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Balanced Multiwavelet Bases Based on
Symmetric FIR Filters

Ivan W. SelesnickMember, IEEE

Abstract—This paper describes a basic difference between mul- why certain complications arise in the implementation of
tiwavelets and scalar wavelets that explains, without using zero multiwavelet transforms.
moment properties, why certain complications arise in the imple- In practice, wavelet transforms are usually implemented as
mentation of discrete multiwavelet transforms. Assuming we wish iterated filt 'b Kt Th i d let functi
to avoid the use of prefilters in implementing the discrete multi- iterated niter-bank trees. The scaling an Wav_e e UI"IC.I@I’]S
wavelet transform, it is suggested that the behavior of the iterated @nd are useful because they reflect the behavior of the iterated
filter bank associated with a multiwavelet basis of multiplicity »  filter bank. For scalar wavelet transforms, after only a few iter-
is more fully revealed by an expanded set of# scaling functions  ations of the filter bank, the iterated filters closely resemble the
¢, ;- This paper also introduces newk -balanced orthogonal mul- = g¢5jing and wavelet functions. However, the iterated filterbank
tiwavelet bases based on symmetric FIR filters. The nonlinear de- t iated with I lett f beh ite dif
sign equations arising in this work are solved using the Grébner ree associated with a m_u |Wav_e ettransiorm behaves quite dri-
basis. The minimal-length K -balanced multiwavelet bases based ferently from one associated with a scalar wavelet transform.
on even-length symmetric FIR filters are better behaved thanthose ~ For a multiwavelet basis based erscaling functions and
based on odd-length symmetric FIR filters, as illustrated by special wavelet functions, we claim that thege functions by them-
relations they satisfy and by examples constructed. selves do not accurately reveal the full behavior of the associated

Index Terms—Filter banks, multiwavelet bases, wavelet trans- filter bank. We suggest that by looking only at tivefunctions,
forms. it is hard to evaluate how effective the filter bank is for signal
processing applications. We propose that the behavior of the it-
erated filter bank associated with the basis is better revealed by

.2 i i 2 ;
N IMPORTANT motiaton or e studyoutwaveler *L0F scalng cons nd weveltbnctione
bases is the design of orthogonal FIR filter banks with bap 9

. S wavelet bases based on symmetric FIR filters. Both odd-length
symmetry properties — a famous limitation of scalar wavelets, . . .
. . : . ~and even-length FIR filters are considered. The nonlinear de-
The remarkable symmetric GHM scaling functions of [7] trig-.. : L . N
. . . . .~ Ysign equations arising in this work are solved using the Grébner
gered a great interest in multiwavelets since symmetry is i~ _. C Y . . )
. o . sis. The complications that arise for multiwavelet bases, in
portantin image processing: one of the primary areas of wavele :
o L : eneral, are suppressed for balanced multiwavelets based on
application. However, there existimportant differences betwegn . )
. ; ven-length symmetric FIR filters.
multiwavelet and scalar wavelet bases, and these differences be-
come apparent when the discrete multiwavelet transform is im-

plemented. Indeed, in the processing of discrete-time signals, Il. PRELIMINARIES
complications arise for multiwavelet transforms that do not arise 1,5 paper considers multiwavelet bases based on two scaling

for scalar wavelet transforms. The usual correction for this fﬁnctionsd)o(t) ¢1(+) and two wavelet functionso (t), v (¢).
the specialized preprocessing (prefiltering) of the discrete'tirﬁ%cordingly, there are two scaling filtets (n), i1 (n) and two

data, which sometimes destroys the very properties a muWéveletfiItershg(n),hg(n).Throughouti, j, k. m,neZand
wavelet basis is designed to have. "

. i . € R.

_Previous papers [12], [16] have highlighted an important e fynctionsp,(¢), ¢ (¢) areorthogonal multiscaling func-
difference between multiwavelet and scalar wavelet bases. E8hsif we have the following.
multiwavelet bases, they focused on zero moment properties of . . .
the associated filter baﬁk and the construction ofpspzcializedl) ¢o(t) ande, (£) satisfy amatrix dilation equation
K-balancedmultiwavelets. In the following, we emphasize an
even more basic difference between multiwavelets and scalar P(t) = V2 Z C(n)p(2t —n) (@)
wavelets that explains, without using zero moment properties, n

. INTRODUCTION

whereg(t) = (¢o(t), ¢1(¢))", andC(n) are 2 x 2 ma-
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The notation foiC(n) used in this paper i€(n)]; ; = h;(2n+ Ho(z) @
j). For example

C(O):<h°(0) h0(1)>’ 0(1):<h0(2) h0(3)> E,_’ o(n)

h1(0) hi(1) hi(2) hi(3)

. #) [~{(19)
etc. We also write”(n) = (h(2n) h(2n + 1)), whereh(n) = C w1 (n)
1
(ho(n), hy(n)) —
Samples ofp;(t) can be calculated as in the scalar wavelet @

case. The value op;(¢) on the integers can be computed by _

soIving an eigenvalue problem, and then, the valu¢i(xf) on Fig. 1. Multiwavelet filter bank{ = 2) drawn as a scalar four-channel filter
. B . bank with interleaving.

the dyadics{ = k/27) can be computed by recursively using

the dilation equation [1], [19]. This is the method used to pl(f—tlowmu( ) related tap(#)? Itis not difficult to prove thati(t) —

all scaling and wavelet functions in this paper. : g .
. .. ¢t — L). That is, shiftingh(n) by L also shifts¢(t) by L.
_ Forho, hy to generate orthogonal scaling functiahs ¢, it It(makeg sense that shifting(; t)he filtérhas no rea(l )effect on
is necessary that the nature of¢. After all, in a filter bank implementation of
_ the scalar-DWT, shifting the filtefi(») is equivalent to shifting
Z P (n+dk) = &(i = j) - 8(k). @ the input sequence(n). The operation of the filteh(n — 1)
with input z(n) is equivalent to the operation of the filte(n)
This condition characterizes orthogonal four-channel filtegith inputx(n — 1). However, for multiwavelet filter banks, the
banks and arises here because a two-channel vector-fignation is quite different.
bank can be redrawn as a four-channel scalar filter bank withTo distinguish between the scaling functions generated by the
interleaving of subband signals [15]. (Accordingly, lattice padiffering shifts of the filtersh;, we introduce the following no-
rameterizations for orthonormal multiwavelets can be obtainegtion:
filter bank, which is illustrated in Fig. 1, is a useful reorganiza- ¢o,0(t) ) =2 Z <h° ho(2n + 1)>
tion of the signal flowgraph. Because of the interleaving, the fro(t 2n) ha(2n+1)

from those for multichannel filter banks [10].) This form of the <
filters o andk; must be jointly designed and/or preprocessing ) <¢07 o(2t — n))

of the inputz(n) is needed. 1 0(2t —n)
Po,1(1) 2n — 1) ho(2n)
[1l. SHIFT PROPERTIES <¢1 10 =2 Z h1 zn —1) hi(2n)
Given a filter bank, one reason it is useful to view the associ- b0 1(2t — n)
ated wavelet and scaling functions is that they allow evaluation | <¢1’ (2t — n) )

and interpretation of the behavior of the filterbank under itera-
tion. By inspecting the characteristics of the scaling and wavelgtat is, ¢; o(t) represents the scaling functions generated by
functions¢ and+), we may draw conclusions about how thdhe unshifted filterg.(n ), whereasp; 1(¢) represents the scaling
discrete-time filtersh; behave when they are used in an itefunctions generated by the shifted filtefign — 1). Note that
ated filterbank tree. However, this is only possible in so far &kifting all the filtersh;(n) in the filter bank of Fig. 1 by the
the scaling and wavelet functions accurately reflect the behavi@me amount affects neither the orthogonality of the filter bank
of the iterated filters. Foscalarwavelet basesp ands give a nor the orthogonality of the multiwavelet basis it generates.
very good indication of the iterated filters. The iterated filters In the multivavelet case, the scaling functions generated by
resemble the scaling and wavelet functions after only a few it{n) and those generated tayn — 1) can be totally different.
erations. The definition of the functiogsandy) is an excellent This is best illustrated by example. In Fig. 2, the classic GHM
tool for the design of filters that are to be employed in iterategfaling functions are shown, along with the scaling functions
filter banks. generated when the GHM scaling filters are shifted by one
However, formultiwavelet bases, the two scaling functionsample. Althoughp; o are continuous and differential except at
and the two wavelet functions do not fully reveal the behavigfew pointsg; ; are extremely nonsmooth. The same behavior
of the iterated filterbank tree. To clarify this difference betweeig evident for other unbalanced multiwavelet bases. Note that
scalar wavelets and multiwavelets, we begin with a simple qudithe filters are shifted by aevennumber of samples, then

tion about scalar wavelet bases. If the scaling functionsare simply shifted; for this reason, we
consider only the scaling functions generated /y.) and
th (2t —n) h(n — 1).

From this example, we conclude that o alone does not re-
flect the full nature of the iterated multiwavelet filterbank tree.
We should look atp; ; as well. Even if the two scaling func-
tions ¢y o and¢; o are highly differentiable, it is possible that
=2 Z h(n — L)u(2t — n). the functior_13/>07 1 ande¢; ; are highly discontinuous, in whic_h

case, the filterbank must be preceded by a properly designed

then how doeg(¢) change when one shiftgn)? Specifically,
let
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GHM Scaling Functions ho(n — 2), then all the scaling functions are simply shifted ver-

sions of a single scaling functiaf(t)

o do.o(t) = B(2) do.1(t) = B2t — 1)

_0'50 0:5 1. 1f5 é 215 3 d)l, O(t) = ¢(2t - 1) d)l, 1(t) ¢(2t - 2)

Recalling the importance of symmetry, the question becomes
the following: Do there exist orthogonal multiwavelet bases
based on symmetric FIR filters for which all four scaling
functions¢; ;(¢) have acceptable smoothness properties? The
K-balanced multiwavelet bases by Lebrun and Vetterli [12]
are examples for which each of the four scaling functions are
highly regular. They are based not entirely on symmetric scaling
filters; instead,hy (n) = ho(N — n), ha(n) = ho(N — n),

and hs(n) = —hs(IN — n). The scaling filters are flipped
GHM Scaling Functions, generated by h(n-1) versions of one another, whereas the wavelet filters are sym-
18 " ' metric/anti-symmetric, respectively, which are properties that
0; D4 ] carry over to the scaling and wavelet functiopsy(t) and
'0 ] i o(t) [and tog; 1 (1) andep;, 1(1)].
-0.5
15 5 : 3 s 25 ) V. BALANCE ORDER

For scalar wavelet bases, the associated filter bank inherits
the zero moment properties ¢¥ft). However, for multiwavelet
bases in general, the associated filter bank does not [12], [16].
Multiwavelet bases for which the zero moment properties
carry over to the discrete-time filter bank are callzlanced
after Lebrun and Vetterli [11], [12]. Specifically, multiwvavelet
bases for which the associated filter bank preserves/annihilates
the setPx _; of polynomials of degre¢ < K are said to be
order-K balanced see [11], [12], and [16]. The condition for
K-balancing is

0 0.5 1 15 2 25 3

Fig. 2. GHM scaling functions generated byn) andh(n — 1).

prefilter. Otherwise, the iterated filterbank structure will not be (=3 4272 4 271+ DE|[Ho(2) + Qr (zNHi(2)]  (3)
effective for signal processing applications. The nonsmooth na-
ture of¢; ; for certain multiwavelet systems is one way of exyhere
plaining why prefilters are important in the implementation of
discrete multiwavelet transforms. " Qu(z) =1 1N /e,

In previous papers, [12], [16], the design of specialized . @a(2) i (f: 210)/,2{ 3 ,-2/8
(K -balanced) multiwavelets that do not require prefilterin @s(z) = (15— 10 272 +3 277)/8, .
was considered. However, in those papers, the functio%@e [12] and [16] for generak'. The examples to be given

¢;,1(t) were not considered. In the following, our goal is agail? Section V Wi_II be balanced up to their approx_imation order.
the design of multiwavelet filter banks that do not require §ome of these issues are also addressed, in a different approach,

specialized preprocessing step. In this paper, we suggest {Rde2l:
to evaluate the effectiveness of the iterated filterbank tree, it
is informative to inspect not only; o(¢) but the functions
¢:,1(t) as well. The functionsp; ; are relevant because the
basic behavior of the filterbank should not depend on the shift
of the filtersh;(n), just as it should not depend on the shift of The GHM scaling functiong; o illustrated in Fig. 2 are based
the inputz(n). on symmetric scaling filtersy andh; of lengths 3 and 7, respec-
tively. A pair of wavelets orthogonal ;¢ was givenin [4] and
[20]. However, although the GHM multiwavelet basis has two
zero moments, it is not balanced. The integrapgf, and the
Shifting the filtersk; (n) does not always destroy/degrade thategral of¢, o are not equal, and neither are the sumsgdnd
regularity of¢;(t). For example, a scalar wavelet basis can ak;. The GHM system is zero balanced. In this section, we inves-
ways be embedded in the multiwavelet frameworltIfr) = tigate the design of K-balanced” versions of the GHM basis.

V. K-BALANCED MULTIWAVELETS BASED ON SYMMETRIC
FIR HLTERS

A. Remarks



SELESNICK: BALANCED MULTIWAVELET BASES BASED ON SYMMETRIC FIR FILTERS 187

We also look at all four functions; ; and not just; . Specif- 5| Bianced GHM-like Scaling Functions , generated by h(n-1)
ically, we seek to design symmetric FIR filtekig and/; that
generate orthogon# -balanced multiwavelet bases. Thatfig,
andh; must satisfy the nonlinear orthogonal constraints given
by (2) and the balancing conditions given by (3). We seek the 0
shortest filters satisfying these equations so that the equations  _,
totally define the filters up to a finite number of solutions—there
are no continuously-variable free parameters remaining. 3
As mentioned above, we use Grobner bases to obtain
solutions to the nonlinear system of equations—sometimes
obtaining explicit solutions in terms of radicals. In a sense,
Grobner bases extend Gaussian elimination to multivariate
polynomial systems [2]. Grobner bases have also been used
for filter design in [6], [12], [14], and [18], for example. We
used the softwar&ingular[8] to carry out the Grébner basisFig. 3. One-Balanced GHM-like scaling functions () generated by

o 9.1

] 05 1 15 2 25 3

o 05 1 15 2 25 3

computations. h(n — 1). The functionsp;  o(t) generated by(n) are illustrated in [17].
A Odd Length Case ; 3-Balanced GHM-like Scaling Functions

. - 5 T T T T r

This section describes GHM-like multiwavelet bases bal- T %0
anced up to orderk. Like the GHM basis, we have the 0.5
following. 0

1) All ¢; ;(t) are symmetric. 05 ‘ . . . N

2) Bothho(n) andhy(n) are odd-length symmetric (Type 1) 6o+ 2z 3 4 5 & 7T 8

FIR filters. 15

3) ho(n) andhy(n) differ in length by 4.

For none of the one—, two-, and three-balanced min-
imal-length orthogonal multiwavelets bases, based on
odd-length symmetric FIR filters, are bo#y; ¢ and ¢; ;
acceptably smooth. That suggests that perhaps symmetric  -05; ; 2 3 7 s 3 5 8
oddlength filters are somehow not the most compatible with
“smooth” K-balanced orthogonal multiwavelet systems. For
balanced multiwavelets based ewenlength symmetric filters,
the results are more positive.

One-Balanced Solutionstt was found in [17] that the
minimal-length 1-balanced solution, based on odd-length
symmetric FIR filters, are of lengths 3 and 7, with, Ay
supported om = (0, 1, 2) andn = (0, - --, 6), respectively.
While the scaling functions; o(¢) (which are illustrated in
[17]) are free of cusps, the scaling functiofis: (¢), which are
illustrated in Fig. 3, do have cusps, making them very poor
for discrete-time signal processing applications. This helps
explain the poor compression results reported in [24] for this
particular multiwavelet system. When processing is performed
on the wavelet coefficients (quantization or thresholding, for
example), the nonsmooth behavior will become apparent in the
processed signal.

Two-Balanced SolutionsBYy increasing the lengths to (7,
11), it is possible to obtain a two-balanced GHM-like multiFig. 4. Three-balanced GHM:-like scaling functions generated{y) and
wavelet basis. The filteré, and h; are supported om = h{n —1).

(0, ---,6) andn = (0, ---, 11), respectively. Unfortunately,

the scaling functiong; o(t),which are illustrated in [17], have multiwavelet bases. Noting that the one-balanced basis was
sharp cusps, making them very poor for signal processing dqased orky andh; of lengths 3 and 7 and that the two-balanced
plications. Although they are not shown, the scaling functiormsis was based diy andh, of lengths 7 and 11, we expected
¢i,1(t) closely resemble; (t) for this example and likewise to obtain three-balanced bases for lengths 11 and 15. However,
have sharp cusps. for these lengths, the use of Grobner bases revealed that the

Three-Balanced SolutionsuUsing Grébner bases, we alscshortest possible lengths for order-3 balancing was 15 and
constructed all the minimal-length three-balanced GHM-Iik#9, with filters ho and h; supported om = (0, ---, 14) and
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Scaling and Wavelet Functions Scaling and Wavelet Filters

1
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Fig. 5. Two-balanced orthogonal multiwavelet basis based on even-length symmetric FIR filters.

n = (0, ---, 18), respectively. The calculation of the lexical Symmetries:For even-length symmetric scaling filtefs,
Grobner basis with exact integer arithmetic, which took fouhe scaling functionsp; o(t) are not exactly symmetric. Al-
weeks on a 200-MHz Sun Ultra 2, revealed that (counting mukough this is initially surprising, it is explained simply by ob-
tiplicities) there are 128 roots to the multivariate polynomiaerving the polyphase componeht$2») andh;(2n + 1). For
system of design equations. However, further computatioas odd-length symmetric filtét(n), bothi(2n) andh(2n + 1)
revealed that there are only 16 distinct solutions—each raae symmetric — one polyphase component is even-length sym-
being repeated eight times. Of the 16 solutions, Fig. 4 illugetric, and the other is odd-length symmetric. However, for an
trates the smoothest scaling functighs,. Unfortunately, even even-length symmetric filtgt(n), neitherh(2n) nor h(2n 4 1)
thoughe; o(¢) is reasonably smootlg; 1(¢) has sharp cusps, is symmetric in general. This difference between even- and odd-
making this system poor for signal processing applicationength symmetry leads to the lack of perfect symmetry for the
Fig. 4 shows that even if the system is balanced, it does resen-length case. However, for even-length symméisia.),
necessarily mean that;  and¢; 1 have the same degree ofr{(n), the scaling functions; o and¢; 1 are related through a
smoothness. simple time-reversal and shift.

B. Even-Length Case $o,1(t) = ¢o,0(L — 1) (4)

This section describes orthogonal multiwavelet scaling fung—noI
tions for which we have the following.

1) Bothho(n) andhi(n) are even-length symmetric (Type d1.1(t) = ¢1o(L+1—1t) (5)

2) FIR filters.

2) ho(n) andhy(n) differ in length by 4. wherehy and h; are of length2L and2L + 4, respectively

Note that the Haar basis is a special case of a multiwavelstipported om = (0, ---, 2L — 1) andn = (0, ---, 2L +
bases based on even-length symmetric filters. Lefiigl@) = 3), respectively]. The relations (4) and (5) are proven in Ap-
hraar(n)andhi(n) = hnaar(n—2) yields the Haar basis aspendix A, but they can be explained informally by again ob-
a one-balanced multiwavelet basis. (Multiwvavelets bases basedving the polyphase components. For an even-length sym-
on odd-length symmetric FIR filters do not specialize to themetric filter A(n), the components(2n) andh(2n + 1) are re-
Haar basis.) Therefore, we examine two- and three-balancedlsted through a flipi.(2n + 1) is simply a time-reversed shifted
lutions. version ofh(2n). Therefore, when the scaling filteks(n) are
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shifted by a single sample, they generate the same scaling func- TABLE |

tions, except for a time-reversal and shift. That is a desirable THE COEFFICIENTS OFg;(n) DEFINNG
THE SCALING/WAVELET FILTERS/FUNCTIONS SHOWN IN Fig. 5.

property—bothg,; o and¢; 1 have exactly the same degree of

smoothness. Accordingly, the smoothness of the discrete-time A =13/80 — (1/40)/151
basis functions associated with the discrete multiwavelet trans- B = —(1/320)\/47204 + 2865
form (implemented without prefilters) does not depend on the C = (3/640)/7204 + 115
shift. Providedyp; o is smooth, when implementing the discrete 90(0) = A/2 +3/32
multiwavelet transform, preprocessing discrete-time data is not go(1) = -4
needed to compensate for the variance of the smoothness with 90(2) = —A/2 + 29/32
respect to the shift. w03 =4

For the even-length case, it also turns out that the polyphase g1(0) = —94/16 — 21/256
components of; must be CQF filters, as shown in Appendix 91(1) = 134/16 + 29/256
B g1(2) = 5A/8 4+ 25/128

Two-Balanced SolutionsFor order-2 balancing, the
minimal lengths ofhg and h; are 8 and 12, supported on

91(3) = —5A/8 + 115/128
g1
n = (0,---,7) andn = (0, ---,11), respectively. Via 0
g2
g2

4) = —A/16 — 29/256
5) = —3A4/16 — 3/256

Grobner bases, we found that there are eight distinct solutions
to the defining nonlinear equations. The best solution (in terms

0) = 440AB/111 + 113B/222

(
(4)
(5)
(0)
(1) = —1600AB /333 — 377B /333
(2)
3)
(0)
(1)

of smoothness) is shown in Fig. 5; the coefficients are given in 92(2) = 40AB/3 — 29B/6

Table 1, as in (5a), shown at the bottom of the page. We also g92(3) =B

show in the figure a set of wavelets that are orthogona; tg, 93(0) = —40AC/7 - 11C/14
which are based on antisymmetric even-length FIR filfers g3(1) = 1604C/21 + 29C/21

and h3 supported om = (0, ---, 7) andn = (0, ---, 11), 93(2) = —1604C/21 + 230C/21
respectively. The scaling functiogs ; are not shown because 93(3) = ~2080AC /21 4+ 1030C/21
they are exactly the same @s, up to a shift and time-reverse 93(4) = 40AC/3 — 29C/6

as explained above. Note that while the scaling functions are g3(5)=C

not exactly symmetric, they are nearly so. In addition, note that

they do not have cusps as do the solutions in the odd-length . .
case. The zero ab = =, which an even-length symmetric%.he GHM scaling functiong, o are acceptable, the GHM mul-
Y.iavelet filterbank must be preceded by a prefiltering stage.

FIR filter must have, may contribute the greater degree Qf . . ) ;
smoothness. The odd-length filters above do not have ze s is revealed by its balance order of zero or by graphing
1. However, a high balance order by itself may not neces-

atw = w. This basis resembles the Haar basis in that bof% : . . . i
the scaling filters are symmetric, and both the wavelet fiIteF‘sarlly mean that the system will be suitable for signal processing
y plications either.

are antisymmetric, in contrast with several other multiwavel8P . .
In this paper, examples of (symmetric) balanced orthogonal

bases. i | ; A d4) f hich
Three-Balanced SolutionsiWe obtained minimal-length mhutlwavehet systefmhs werei_gwfen (|r_1 F'gz' 3 ar:j 4) ohr Wh'c
three-balanced solutions, and 4; of lengths 12 and 16,t ‘?Smo"‘ Ness o t € scaling qnctmn_s epen so_n_t € chosen
respectively. The smoothest three-balanced solution closgrgft of i{n). Since sh!ft|ngl_z(n) 1S equwalt_ant 0 sh|ft!ng the
resembles the two-balanced solution shown in Fig. 5. input z(n), the behavior of the iterated filter bank is repre-
sented equally well byy; ¢ and by¢; 1. Therefore, although
the balance order of a multiwavelet filter bank is the appropriate
generalization of the approximation order of a scalar wavelet
Multiwavelets became a focus of research partly because thifgr bank, it is informative to examine multiwavelet systems by
made possible the construction of wavelet systems that arelseking at the expanded family of functiogs ;. Assuming we
multaneously orthogonal, symmetric, and FIR. However, it besant to avoid the use of prefilters in implementing the discrete
came clear that the implementation of the discrete multiwavelaultiwavelet transform, it is misleading to look @f, ¢ alone,
transform required the design of specialized prefilters; see, fhether or not the system is balanced. Regardless of the bal-
example [5], [9], [13], [21], [23], [25], and [26]. In [12] and [16], ance orderg; ; taken together reveals more fully the behavior
it was noted that if we wish to avoid the prefiltering proceduref the iterated multiwavelet filterbank.
the multiwavelet basis should have extra approximation prop-The minimal-length K-balanced orthogonal multiwavelet
erties—that they be K'-balanced.” For example, even thougtbases forK = 1, 2, 3 were presented and analyzed in light

VI. CONCLUSION

ho(n) I (90(0) go(3) go(1) go(2) go(2) go(l) go(3) go(0) O 0 0 0
< ) < ) a(4) a1 (1) 91(5) 91(0)> (52)



190 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2000

of these issues. In particulak -balanced multiwavelet basesThe scaling functions generated by the shifted filfers: — 1)
based on even-length symmetric FIR filters were shown to hee similarly given by

smoother than those based on odd-length symmetric FIR filters,

as illustrated by the relations (4) and (5) and by the examples L1

constructed (Fig. 5) via Grobner basis techniques. Po.1(t) = > go(n)(do,1(2t +n — L) + ¢1,1(2t — n))
One of the challenges in extending these results to multi- zi

wavelets with higher multiplicity» > 2) is the nonlinear design

equations that arise. The examples given in this paper appea(lbf:o1 =2 u(n)(go,1(2t +n = L =2)+ 1 1(2t = m)).

n=0

be at the edge of the practical limitations of Grébner bases. For
the investigation of multiwavelets with higher multiplicity the gt ,,,(¢) = o, 1(L — t) anduy (t) = ¢y, 1(L + 1 — t). Then,
theory of multivariate resultants may be helpful [3]. with this substitution, we havgy, 1 (t) = wo(L — 1), ¢1,1() =
The coefficients and the associated files for reproducing(r, + 1 — ¢), and
these results are available from the author or via the Internet at
http://taco.poly.edu/selesi/.
Zgo Wuo(L — 2t —n+ L)

APPENDIX A
+u1(L+1—2t+n)) (12)
A. Time-Reversal Relations
and
To prove (4) and (5), write
L+1
(L+1—1) = a(n L—2t—n+L+2)
1
Ho(z) = 7 (Go(z2) + z—<2L—1>G0(1/z2)) (6) Z
+u1(L+1—2t+n)). (13)
and o . .
Substitutingt = L — «into (12) andt = L + 1 — « into (13)
ives
Hi(z) = % (G += 96, 1/2) @) g
where Z go(n)(uo (2 — n) + w1 (2a +n — (L — 1))
1) L+1
Go(2) = g0(0) + -+~ 4+ go(L — 1)z Z g1 (n)(uo(2e — n) + u1 (20 4+ n — (L + 1))).
Gi(2) =1(0) + -+~ + u (L + 1)z~ Y
giving These are exactly the same dilation equations satisfiet lay _
Consequently, we obtain the relations (4) and (5). For multi-
1 wavelet bases with the structure (6) and (7), shifing:) by a
ho(2n) = go(n) (8) single sample has the effect of reflecting(t) aboutt = L/2
1 and reflectingp; (¢) aboutt = (L + 1)/2.
ho(2n + 1) :75 go(L—1—mn) 9
1 B. Polyphase CQF Property
hi(2n) ~ /2 g1(n) (10) It turns out that for even-length symmetfig(n) to generate
an orthogonal basis, the filtegg(n) must be conjugate quadra-
and ture filters (CQF’s), that isg;(n) must be orthogonal to their
1 shifts by 2. This can be easily shown. Foe j = 0, the or-
hi(2n+1) = 75 a(L+1—n). (11) thogonality condition (2) is
Exploiting the symmetry ok, andh;, the dilation equation (1) Z ho(n)ho(n + 4k) = 6(k).
can be written as
Splitting the left-hand side into two parts gives
0,0 Z go(n)(¢o,0(2t —n) Z ho(2r)ho(2n + 4k) + ho(2n + Dho(2n + 1 + 4k).
+¢1,o(2t+n— (L - 1)) !
I+1 With (8) and (9), this becomes
$1,0(t) = > g1(n)(o,0(2t — n)
=0 3 Z(go(”)go(”‘f‘%)‘f‘go@— 1—=n)go(L —1—n—2k))

+ ¢1,0(2t +n — (L +1))). n
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and therefore, we get [15]

>~ 90(n)go(n + 2k) = 5(k) [16]

which is the well-known orthogonality condition for a [17]
two-channel orthogonal filter bank. The same result holds f0f18]

g1(n).

[19]
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