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Symmetric Nearly Shift-Invariant
Tight Frame Wavelets

A. Farras Abdelnour, Member, IEEE, and Ivan W. Selesnick, Member, IEEE

Abstract— -regular two-band orthogonal filterbanks have
been applied to image processing. Such filters can be extended
into a case of downsampling by two and more than two filters
provided that they satisfy a set of conditions. Such a setup al-
lows for more degrees of freedom but also at the cost of higher
redundancy. The latter depends directly on the number of the
wavelet filters involved. Tight frame filters allow the design of
smooth scaling functions and wavelets with a limited number of
coefficients. Moreover, such filters are nearly shift invariant, a
desirable feature in many applications. In this paper, we explore
a family of symmetric tight frame finite impulse response (FIR)
filters characterized by the relations 3( ) = 0( ) and

2( ) = 1( ). They are simple to design and exhibit a
degree of near orthogonality, in addition to near shift invariance.
Both properties are desirable for noise removal purposes.

Index Terms—Denoising, frame, symmetric filterbanks, wavelet
transform.

I. INTRODUCTION

AS is well known, two-band finite impulse response (FIR)
orthogonal filterbanks do not allow for symmetry except

for the Haar filterbank. In addition, imposing orthogonality for
the two-band FIR case requires relatively long filter support for
such properties as high smoothness of resulting scaling function
and wavelets and high approximation order. It is possible to ob-
tain both symmetry and orthogonality for the case of more than
two bands filterbanks (see, for example, [16], [19], and [27]),
but smooth scaling and wavelet functions still require relatively
long filters. For example, a Daubechies lowpass filter of length
8 possesses four zeros at but lacks symmetry, while a
tight frame lowpass filter of similar length allows for five zeros
at , symmetry, and a visibly improved smoothness. In
addition, due to the critical sampling, orthogonal filters suffer a
pronounced lack of shift invariance.

The desirable properties can be achieved through the design
of tight frame filterbanks, of which orthogonal filters are a
special case. The redundancy of tight frame filters is such that
it allows for an approximate shift invariance behavior due to
the dense time-scale plane when compared with the case of
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orthogonal filters. In particular, the issue of shift invariance has
been addressed by Kingsbury in [17] and [18], where complex
wavelets with real and imaginary parts approximating Hilbert
pairs are proposed for noise removal. In addition to symmetry,
the proposed filterbanks are shorter and result in smoother
scaling and wavelet functions. The theory of tight frame is by
now well documented [4], [9], [10], [23]. In addition, two-
dimensional (2-D) dual wavelets tight frames are discussed in
[15]. Tight frame filterbanks (oversampled filterbanks) have
seen use in noise removal applications (see, for example, [3],
[8], [22], and [26]). The issue of tight frame wavelet design
has been undertaken by a number of papers (see, in particular,
[5], [21], and [25]). In more recent papers, Daubechies et al.
[11] discuss filterbanks based on spline and pseudo-spline tight
frames. In [6], Chui et al. address the design of shift-invariant
wavelets obtained after relaxing tight frame condition.

In this paper, we discuss the design of a bank of four tight
frame symmetric filters taking on the form

and using Gröbner
method [2], [7] and software Singular [14]. Additionally, it
turns out that such filters can be designed using spectral factor-
ization, as has been done in [5]. Examples using both methods
and representing new wavelets will be discussed.

The paper is organized as follows: In Section II, the tight
frame theory is briefly discussed. Issues such as lowpass filter
minimum length and filterbank redundancy, among others, are
addressed. In Section III, the family of tight frame filters
of the form and is
discussed. It is shown that they can be fully described through
the polyphase components and . Furthermore,
given the (symmetric even length) lowpass filter , it
is shown that the filters can be constructed starting with the
polyphase component . Section IV describes design
algorithm based on spectral factorization, which generates a
filterbank of four tight frame symmetric even length filters.
In Section V, different filterbanks are discussed as design
examples. We address filterbank design for Gröbner method
as well as spectral factorization. In addition, an example depicts
an application of tight frame symmetric wavelets designed in
this paper to noise removal. Section VI compares the Gröbner
method, with spectral factorization with the advantages and
drawbacks of both approaches, then concludes the paper.

II. PROPERTIES AND CONDITIONS

The theory of filterbanks and frames has been discussed and
analyzed (see, for example, [4], [9], and [10]). Here, we in-
troduce the basic concepts of frame theory. A set of wavelets
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constitutes a frame when for
and any function , we have [10], [15]

where and are known as frame bounds. The special case
of is known as tight frame, and we obtain the following
spaces:

Span

Span

with

and the corresponding scaling function and wavelets satisfy the
following multiresolution equations:

Now, the bounds and take on the value [4]

A. Oversampled Filterbanks

The frame condition can be expressed in terms of oversam-
pled polyphase filters [30]. Given a set of filters, we define
them in terms of their polyphase components:

where

Now define the polyphase analysis matrix as

...
...

Now, if we define a signal in terms of its polyphase
components, then we have

where is defined in terms of the time domain
signal as follows:

Then, the overall output signal of the analysis/synthesis
filterbank can be expressed as

and to meet perfect reconstruction condition , we
require that

or we obtain

if
otherwise.

Alternately, [24] shows that a three-band tight frame filterbank
PR conditions can be expressed in terms of the -transforms of
the filters . It is easy to extend the PR conditions to

filters downsampled by 2:

(1)

(2)

Last, it is shown in [5] and [20] that a necessary condition for
the filterbank to exist is to have the filters
each satisfy the following inequality:

(3)

Notice that equality reduces to the traditional case of two-band
orthogonal filterbank.

B. Constraints on the Length of

It is shown in [24] that a three-band tight frame with down-
sampling by 2 and satisfying PR the minimum length of the low-
pass filter is subject to the condition

length min (4)

where is the number of zeros at for the filter ,
and is the number of zeros at for the filters

. It is straightforward to extend condition (4) to the case of
filters. In that case, we obtain for ’s minimum length

length min (5)

Now, given the lower bound (5) on length , the additional
property of symmetry implies tighter constraint on the minimum
length. Indeed, assuming a symmetric tight frame lowpass filter

of even length and with
odd, we require that the factor of odd length
be symmetric, or we require equations for
symmetry. Then, the minimum length of now takes on the
form
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and we obtain the minimum length of a symmetric as follows:

length (6)

or in terms of , we obtain

length

Clearly, the length of is partly determined by the lowpass
filter’s symmetry and the wavelets’ zero moments. In particular,
in the four-band case with , the in-
equality (6) becomes

length

with equality achieved in case of minimum length filters.

C. Near Orthogonality

The near orthogonality of the spaces spanned by the resulting
tight frame filters and their shifts is observed. It will be seen that
there is an extent of near orthogonality to the filters’ even shifts
with respect to themselves as well as to other filters. This in turn
reflects the degree of orthogonality in the scaling and wavelets
functions and their integer shifts. We will use

to indicate the angle between two vectors and
shifted with respect to each other by , defined as

D. Near Shift Invariance

As is well known, wavelet systems are in general not shift
invariant. However, such behavior can be approximated using
redundant sets of filters. Following Kingsbury [17], [18] to eval-
uate the extent of shift invariance at the th stage, a discrete unit
step function is fed into an iterated
filterbank, with being the number of stages. Then, the consis-
tency of the output due only to the lowpass filter at the th stage
over all possible shifts is observed. A similar procedure is
followed with the wavelet filters. Here, we consider the output
due to all three wavelet filters at the th stage. It is desired that
the resulting outputs be as similar as possible for all shifts. It
will be shown that there is an extent of shift invariance in the
filters discussed in this paper.

E. Redundancy

A tight frame analysis system generates more data at the
output than at the input. The redundancy rate depends on
the number of filters as well as the number of filtering
stages . For a single-stage filterbank, the redundancy ratio
is . For multiple stages, we have the contribution
due to the lowpass filter and its following stages in addition
to the highpass/bandpass filters. As such, the redundancy ratio
at the th stage is in addition to the lowpass filter

contribution . At the analysis output, the latter is just .
Putting the above results together, we have

(7)

From (7), we have as and
for . It is clear that for a fixed , (7) has monotonous
behavior. In general, the redundancy is bounded by

. For the case of , we have for ,
while results in .

F. Smoothness versus

One of the advantages of tight frame filterbanks is the
possibility of achieving high with an accompanying high
degree of smoothness without a necessarily large support of

, as will be seen shortly. We note that the orthogonal case,
on the other hand, has typically low smoothness for a given

. It is shown in [28] that the highest possible derivative
for a scaling function given the corresponding

is bounded by . Smoothness is measured using the
Sobolev exponent of a scaling function , which is defined
as [13], [31]

The actual computation of is found using [16], and for the
normalization , we have

where is the largest eigenvalue of a matrix generated
by with and
known from .

III. CASE

We now consider the particular case of a tight frame sym-
metric wavelet system consisting of two filters and their mod-
ulated versions. Such a system reduces the required degrees of
freedom, and in general, each filter covers distinct frequency
band. The resulting wavelets vary in the rate of oscillation,
allowing one to capture various features of a signal. In addition,
the accuracy directly determines the number of moments

of , with . Two design methods are offered:
One method relies on Gröbner basis, proposed in [2] and [7]
and can be used to design the filters, as depicted in Example
1. In the second method, we propose an alternative method
based on spectral factorization and exploiting the polyphase
structure of the filterbank to generate the filters starting with

. It is important to note that in the following deriva-
tion, we assume that the filters are of even length; thus,
is necessarily odd. Two filters are symmetric, and two are
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antisymmetric. Now, from
and , we have

Similarly, for , we have

On the unit circle, we have and
, but from (1), the following condition

needs to be satisfied, with

which gives [32]

In the time domain, we have

where is the autocorrelation of , defined as
, or we have

which reduces to

(8)

The above equation suggests a dependence of the filter (and,
thus, ) on . Evaluating (8) at , and from

, we obtain

We also note that such a structure immediately implies that
and are orthogonal to all their even shifts, and so are and

or

This can be shown as follows:

or, with , we have

where is given by length . Orthogonality of and
can be proved similarly.

In the following, we state two main results of the paper [(9)
and (10)] with the proofs in the accompanying Appendix. All
filters are symmetric/antisymmetric and are of even length.

(9)

and

(10)

Clearly, the filters in (9) are now expressed only in terms of
and .

It turns out that given the filters , the struc-
ture of is such that both
and satisfy the TF conditions.
Thus, given a tight frame lowpass symmetric filter , there
exists an even number of filter sets that satisfy PR,
with and . To show this,
we consider the filter , which is now defined as follows:

Then, with , the polyphase matrix be-
comes the equation shown at the bottom of the page, with

, and defined as length , as above.
Then, to satisfy perfect reconstruction condition, we require
that
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Multiplying out and evaluating the elements of ,
we have

Thus, if is a solution satis-
fying tight frame and symmetry conditions, then so is

, with .

IV. SPECTRAL FACTORIZATION METHOD

Equations (9) and (10) suggest that the entire system can be
found once , and thus, is given. To generate the
tight frame filterbanks, we use the prototype filter defined in (11)
and (12). By seeking tight frame symmetric filterbank, is no
longer restricted to length , as is the case with
two-channel orthogonal filters. In fact, now, the only constraint
is the minimal value chosen for or , defining in turn the
minimal length of . One possible lowpass filter that generates
the tight frame filterbank is given as follows:

(11)

where

(12)

is of even length, and is such that . With
of length , the overall length of the filter is length

. It is thus possible to start with (11) and obtain a
family of tight frame symmetric filters by supplying the number
of zeros of at as well as the length of .
In summary, given the parameters and , the design procedure
goes as follows.

1) Choose the ’s in terms of and as follows:

2) Find using (11) and (12).
3) Knowing and, thus, , find from (10)

using spectral factorization.
4) Find from

with length .
5) Having found from , the additional filters

are obtained as follows: and
.

Remark: The above method is not only restricted to the low-
pass filter described in (11) and (12) but can be used with any
readily available tight frame even length lowpass filter taking on
the form and satisfying inequality
(3). Thus, given a lowpass tight frame filter , it suffices to start
the above filter design procedure at step 3.

V. EXAMPLES

Different sets of above discussed filterbanks are presented in
this section. It will be shown that they are nearly shift invariant
and approximate orthogonality in addition to the fact that they
are all symmetric. In addition, due to the relation between the

filters discussed in this paper, only the filters
and are shown, the remaining wavelets being simply gener-
ated by modulated versions, given by and

. Example 1 illustrates Gröbner design fil-
terbank, while Example 2 discusses wavelet design using spec-
tral factorization method. For both examples, we tabulate the
angles between the various filters and their even shifts with re-
spect to each other. Example 3 illustrates an application of tight
frame filterbanks to noise removal, with comparison with pub-
lished filterbanks. Further design examples are discussed in [1].

A. Example I: Design Using Gröbner Methods

With , the associated
Gröbner basis [2], [7] resulted in four distinct lowpass fil-
ters, with the parameter in (14) taking on the values

. The
resulting filter is given by

(13)

with

(14)

Notice that this filter is distinct from the family defined in (11)
and (12). For , the resulting lowpass filter offers
the highest smoothness coefficient with . This re-
sults in the filterbank listed in Table I (see also Table II). The
filters corresponding to are il-
lustrated in Fig. 1. The resulting scaling function and wavelets
are shown in Fig. 2. From Fig. 3, the filters exhibit a very nearly
shift-invariant behavior.

B. Example 2: Design Using Spectral Factorization

To illustrate an example of spectral factorization design,
we look for a set of filters satisfying

, where is deliberately chosen high in order to
depict the use of spectral factorization. Substituting in (11) and
(12) with and , we have

with

The scaling function and corresponding wavelets are shown in
Fig. 4. Solving for as described in Section IV, we obtain
the filters depicted in Fig. 5. Table III lists the coefficients of the
filters and . For the sake of completeness, we mention the
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TABLE I
EXAMPLE 1: FILTERBANK fh ; h ; h ; h g COEFFICIENTS FOR

K = K = 7;K = 2, AND K = 5

TABLE II
EXAMPLE 1: ANGLES BETWEEN SPACES GENERATED BY FILTERS IN FIG. 1

Fig. 1. Example 1: Gröbner designed filters with fK ;K ;K ;K g =

f7;2; 5; 7g. Associated wavelets are illustrated in Fig. 2.

associated parameters. As to be expected, the scaling function
is highly differentiable, with a degree of smoothness approxi-
mately . The extent of orthogonality between the
filters and their various even shifts is depicted in Table IV. We
can see that with the exception of , the fil-
ters and their shifts closely approximate orthogonality. Indeed,
the angles between and and their even shifts are quite close
to 90 . Additionally, the filters are very nearly shift invariant, as
can readily be seen in Fig. 6.

C. Example 3: Applications

We consider in this section an example of applications of
symmetric tight frame wavelets to the area of image processing
and noise removal. We consider a symmetric filterbank, with

Fig. 2. Example 1: Wavelets corresponding to fK ;K ;K ;K g =

f7;2; 5; 7g.

Fig. 3. Example 1: Near shift invariance corresponding to
fK ;K ;K ;K g = f7;2; 5; 7g

and a lowpass filter of
the form

(15)

The filterbank can be obtained from
http://taco.poly.edu/farras. This set of filters in par-
ticular has been chosen due to its favorable denoising
performance. The filterbank’s performance is compared
with that of symmetric filterbanks with both two-channel
biorthogonal filters and four-channel tight frame filterbanks.
We will consider a 512 512 image subjected to additive
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Fig. 4. Example 2: Wavelets and scaling function with fK ;K ;K ;K g =
f15; 4; 5; 15g.

Fig. 5. Example 2: fK ;K ;K ;K g = f15;4; 5; 15g filters designed
through spectral factorization. Resulting wavelets are depicted in Fig. 4.

white Gaussian noise. Denoising is performed using the soft
threshold, which is defined as

sgn

where is some threshold. The measure of performance is peak
signal to noise ratio, given by PSNR MSE ,
with MSE , and where
is an image, and is the output. The threshold is esti-
mated from , where is the noise variance estimate,
which is found from the highpass outputs. More specifically,

TABLE III
BANDPASS FILTER h COEFFICIENTS FOR EXAMPLE 2.

K = K = 15;K = 4, AND K = 5

TABLE IV
EXAMPLE 2: ANGLES BETWEEN SPACES GENERATED BY FILTERS IN FIG. 5

Fig. 6. Example 2: fK ;K ;K ;K g = f15;4; 5; 15g; near shift
invariance.

the noise variance in the TF filterbank is estimated from the
outputs of the first-stage filters ,
and . Notice the output of the filter resulting from

is not considered. In Table V, we compare the
performances of various filterbanks with the tight frame sym-
metric filterbank with , as shown in (15). The filterbank is
somewhat superior to the TF discussed in [5] as well as the sym-
metric biorthogonal filterbanks discussed in [10], [12], and [29].
Fig. 7 shows the result of soft thresholding when .
The noisy image pixels are normalized to [0, 1].
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TABLE V
PSNR IN DECIBELS RESULTING FROM SOFT THRESHOLDING OF LENA IMAGE

USING VARIOUS FILTERBANKS

Fig. 7. Example 3: Noise removal for case � = 0:075.

VI. CONCLUSION

The Gröbner basis method has proved its usefulness in filter-
bank design: It facilitates solving a system of nonlinear equa-
tions as is the case, for example, with orthogonal and tight frame
filterbanks: It results in an exact solution within computer pre-
cision; it yields all solutions satisfying a set of constraints; and
it is relatively easy to impose such constraints as symmetry or
tight frame or filters of various lengths. For example, it was
possible to find a tight frame symmetric filterbank given by

using Gröbner basis method.
It is clear that Gröbner method allows one to generate a filter-
bank with a specific set of ’s with the constraint of satisfying
condition (6).

On the other hand, given a lowpass filter, the spectral fac-
torization method makes it easy to find the filters .
Additionally, that results in all filterbanks satisfying the PR
condition, which may or may not include more than one arrange-
ment of the moments , with the moments .
For example, the lowpass filter resulting from Gröbner basis
method described above can lead to bandpass filters with

in addition to . This
allows one to obtain a larger pool of bandpass filters than
those obtained using Gröbner basis method due to the fact
that there are no restrictions beyond those imposed by the
lowpass filter .

Clearly, the Gröbner method allows one to design a filter-
bank ex nihilo with various properties, as depicted in Example 1.
However, the method suffers the issues of required memory and
time to find the associated Gröbner basis. On the other hand,
spectral factorization is a simple method that nonetheless re-
quires an available lowpass filter with the restrictions the latter
imposes on the choices of . It is clear that to each
method, there are advantages and disadvantages.

We have presented a class of wavelets based on tight frame
symmetric filterbanks that can be designed by using the Gröbner
method or spectral factorization. In addition to their symmetry,
the filters result in limit functions that are smoother than those
resulting from orthogonal filters of comparable length. The
dense time-frequency plane of tight frame filterbanks result
in an approximate shift invariance. In addition, the filters
discussed in this paper exhibit a degree of orthogonality. An
example shows the advantage of using such filters for noise-re-
moval purposes. Notice how the chosen threshold is global,
that is, it is the same value for all stages. Clearly, the denoising
performance can be improved by varying the threshold over the
different stages. It would be interesting to exploit the redun-
dancy of the oversampled filterbank and couple it with more
sophisticated noise-removal algorithms.

APPENDIX

Exploiting symmetry, the filters can be de-
scribed by only and . By symmetry, we have

or

or with the substitution , we have

from which we get

(A.1)

Similarly, for the case of , we have

(A.2)

Now, the filters obeying the conditions and
can be rewritten as follows:

(A.3)

Then, to achieve perfect reconstruction, the following equa-
tion needs to be satisfied:

(A.4)

where is given by

However, from (A.3), the above matrix can be written as the
equation at the top of the next page, where is a matrix ac-
counting for the delay terms in (A.3) and is given by
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From (A.1) and (A.2), (A.3) and (A.4) reduce to the fol-
lowing equation relating and and, thus,
and :

(A.5)

Equation (A.5) can be written slightly differently as follows:

(A.6)
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