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Optimization of Symmetric Self-Hilbertian Filters
for the Dual-Tree Complex Wavelet Transform

Bogdan Dumitrescu, İlker Bayram, and Ivan W. Selesnick

Abstract—In this letter, we expand upon the method of Tay et
al. for the design of orthonormal “Q-shift” filters for the dual-tree
complex wavelet transform. The method of Tay et al. searches
for good Hilbert-pairs in a one-parameter family of conju-
gate-quadrature filters that have one vanishing moment less than
the Daubechies conjugate-quadrature filters (CQFs). In this letter,
we compute feasible sets for one- and two-parameter families of
CQFs by employing the trace parameterization of nonnegative
trigonometric polynomials and semidefinite programming. This
permits the design of CQF pairs that define complex wavelets that
are more nearly analytic, yet still have a high number of vanishing
moments.

Index Terms—Complex wavelet, Hilbert pair, orthogonal filter
banks, positive trigonometric polynomials.

I. INTRODUCTION

THE dual-tree complex wavelet transform (DT- WT), in-
troduced by Kingsbury [8], is a useful extension of the

conventional (real) wavelet transform (WT). Unlike the conven-
tional wavelet transform, the DT- WT is nearly shift-invariant
and is geometrically oriented in 2-D and higher dimensions.
The one-dimensional DT- WT is comprised of two conven-
tional (real) wavelet transforms operating in parallel on the input
signal (making the DT- WT overcomplete by a factor of two).
Therefore, the design of a DT- WT requires, in fact, the simul-
taneous design of two conventional wavelet transforms. More
specifically, the DT- WT requires a pair of wavelet transforms
where the respective wavelets form an approximate Hilbert-pair.
That is, the wavelet transforms must approximately satisfy the
condition

(1)

where denote the respective wavelets, and where
denotes the Hilbert transform. Several methods for the

design of such wavelet pairs have been proposed [13], [14] (see
[11] for a review). In this letter, we expand upon the method
proposed in [12].

As in [12], we consider orthonormal compactly-supported
dyadic wavelet transforms only. That being the case, each
wavelet transform is defined by a conjugate-quadrature filter
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(CQF). We denote by the low-pass CQF defining the first
WT, and by the low-pass CQF defining the second (dual)
WT. The filters and satisfy (1) if and only if they satisfy
the “half-sample delay” condition as follows:

(2)

where . The “if” and “only if” parts were shown in [10]
and [15], respectively, with . (See [3] for and for the
M-band case.) In this letter, as in [12], we consider only.
Because condition (2) cannot be satisfied exactly when both
and are FIR filters, the DT- WT calls for CQFs that satisfy
(2) [and hence (1)] approximately.

One class of CQF pairs for the DT- WT is the
Q-shift solution introduced by Kingsbury [9] which is con-
strained to satisfy

(3)

Consequently, the wavelets defined by and satisfy
. It can be shown that if a filter pair

satisfies (3) and approximately satisfies (2), then the phase of
will be approximately linear. However, the procedure

in [9] produces wavelets having only one vanishing moment
(VM). Recently, Tay et al. have proposed a new method for
Q-shift pair design that produces wavelets having only one
vanishing moment less than the maximum number possible,
given the filter length [12].

The method [12] utilizes Bernstein polynomials which allows
one to structurally impose the desired number of VM [2]. Al-
lowing the number of VM to be one less than the maximum,
a single degree of freedom becomes available for design. Con-
sequently, a parameterization (using a single parameter) of the
family of filters through the Bernstein polynomials is possible.
The approach taken in [12] is to optimize the single free param-
eter so that (1) is satisfied as well as possible.

In this letter, we provide a complete characterization of the
search space for the given VM conditions, showing that the use
of Bernstein polynomials is restrictive. We provide parameter-
izations of this space for one and two degrees of freedom (by
allowing the number of VM to be one and two less than the
maximum, respectively).

II. DEFINITIONS

An orthonormal two-channel filter bank is completely deter-
mined by its low-pass filter . Let be the degree of
and let be real-valued. Denoting

(4)
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the orthonormality condition is and so the
product filter (4) satisfies the Nyquist condition

(5)

The wavelet defined by has vanishing moments if
has roots at . On , this condition is written as

(6)

where

(7)

We note that, by construction, the symmetric polynomials
and are nonnegative on the unit circle.

The low-pass CQF, , can be obtained by performing spec-
tral factorization on the product filter . The high-pass filter,

, is obtained from by . The
CQF set defines the wavelet with vanishing
moments. For the DT- WT, we require a second CQF set

which defines a wavelet , such that the wavelet
pair satisfies (1) approximately. As in [9] and
[12], we ask in addition that the low-pass pair satisfies
(3). In this case, and are spectral factors of the same filter

. From [12], we have the following definition.
Definition 1: A symmetric self-Hilbertian (SSH) filter is a

product filter with two spectral factors which satisfy
(3) and which define wavelets satisfying (1) ap-
proximately.

In order to measure how well a pair of wavelets
satisfies (1), we use the “analyticity measures” defined in [12].
For this, let denote the complex wavelet

(8)

If the relation (1) were exact, then the wavelet would be
exactly analytic. On the other hand, if (1) holds approximately,
then we expect to be approximately analytic. This moti-
vates the following definitions from [12]:

(9)

In the following, we investigate the positive polynomial family
satisfying (5) and (6).

III. ONE DEGREE OF FREEDOM

Given , the degree of , the maximum number of
vanishing moments is , and the solutions are the
Daubechies filters [4]. In this section, we set the number of van-
ishing moments to one less than the maximum, .
Then there are linear constraints (5) on the co-
efficients of the polynomial . So, there is a single degree
of freedom in . We desire to parameterize, with a single
parameter, all the polynomials (6) that are nonnegative and
satisfy (5). A restrictive solution has been proposed in [12],
using a particular form of Bernstein polynomials. Here we
present a complete parameterization.

The polynomial (7) is nonnegative on the unit circle, and from
(5) and (6), it satisfies the linear constraint

(10)

where and . The size
of is . The set of coefficients

satisfying these conditions is convex, as the intersection of
the convex set of nonnegative polynomials of degree
with the line defined by (10). Because the set of nonnegative
Nyquist filters is bounded, the set is also bounded, and
it is therefore a segment.

We choose as our parameter. We split , where
is the first column of , and is nonsingular ( has full row

rank and any columns are linearly independent). Denoting
, we have

(11)

Hence, the other coefficients of depend linearly on .
Because the set is a segment, the admissible values of

form an interval . We can find the lower bound
of the interval by solving the optimization problem

(12)

Using the trace parameterization [1], [5]–[7] of nonnegative
trigonometric polynomials, this becomes a semidefinite pro-
gramming (SDP) problem and can be solved easily. The upper
bound is found by solving a maximization problem,
otherwise identical to (12).

Comparison: We show that the proposed parameterization
is better than that from [12] for the simple case (and

). Using the proposed approach, we obtain

(13)

with . Using Bernstein polynomials as in [12],
we obtain

with . Note that this corresponds to (13) with
, i.e., only a subset of the admissible interval.

Optimization Procedure: To find the best self-Hilbertian
filter , we follow a procedure similar to that of [12]. Since
the measures (9) are nonconvex functions, with many local
minima, we use an exhaustive search. We cover the interval

with a fine grid and, with the corresponding
values , generate product filters using (11). We generate
all the spectral factors of each (in contrast to [12], where
apparently a single approximately linear phase factor was
used). Each spectral factor is multiplied with to
obtain a candidate filter . The analyticity measures (9)
are computed for each . Overall, the filter with smallest
measure is retained.

Experimental Results: The parameters of the optimal filters
obtained by the above procedure are shown in Table I. Almost
all results are better than those reported in [12, Table I], with the
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TABLE I
ANALYTICITY MEASURES OF E - AND E -OPTIMAL CQFS h

WITH ONE DEGREE OF FREEDOM. r IS THE E -OPTIMAL r

Fig. 1. Orthonormal Hilbert-pair with four vanishing moments, de-
fined by E -optimal length-10 CQF. (Top)  (t) and  (t). (Bottom)
j	(!) + j	 (!)j.

exception of the values for (where we have obtained
a worse result, although our procedure should give at least the
same optimal values) and (same result as in [12]). For

, the improvement goes from only a few percent to values
that are more than twice smaller, as when . For ,
our values are typically two to three times smaller than those
of [12]; for , our is more than ten times smaller.
These improvements are due to checking all the spectral factors
and not to the complete parameterization; the optimal values of

are near , i.e., at the end of the interval covered by the
parameterization of [12]. However, the new parameterization,
besides being complete, helps in dealing with filters with several
degrees of freedom, as in Section IV.

Example: The wavelets, and , defined by the
length-10 -optimal filter , are illustrated in Fig. 1. The
wavelets have four vanishing moments. In addition, the figure
illustrates the magnitude of the Fourier transform of the com-
plex wavelet, . The coefficients

are tabulated in Table II under the heading [4 VM].

IV. TWO DEGREES OF FREEDOM

In this section, we set the number of vanishing moments to
two less than the maximum. Therefore, we now use

. As a result, for a given degree , we expect the com-
plex wavelets obtained by optimizing over the two degrees of
freedom will be more nearly analytic. There are linear
constraints (5) on the coefficients of the polynomial
and therefore two degrees of freedom in the choice of . The

TABLE II
COEFFICIENTS OF THE E -OPTIMAL h DEFINING

THE WAVELETS ILLUSTRATED IN FIGS. 1–3

set of coefficients is again convex and bounded and
lies in the plane defined by (10).

To parameterize , we may use any two coefficients and ,
provided that the matrix that results after re-
moving the columns and from is nonsingular. For example,
we can choose and as parameters. We split .
Denoting , we have

(14)

Again, the other coefficients of depend linearly on and
. (The only case where is singular is . In this case,

the parameters can be and .)
We show now how to cover the set of admissible and

with a discrete set of points, aiming again at an exhaustive search
for optimizing and . We note that the solution of (12) and
of the corresponding maximization problem still gives the in-
terval of possible values for (note that this
interval is larger than for a single degree of freedom). For a
given , the admissible values of lie in an
interval , whose endpoints can be com-
puted by solving

fixed

(15)

and the corresponding maximization problem. Again, the
problem (15) can be expressed in SDP form.

Optimization Procedure: We take a grid covering
. For each on this grid, we find

by solving (15) and cover this interval
with a grid of values . For each and , we compute
with (14) and then proceed as in the one freedom degree case.
Practically, due to the high computation even for relatively
small values of , we restrain the search to values of near

(based on observations discussed in Section III). Also,
we search first on a coarser grid (containing a few hundred
points and 100 points) and then refine the search around the
most promising points. The results we report are obtained after
an overnight calculation for and an over-week-end
calculation for and 21, on a standard PC. The
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TABLE III
ANALYTICITY MEASURES OF E - AND E -OPTIMAL CQFS h

WITH TWO DEGREES OF FREEDOM. r IS THE E -OPTIMAL r

Fig. 2. Orthonormal Hilbert-pair with three vanishing moments, de-
fined by E -optimal length-10 CQF. (Top)  (t) and  (t). (Bottom)
j	(!) + j	 (!)j.

complexity is dictated by the number of spectral factors, which
grows exponentially, and by the computation of the analyticity
measures and ; the SDP problems (12) and (15) have
negligible impact on the total run-time.

Experimental results are shown in Table III. Due to the nature
of the optimization problem, we are not certain that the results
are globally optimal, especially for the larger values of . How-
ever, they are clearly better than the results obtained using only
one degree of freedom, especially for , where the
improvement is substantial. The only case where practically no
improvement was obtained is for and , which was
already good.

Examples: The wavelets, and , defined by the
length-10 -optimal filter with two degrees of freedom
are illustrated in Fig. 2. The coefficients of are tabulated
in Table II under [3 VM]. The wavelets have three vanishing
moments—one less than those illustrated in Fig. 1; however,
the complex wavelet is more nearly analytic than the one of
Fig. 1. We also illustrate the wavelets defined by the length-14

-optimal filter in Fig. 3 (tabulated in Table II under [5 VM]).
Again, the solution obtained using two degrees of freedom
instead of one is substantially more nearly analytic.

V. CONCLUSION

In this letter, we have expanded upon the method of [12] for
the design of orthonormal “Q-shift” filters for the dual-tree com-
plex wavelet transform. The method of [12] searches for good
Hilbert-pairs in a one-parameter family of conjugate-quadrature

Fig. 3. Orthonormal Hilbert-pair with five vanishing moments, de-
fined by E -optimal length-14 CQF. (Top)  (t) and  (t). (Bottom)
j	(!) + j	 (!)j.

filters that have one vanishing moment less than the Daubechies
CQFs. In this letter, feasible sets are computed for one- and two-
parameter families of CQFs by employing the trace parameter-
ization of nonnegative trigonometric polynomials and semidef-
inite programming. This permits the design of CQF pairs that
define complex wavelets that are more nearly analytic, yet still
have a high number of vanishing moments.
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