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Abstract—This paper describes a basic difference between mul-
tiwavelets and scalar wavelets that explains, without using zero
moment properties, why certain complications arise in the imple-
mentation of discrete multiwavelet transforms. Assuming we wish
to avoid the use of prefilters in implementing the discrete multi-
wavelet transform, it is suggested that the behavior of the iterated
filter bank associated with a multiwavelet basis of multiplicity
is more fully revealed by an expanded set of 2 scaling functions

. This paper also introduces new -balanced orthogonal mul-
tiwavelet bases based on symmetric FIR filters. The nonlinear de-
sign equations arising in this work are solved using the Gröbner
basis. The minimal-length -balanced multiwavelet bases based
on even-length symmetric FIR filters are better behaved than those
based on odd-length symmetric FIR filters, as illustrated by special
relations they satisfy and by examples constructed.

Index Terms—Filter banks, multiwavelet bases, wavelet trans-
forms.

I. INTRODUCTION

A N IMPORTANT motivation for the study ofmultiwavelet
bases is the design of orthogonal FIR filter banks with

symmetry properties — a famous limitation of scalar wavelets.1

The remarkable symmetric GHM scaling functions of [7] trig-
gered a great interest in multiwavelets since symmetry is im-
portant in image processing: one of the primary areas of wavelet
application. However, there exist important differences between
multiwavelet and scalar wavelet bases, and these differences be-
come apparent when the discrete multiwavelet transform is im-
plemented. Indeed, in the processing of discrete-time signals,
complications arise for multiwavelet transforms that do not arise
for scalar wavelet transforms. The usual correction for this is
the specialized preprocessing (prefiltering) of the discrete-time
data, which sometimes destroys the very properties a multi-
wavelet basis is designed to have.

Previous papers [12], [16] have highlighted an important
difference between multiwavelet and scalar wavelet bases. For
multiwavelet bases, they focused on zero moment properties of
the associated filter bank and the construction of specialized

-balancedmultiwavelets. In the following, we emphasize an
even more basic difference between multiwavelets and scalar
wavelets that explains, without using zero moment properties,

Manuscript received January 27, 1999; revised June 17, 1999. The associate
editor coordinating the review of this paper and approving it for publication was
Dr. Paulo J. S. G. Ferreira.

The author is with the Department of Electrical Engineering, Polytechnic
University, Brooklyn, NY 11201 USA (e-mail: selesi@taco.poly.edu).

Publisher Item Identifier S 1053-587X(00)00111-2.

1To distinguish multiwavelet bases from wavelet bases based on a single
scaling function, we will call the latterscalarwavelet bases.

why certain complications arise in the implementation of
multiwavelet transforms.

In practice, wavelet transforms are usually implemented as
iterated filter-bank trees. The scaling and wavelet functions
and are useful because they reflect the behavior of the iterated
filter bank. For scalar wavelet transforms, after only a few iter-
ations of the filter bank, the iterated filters closely resemble the
scaling and wavelet functions. However, the iterated filterbank
tree associated with a multiwavelet transform behaves quite dif-
ferently from one associated with a scalar wavelet transform.

For a multiwavelet basis based onscaling functions and
wavelet functions, we claim that these functions by them-
selves do not accurately reveal the full behavior of the associated
filter bank. We suggest that by looking only at thefunctions,
it is hard to evaluate how effective the filter bank is for signal
processing applications. We propose that the behavior of the it-
erated filter bank associated with the basis is better revealed by
a set of scaling functions and wavelet functions.

This paper also introduces new-balanced orthogonal multi-
wavelet bases based on symmetric FIR filters. Both odd-length
and even-length FIR filters are considered. The nonlinear de-
sign equations arising in this work are solved using the Gröbner
basis. The complications that arise for multiwavelet bases, in
general, are suppressed for balanced multiwavelets based on
even-length symmetric FIR filters.

II. PRELIMINARIES

This paper considers multiwavelet bases based on two scaling
functions , and two wavelet functions , .
Accordingly, there are two scaling filters , and two
wavelet filters , . Throughout, Z and

R.
The functions areorthogonal multiscaling func-

tions if we have the following.

1) and satisfy amatrix dilation equation

(1)

where , and are 2 × 2 ma-
trices.

2) and are orthogonal to their integer shifts.
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The notation for used in this paper is
For example

etc. We also write where
.

Samples of can be calculated as in the scalar wavelet
case. The value of on the integers can be computed by
solving an eigenvalue problem, and then, the value of on
the dyadics ( ) can be computed by recursively using
the dilation equation [1], [19]. This is the method used to plot
all scaling and wavelet functions in this paper.

For , to generate orthogonal scaling functions , it
is necessary that

(2)

This condition characterizes orthogonal four-channel filter
banks and arises here because a two-channel vector-filter
bank can be redrawn as a four-channel scalar filter bank with
interleaving of subband signals [15]. (Accordingly, lattice pa-
rameterizations for orthonormal multiwavelets can be obtained
from those for multichannel filter banks [10].) This form of the
filter bank, which is illustrated in Fig. 1, is a useful reorganiza-
tion of the signal flowgraph. Because of the interleaving, the
filters and must be jointly designed and/or preprocessing
of the input is needed.

III. SHIFT PROPERTIES

Given a filter bank, one reason it is useful to view the associ-
ated wavelet and scaling functions is that they allow evaluation
and interpretation of the behavior of the filterbank under itera-
tion. By inspecting the characteristics of the scaling and wavelet
functions and , we may draw conclusions about how the
discrete-time filters behave when they are used in an iter-
ated filterbank tree. However, this is only possible in so far as
the scaling and wavelet functions accurately reflect the behavior
of the iterated filters. Forscalarwavelet bases, and give a
very good indication of the iterated filters. The iterated filters
resemble the scaling and wavelet functions after only a few it-
erations. The definition of the functionsand is an excellent
tool for the design of filters that are to be employed in iterated
filter banks.

However, formultiwavelet bases, the two scaling functions
and the two wavelet functions do not fully reveal the behavior
of the iterated filterbank tree. To clarify this difference between
scalar wavelets and multiwavelets, we begin with a simple ques-
tion about scalar wavelet bases. If

then how does change when one shifts ? Specifically,
let

Fig. 1. Multiwavelet filter bank (r = 2) drawn as a scalar four-channel filter
bank with interleaving.

How is related to ? It is not difficult to prove that
. That is, shifting by also shifts by .

It makes sense that shifting the filterhas no real effect on
the nature of . After all, in a filter bank implementation of
the scalar-DWT, shifting the filter is equivalent to shifting
the input sequence . The operation of the filter
with input is equivalent to the operation of the filter
with input . However, for multiwavelet filter banks, the
situation is quite different.

To distinguish between the scaling functions generated by the
differing shifts of the filters , we introduce the following no-
tation:

That is, represents the scaling functions generated by
the unshifted filters , whereas represents the scaling
functions generated by the shifted filters . Note that
shifting all the filters in the filter bank of Fig. 1 by the
same amount affects neither the orthogonality of the filter bank
nor the orthogonality of the multiwavelet basis it generates.

In the multiwavelet case, the scaling functions generated by
and those generated by can be totally different.

This is best illustrated by example. In Fig. 2, the classic GHM
scaling functions are shown, along with the scaling functions
generated when the GHM scaling filters are shifted by one
sample. Although are continuous and differential except at
a few points, are extremely nonsmooth. The same behavior
is evident for other unbalanced multiwavelet bases. Note that
if the filters are shifted by anevennumber of samples, then
the scaling functionsare simply shifted; for this reason, we
consider only the scaling functions generated by and

.
From this example, we conclude that alone does not re-

flect the full nature of the iterated multiwavelet filterbank tree.
We should look at as well. Even if the two scaling func-
tions and are highly differentiable, it is possible that
the functions and are highly discontinuous, in which
case, the filterbank must be preceded by a properly designed
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Fig. 2. GHM scaling functions generated byh(n) andh(n� 1).

prefilter. Otherwise, the iterated filterbank structure will not be
effective for signal processing applications. The nonsmooth na-
ture of for certain multiwavelet systems is one way of ex-
plaining why prefilters are important in the implementation of
discrete multiwavelet transforms.

In previous papers, [12], [16], the design of specialized
( -balanced) multiwavelets that do not require prefiltering
was considered. However, in those papers, the functions

were not considered. In the following, our goal is again
the design of multiwavelet filter banks that do not require a
specialized preprocessing step. In this paper, we suggest that
to evaluate the effectiveness of the iterated filterbank tree, it
is informative to inspect not only but the functions

as well. The functions are relevant because the
basic behavior of the filterbank should not depend on the shift
of the filters , just as it should not depend on the shift of
the input .

A. Remarks

Shifting the filters does not always destroy/degrade the
regularity of . For example, a scalar wavelet basis can al-
ways be embedded in the multiwavelet framework. If

, then all the scaling functions are simply shifted ver-
sions of a single scaling function

Recalling the importance of symmetry, the question becomes
the following: Do there exist orthogonal multiwavelet bases
based on symmetric FIR filters for which all four scaling
functions have acceptable smoothness properties? The

-balanced multiwavelet bases by Lebrun and Vetterli [12]
are examples for which each of the four scaling functions are
highly regular. They are based not entirely on symmetric scaling
filters; instead, , ,
and . The scaling filters are flipped
versions of one another, whereas the wavelet filters are sym-
metric/anti-symmetric, respectively, which are properties that
carry over to the scaling and wavelet functions and

[and to and ].

IV. BALANCE ORDER

For scalar wavelet bases, the associated filter bank inherits
the zero moment properties of . However, for multiwavelet
bases in general, the associated filter bank does not [12], [16].
Multiwavelet bases for which the zero moment propertiesdo
carry over to the discrete-time filter bank are calledbalanced
after Lebrun and Vetterli [11], [12]. Specifically, multiwavelet
bases for which the associated filter bank preserves/annihilates
the set of polynomials of degree are said to be
order- balanced; see [11], [12], and [16]. The condition for

-balancing is

(3)

where

•
•
•

See [12] and [16] for general . The examples to be given
in Section V will be balanced up to their approximation order.
Some of these issues are also addressed, in a different approach,
in [22].

V. -BALANCED MULTIWAVELETS BASED ON SYMMETRIC

FIR FILTERS

The GHM scaling functions illustrated in Fig. 2 are based
on symmetric scaling filters and of lengths 3 and 7, respec-
tively. A pair of wavelets orthogonal to was given in [4] and
[20]. However, although the GHM multiwavelet basis has two
zero moments, it is not balanced. The integral of and the
integral of are not equal, and neither are the sums ofand

. The GHM system is zero balanced. In this section, we inves-
tigate the design of “ -balanced” versions of the GHM basis.
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We also look at all four functions and not just . Specif-
ically, we seek to design symmetric FIR filters and that
generate orthogonal -balanced multiwavelet bases. That is,
and must satisfy the nonlinear orthogonal constraints given
by (2) and the balancing conditions given by (3). We seek the
shortest filters satisfying these equations so that the equations
totally define the filters up to a finite number of solutions—there
are no continuously-variable free parameters remaining.

As mentioned above, we use Gröbner bases to obtain
solutions to the nonlinear system of equations—sometimes
obtaining explicit solutions in terms of radicals. In a sense,
Gröbner bases extend Gaussian elimination to multivariate
polynomial systems [2]. Gröbner bases have also been used
for filter design in [6], [12], [14], and [18], for example. We
used the softwareSingular [8] to carry out the Gröbner basis
computations.

A. Odd-Length Case

This section describes GHM-like multiwavelet bases bal-
anced up to order . Like the GHM basis, we have the
following.

1) All are symmetric.
2) Both and are odd-length symmetric (Type 1)

FIR filters.
3) and differ in length by 4.

For none of the one–, two-, and three-balanced min-
imal-length orthogonal multiwavelets bases, based on
odd-length symmetric FIR filters, are both and
acceptably smooth. That suggests that perhaps symmetric
odd-length filters are somehow not the most compatible with
“smooth” -balanced orthogonal multiwavelet systems. For
balanced multiwavelets based oneven-length symmetric filters,
the results are more positive.

One-Balanced Solutions:It was found in [17] that the
minimal-length 1-balanced solution, based on odd-length
symmetric FIR filters, are of lengths 3 and 7, with
supported on and , respectively.
While the scaling functions (which are illustrated in
[17]) are free of cusps, the scaling functions , which are
illustrated in Fig. 3, do have cusps, making them very poor
for discrete-time signal processing applications. This helps
explain the poor compression results reported in [24] for this
particular multiwavelet system. When processing is performed
on the wavelet coefficients (quantization or thresholding, for
example), the nonsmooth behavior will become apparent in the
processed signal.

Two-Balanced Solutions:By increasing the lengths to (7,
11), it is possible to obtain a two-balanced GHM-like multi-
wavelet basis. The filters and are supported on

and , respectively. Unfortunately,
the scaling functions ,which are illustrated in [17], have
sharp cusps, making them very poor for signal processing ap-
plications. Although they are not shown, the scaling functions

closely resemble for this example and likewise
have sharp cusps.

Three-Balanced Solutions:Using Gröbner bases, we also
constructed all the minimal-length three-balanced GHM-like

Fig. 3. One-Balanced GHM-like scaling functions� (t) generated by
h(n� 1). The functions� (t) generated byh(n) are illustrated in [17].

Fig. 4. Three-balanced GHM-like scaling functions generated byh(n) and
h(n � 1).

multiwavelet bases. Noting that the one-balanced basis was
based on and of lengths 3 and 7 and that the two-balanced
basis was based on and of lengths 7 and 11, we expected
to obtain three-balanced bases for lengths 11 and 15. However,
for these lengths, the use of Gröbner bases revealed that the
shortest possible lengths for order-3 balancing was 15 and
19, with filters and supported on and
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Fig. 5. Two-balanced orthogonal multiwavelet basis based on even-length symmetric FIR filters.

, respectively. The calculation of the lexical
Gröbner basis with exact integer arithmetic, which took four
weeks on a 200-MHz Sun Ultra 2, revealed that (counting mul-
tiplicities) there are 128 roots to the multivariate polynomial
system of design equations. However, further computations
revealed that there are only 16 distinct solutions—each root
being repeated eight times. Of the 16 solutions, Fig. 4 illus-
trates the smoothest scaling functions . Unfortunately, even
though is reasonably smooth, has sharp cusps,
making this system poor for signal processing applications.
Fig. 4 shows that even if the system is balanced, it does not
necessarily mean that and have the same degree of
smoothness.

B. Even-Length Case

This section describes orthogonal multiwavelet scaling func-
tions for which we have the following.

1) Both and are even-length symmetric (Type
2) FIR filters.

2) and differ in length by 4.

Note that the Haar basis is a special case of a multiwavelet
bases based on even-length symmetric filters. Letting

and yields the Haar basis as
a one-balanced multiwavelet basis. (Multiwavelets bases based
on odd-length symmetric FIR filters do not specialize to the
Haar basis.) Therefore, we examine two- and three-balanced so-
lutions.

Symmetries:For even-length symmetric scaling filters,
the scaling functions are not exactly symmetric. Al-
though this is initially surprising, it is explained simply by ob-
serving the polyphase components and . For
an odd-length symmetric filter , both and
are symmetric — one polyphase component is even-length sym-
metric, and the other is odd-length symmetric. However, for an
even-length symmetric filter , neither nor
is symmetric in general. This difference between even- and odd-
length symmetry leads to the lack of perfect symmetry for the
even-length case. However, for even-length symmetric ,

, the scaling functions and are related through a
simple time-reversal and shift.

(4)

and

(5)

where and are of lengths and , respectively
[supported on and

, respectively]. The relations (4) and (5) are proven in Ap-
pendix A, but they can be explained informally by again ob-
serving the polyphase components. For an even-length sym-
metric filter , the components and are re-
lated through a flip; is simply a time-reversed shifted
version of . Therefore, when the scaling filters are
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shifted by a single sample, they generate the same scaling func-
tions, except for a time-reversal and shift. That is a desirable
property—both and have exactly the same degree of
smoothness. Accordingly, the smoothness of the discrete-time
basis functions associated with the discrete multiwavelet trans-
form (implemented without prefilters) does not depend on the
shift. Provided is smooth, when implementing the discrete
multiwavelet transform, preprocessing discrete-time data is not
needed to compensate for the variance of the smoothness with
respect to the shift.

For the even-length case, it also turns out that the polyphase
components of must be CQF filters, as shown in Appendix
B.

Two-Balanced Solutions:For order-2 balancing, the
minimal lengths of and are 8 and 12, supported on

and , respectively. Via
Gröbner bases, we found that there are eight distinct solutions
to the defining nonlinear equations. The best solution (in terms
of smoothness) is shown in Fig. 5; the coefficients are given in
Table I, as in (5a), shown at the bottom of the page. We also
show in the figure a set of wavelets that are orthogonal to,
which are based on antisymmetric even-length FIR filters
and supported on and ,
respectively. The scaling functions are not shown because
they are exactly the same as up to a shift and time-reverse
as explained above. Note that while the scaling functions are
not exactly symmetric, they are nearly so. In addition, note that
they do not have cusps as do the solutions in the odd-length
case. The zero at , which an even-length symmetric
FIR filter must have, may contribute the greater degree of
smoothness. The odd-length filters above do not have zeros
at . This basis resembles the Haar basis in that both
the scaling filters are symmetric, and both the wavelet filters
are antisymmetric, in contrast with several other multiwavelet
bases.

Three-Balanced Solutions:We obtained minimal-length
three-balanced solutions and of lengths 12 and 16,
respectively. The smoothest three-balanced solution closely
resembles the two-balanced solution shown in Fig. 5.

VI. CONCLUSION

Multiwavelets became a focus of research partly because they
made possible the construction of wavelet systems that are si-
multaneously orthogonal, symmetric, and FIR. However, it be-
came clear that the implementation of the discrete multiwavelet
transform required the design of specialized prefilters; see, for
example [5], [9], [13], [21], [23], [25], and [26]. In [12] and [16],
it was noted that if we wish to avoid the prefiltering procedure,
the multiwavelet basis should have extra approximation prop-
erties—that they be “ -balanced.” For example, even though

TABLE I
THE COEFFICIENTS OFg (n) DEFINING

THE SCALING/WAVELET FILTERS/FUNCTIONS SHOWN IN Fig. 5.

the GHM scaling functions are acceptable, the GHM mul-
tiwavelet filterbank must be preceded by a prefiltering stage.
This is revealed by its balance order of zero or by graphing

. However, a high balance order by itself may not neces-
sarily mean that the system will be suitable for signal processing
applications either.

In this paper, examples of (symmetric) balanced orthogonal
multiwavelet systems were given (in Figs. 3 and 4) for which
the smoothness of the scaling functions depends on the chosen
shift of . Since shifting is equivalent to shifting the
input , the behavior of the iterated filter bank is repre-
sented equally well by and by . Therefore, although
the balance order of a multiwavelet filter bank is the appropriate
generalization of the approximation order of a scalar wavelet
filter bank, it is informative to examine multiwavelet systems by
looking at the expanded family of functions . Assuming we
want to avoid the use of prefilters in implementing the discrete
multiwavelet transform, it is misleading to look at alone,
whether or not the system is balanced. Regardless of the bal-
ance order, taken together reveals more fully the behavior
of the iterated multiwavelet filterbank.

The minimal-length -balanced orthogonal multiwavelet
bases for were presented and analyzed in light

(5a)
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of these issues. In particular, -balanced multiwavelet bases
based on even-length symmetric FIR filters were shown to be
smoother than those based on odd-length symmetric FIR filters,
as illustrated by the relations (4) and (5) and by the examples
constructed (Fig. 5) via Gröbner basis techniques.

One of the challenges in extending these results to multi-
wavelets with higher multiplicity is the nonlinear design
equations that arise. The examples given in this paper appear to
be at the edge of the practical limitations of Gröbner bases. For
the investigation of multiwavelets with higher multiplicity the
theory of multivariate resultants may be helpful [3].

The coefficients and the associated files for reproducing
these results are available from the author or via the Internet at
http://taco.poly.edu/selesi/.

APPENDIX A

A. Time-Reversal Relations

To prove (4) and (5), write

(6)

and

(7)

where

giving

(8)

(9)

(10)

and

(11)

Exploiting the symmetry of and , the dilation equation (1)
can be written as

The scaling functions generated by the shifted filters
are similarly given by

Let and . Then,
with this substitution, we have ,

, and

(12)

and

(13)

Substituting into (12) and into (13)
gives

These are exactly the same dilation equations satisfied by.
Consequently, we obtain the relations (4) and (5). For multi-
wavelet bases with the structure (6) and (7), shifting by a
single sample has the effect of reflecting about
and reflecting about .

B. Polyphase CQF Property

It turns out that for even-length symmetric to generate
an orthogonal basis, the filters must be conjugate quadra-
ture filters (CQF’s), that is, must be orthogonal to their
shifts by 2. This can be easily shown. For , the or-
thogonality condition (2) is

Splitting the left-hand side into two parts gives

With (8) and (9), this becomes
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and therefore, we get

which is the well-known orthogonality condition for a
two-channel orthogonal filter bank. The same result holds for

.
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