50)
W@  Ips(WE) next(NU))), 51)

w) « DFT Y{WU)}, (52)

CY) « 1ps(CY) next(N{”)) (53)

)« DFTH{CcWU (54)

for 1 < j < J, where Ips denotes low-pass scaling, and where
Néj) and NI(J) are as defined in (37) and (38). Note that
converting a finite-length signal to a longer signal by low-pass
scaling is perfectly invertible. Therefore, the inverse transform
is implemented as:

CY) « DFT{c)} (55)
Cc) « 1ps(c), NIy (56)
W« DFT{w}, (57)
W@ Ips(WH) N9y, (58)
CU-1) SFB(C(j),W(j),N(j)), (59)
y « DFT1{C} (60)

for 1 < j < J. In this implementation all DFTs are power of
two in length, so that only radix-2 FFT algorithms are needed.

As in Sec. V-D, when the unitary DFT is used in place of
the DFT, the transform conserves the signal energy (Parseval’s
theorem). Hence (48) is satisfied, except that the upper limits
will be next(Ni(] )) to account for the subbands being longer.

Note that, due to the lengthening of the subbands to the
next power of two, the formula for the redundancy factor r
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defined in (20) underestimates the actual redundancy factor for
the radix-2 TQWT. The actual redundancy factor, given by

J
1 J ;
e (Né )+ZN1(J)>,
j=1
will not be more than twice r.

Computational cost: The computational cost of the radix-2
TQWT is due to the DFTs and to the operations within AFB
and SFB .

The radix-2 TQWT uses radix-2 FFTs of lengths: N,
next(Nl(j)) for 1 < j < J, and next(Né'])). Consider
the computational cost of the FFTs of length next(Nl(j ))
in (52). An M-point radix-2 FFT has a computational cost
of about 0.5Mlog, M complex multiplications and Mlog, M
complex additions. Therefore, denoting M (7) := next(NfJ )),
the computational costs of these FFTs sum to

J
C=> 15MDlog,(MY)
j=1
complex multiplications and additions. Noting that

M =next(NY)) < 2N ~ 28077 N,

where we have used (38), the computational cost C' can be
upper bounded as

J
C< 1.5Z2Baj_1N10g2(2ﬂaj_lN)

(61)
j=1
J
< 35NZaj_l log,(26N)  [using « < 1] (62)
j=1
< 3B8N1ogy(26N)> o/™! [using > 0] (63)
j=1
1
= 38N log,(23N) T (64)
= 3rNlog,(26N) [using (26)] (65)
< 3rNlog,(2N) J[using 5 < 1] (66)

Hence, the computational cost of these FFTs is O(rN log, N).

Assuming the input signal x is a power of two in length,
the radix-2 FFT in (49) incurs an additional computational
cost of 1.5N log, N. The radix-2 FFT in (54) to obtain the
final low-pass subband costs less than 1.5N log, N because
it is a shorter signal (usually c¢(”) is much shorter than input
signal x, so the FFT in (54) will be negligible).

The computational cost of AFB in (50) is O(NU)), as
noted in the last paragraph of Sec. V-C. Following the same
procedure as above, the total computational cost of AFB over
all levels can be upper bounded by 2rN. This is less than the
computational cost of the FFTs. The same is true for SFB .

Therefore, the total computational cost of the radix-2 TQWT
is O(rNlog, N) where N is the length of the input signal,
and r is the redundancy factor. Note that the cost is linear
in 7, which is as low as can be expected. The cost as a
function of IV is also as low as can be expected, given that
the implementation is based on the DFT. Additionally, we

RADIX-2 TUNABLE-Q WAVELET TRANSFORM
WAVELET: SCALES 4-17
N =256, Q = 4.00, r = 3.00

SUBBAND

0 50 150 200 250

100
TIME (SAMPLES)

Fig. 22. The radix-2 tunable-Q discrete wavelet transform. The numerically
computed wavelet is illustrated for scales 4-17.

note that run-time in practice also depends on implementation
details such as indexing, data shuffling, and memory access
issues.

F. Example 1

To illustrate the radix-2 tunable-Q wavelet transform, sup-
pose that the Q-factor is specified to be 4 and that the
oversampling-rate is specified to be 3. Then using @@ = 4 and
r = 3 in (26), we have a = 0.867 and 8 = 0.4. For an input
signal of length N = 256, if the transform is computed for
J = 17 levels, then the wavelet subbands w'/) are of lengths

128 j=1:4
length(w?)) = g;l j i g 51;3

16 j=14:17

and the length of the final low-pass subband is length(c(/)) =
32. The total number of wavelet coefficients among the 18
subbands including ¢(/) is 1024, so the actual redundancy
factor is 4 = 1024/N instead of 3 as specified. This is due
to the lengthening of the subbands so as to use radix-2 FFTs.
Note that the actual redundancy will not be more than twice
r, because the subbands will not be lengthened by more than
a factor of two.

The discrete wavelets (analysis/synthesis functions) can be
computed by setting all wavelet coefficients equal to zero
except for one coefficient in w() which is set to unity.
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(c) Distribution of signal energy.
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(b) Subbands with sparsification.
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(d) Distribution of energy with sparsification.

25

Wavelet transform of a speech waveform with and without sparsification. (a) Subbands 10-23. (b) Subbands of sparse representation. (c,d)

Distribution of signal energy across subbands corresponding to (a,b) respectively. The sparse representation is obtained via £1 minimization. The wavelet

transform parameters are Q = 3 and r = 3.

Applying the inverse wavelet transform yields the level j
wavelet. The wavelets computed in this way are illustrated
in Fig. 22 for levels 4 < j < 17. The discrete wavelets
in Fig. 22 are indistinguishable from the wavelets computed
likewise using the non-radix-2 TQWT of Sec. V-D. (For this
reason, we have not separately illustrated the wavelets of the
non-radix-2 version.)

Hence, the difference between the non-radix-2 version de-
scribed in Sec. V-D and the radix-2 version is essentially
the increase in redundancy, not the temporal or spectral
characteristics of the transform.

G. Example 2

To illustrate sparse signal representation with the tunable-Q
wavelet transform, consider the speech waveform illustrated
in Fig. 23. This waveform consists of 2048 samples at 16,000
samples/second. The speech is ‘0’ in ‘often’ spoken by an
adult male. We use 23 levels of the radix-2 TQWT with
parameters Q = 3 and r = 3. (Hence, « = 0.833 and
B8 0.5.) The frequency decomposition is illustrated in
Fig. 13c. Applying the transform to the speech waveform
gives the wavelet coefficients illustrated in Fig. 23a. Only

levels (subbands) 10-23 are shown because subbands 1-9
are negligible. The distribution of the signal’s energy among
the subbands is illustrated in Fig. 23c. Note that subband 1
corresponds to high frequencies while subband 23 corresponds
to low frequencies. Specifically, using (23), the frequency of
subband k is (0.833)* 7200 Hz (but this is not valid for k = 1,
subband 1 is centered at the Nyquist frequency, 8000 Hz).

To obtain a sparse representation a of the signal x using
the transform, we solve the basis pursuit problem [12]:

m;n |lal|1 such that Pa =x (67)
where ® is the matrix whose columns are the synthesis func-
tions of the transform and a is the vector of the coefficients,
a=[wl ..., wl) c] For the TQWT, ®®! = I, which
can be utilized when solving (67). Matrix multiplication by
&' and ® are implemented using the TQWT and its inverse.
Solving (67) using 100 iterations of a variant of SALSA [1]
gives the sparse representation illustrated in Fig. 23b.*

4To account for the energy of the synthesis functions not being
constant across subbands, we actually minimize the weighted ¢;-norm

. ; 7
(S niw ||12 +lle |1 where A; = [0 2 and = "2
are the 2-norms of the synthesis functions.
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Note that for the sparse representation, the distribution of
the signal energy, illustrated in Fig. 23d, is somewhat different
than that shown in Fig. 23b. In particular, the relative energy
in subband 13 is diminished. The sparse representation has
less frequency-leakage than the coefficients computed directly
by ®'x (shown in Fig. 23a). While we have used ¢;-norm
minimization to obtain a sparse representation here, we note
there is ample evidence that ¢y, minimization is often more
effective [25].

Sparse representations are used in numerous recent signal
processing algorithms [3]. Sparse signal representations with
constant-Q (wavelet) transforms have been used for separating
oscillatory and non-oscillatory components of a signal [29].
While the examples in [29] were based on the RADWT [5], the
TQWT can be used equally well. An advantage of the TQWT
in comparison with the RADWT is its faster implementation
using radix-2 FFTs and the ease with which its Q-factor and
redundancy can be tuned.

VI. CONCLUSION

This paper has described a wavelet (constant-Q) transform
for which the Q-factor and redundancy (oversampling rate) are
easily specified. We denote the transform TQWT (for ‘tunable-
Q wavelet transform’). The transform is specified by two
parameters: () and r, the transform’s Q-factor and redundancy.
The transform is inverted by its conjugate transpose, so it
satisfies Parseval’s theorem (it is a tight frame). The transform
is developed specifically for discrete-time signals. One form of
the transform (Sec. IV) is applicable to discrete-time signals
defined on all of Z. The second form (Sec. V-D) is applicable
to discrete-time signals of finite length. The first and second
forms are developed using the DTFT and DFT respectively.
In addition, we have described a version of the TQWT that
allows fast implementation using radix-2 FFTs.>

Note that the frequency domain approach taken here (for
filter design and implementation) is not an advantage in and
of itself, but it is a means to achieve the goals of the TQWT
(tunable Q-factor, tunable redundancy, PR, etc). Filters with
rational transfer functions are more computationally efficient,
but it appears that they may not satisfy the perfect reconstruc-
tion conditions of a filter bank with real-valued scaling factors
on which the TQWT is based.
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