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Sparse Signal Approximation via Non-separable
Regularization

Ivan Selesnick and Masoud Farshchian

Abstract—The calculation of a sparse approximate solution
to a linear system of equations is often performed using either
(1) L1-norm regularization and convex optimization or (2) non-
convex regularization and non-convex optimization. Combining
these principles, this paper describes a type of non-convex regu-
larization that maintains the convexity of the objective function,
thereby allowing the calculation of a sparse approximate solution
via convex optimization. The preservation of convexity is viable in
the proposed approach because it uses a regularizer that is non-
separable. The proposed method is motivated and demonstrated
by the calculation of sparse signal approximation using tight
frames. Examples of denoising demonstrate improvement relative
to L1 norm regularization.

Index Terms—sparse signal model, sparse approximation, de-
noising, convex function, optimization

I. INTRODUCTION

Sparse representations are used in applications such as noise
reduction, deblurring, filling in missing data, tomography, and
compressed sensing [79]. A basic step in many algorithms
for these applications is the calculation of a sparse solution
or sparse approximate solution to an ill-conditioned or highly
under-determined system of linear equations y = Ax [11]. A
widely used approach to find a sparse approximate solution is
to minimize the objective function J : RN → R,

J(x) =
1

2
‖y −Ax‖22 + λ ‖x‖1, λ > 0 (1)

comprising a quadratic fidelity term and an `1 norm regulariza-
tion (or ‘penalty’) term. In particular, basis pursuit denoising
(BPD) [20] performs noise reduction this way. In BPD, y
represents a signal in zero-mean noise. The BPD approach
is effective precisely when the signal to be estimated admits
a sparse approximation with respect to A; i.e., the signal
can be expressed or approximated as a linear combination
of relatively few columns of A. The objective function J is
convex; hence, efficient algorithms to calculate a minimizer
are available [24]. Problem (1) is also referred to as a lasso
(least absolute shrinkage and selection operator) [80].

It has been shown that improved results can be obtained
by replacing the `1 norm in (1) by a suitably chosen non-
convex function [2], [12], [17], [18], [39], [53], [58], [59],
[88]. That is, sparser solutions can be obtained with the same
approximation error, or similarly, equally sparse solutions can
be obtained with reduced approximation error. This leads to
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improved denoising, etc. However, replacing the `1 norm by
a non-convex function leads generally (but not necessarily) to
the objective function J being non-convex, thereby complicat-
ing the process in general: (i) Algorithms may sometimes fail
to converge to a global minimizer. (ii) The global minimizer
(if unique) may vary abruptly as λ is varied.

In this paper, we propose a family of non-convex multivari-
ate penalty functions that preserve the convexity of the objec-
tive function to be minimized. Our goal is to improve upon
`1-norm regularization while preserving a convex formulation.
We consider the objective function F : RN → R,

F (x) =
1

2
‖y −Ax‖22 + λψ(x), λ > 0 (2)

where the non-convex penalty function ψ : RN → R is to be
chosen so that F is convex.

The proposed multivariate penalty is constructed by sub-
tracting a smooth convex function from the `1 norm. The
properties of the penalty therefore depend on the properties
of this convex function. The type of penalty function we
propose is non-separable, meaning it can not be written as
ψ(x) =

∑
n φ(xn). The penalty we propose is given in (63)

in Theorem 2 which is the main result.
For the proposed multivariate sparse regularization (MUSR)

approach, the objective function F can be minimized using
the same efficient proximal algorithms used for `1-norm min-
imization. Specifically, the forward-backward splitting (FBS)
algorithm can be used to derive a matrix-free algorithm to
minimize the objective function F .

In this work, we consider A to be an arbitrary matrix. It
need not be injective nor surjective. In particular, A can be
a wide matrix, i.e., ATA is highly rank deficient. (This is in
contrast to our earlier work.) In our numerical examples, we
consider primarily wide matrices A for which AAT = pI for
some p > 0, i.e., the columns of A form a tight frame. We
illustrate the proposed method for signal denoising via sparse
signal approximation (SSA).

A. Related work

This work is related to recent papers on the formulation of
convex objective functions for various linear inverse problems
using non-convex sparsity-inducing penalties [4], [7], [19],
[27], [40], [46], [47], [49], [62], [63], [70], [73]. However,
these papers are of limited applicability when ATA is highly
rank deficient in problem (2). These papers use separable
(additive) penalty functions, i.e., ψ(x) =

∑
n φ(xn), which are

fundamentally limited in this context. We recently proposed
a bivariate non-separable penalty to overcome this limitation
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TABLE I
UNIVARIATE PENALTIES SATISFYING PROPERTY 1.

Log φ(t) = log(1 + |t|)

Rat φ(t) =
|t|

1 + |t|/2

Atan φ(t) = 2√
3

(
tan−1

(
1+2|t|√

3

)
− π

6

)
Exp φ(t) = 1− e−|t|

MC φ(t) =

{
|t| − 1

2
t2, |t| 6 1

1
2
, |t| > 1

[71], but its effectiveness for N > 2 variables is limited to a
narrow class of problems.

This work is related to several other prior papers. The
formulation of convex objective functions with non-convex
penalties for signal processing was pioneered by Blake, Zisser-
man, and Nikolova who used non-convex separable penalties
in the graduated non-convexity (GNC) technique [9], [57],
[60], [61] and binary image estimation [56]. Additionally,
non-convex non-separable penalties have been proposed by
Tipping [81] and Wipf [86] to strongly induce sparsity. On the
other hand, we are interested here in problems where both the
objective function is convex and the penalty is non-separable.

This work is related more generally to the literature on
techniques designed to outperform `1 norm regularization for
sparse approximation. Methods based on the `p pseudo-norm
(0 6 p < 1) and other penalty functions have been developed
[2], [15]–[17], [21], [28], [29], [33]–[35], [48], [52], [54], [55],
[90]. Algorithms that seek directly to obtain (approximate)
sparse solutions have also been developed: matching pursuit
[51], greedy `1 [45], iterative thresholding [10], [43], [50],
[66], [83], [84], [87], single best replacement [77], [78],
smoothed `0 [54], and smoothed `1/`2 [68]. The continuous
exact `0 (CEL0) penalty [76] and the work of Ref. [13] aim to
approximate the convex hull of the `0 pseudo-norm regularized
least squares objective function, so as to reduce the number
of extraneous non-optimal local minimizers.

In addition to these methods, a novel approach for the
calculation of a global minimizer of a non-convex sparse de-
convolution problem was recently proposed using a hierarchy
of semidefinite programming relaxations [14].

B. Notation

The vector x ∈ RN is written x = (x1, x2, . . . , xN ). The
`1 and `2 norms of x ∈ RN are defined as ‖x‖1 =

∑
n|xn|

and ‖x‖2 =
(∑

n|xn|
2)1/2, respectively. If the matrix A−B

is positive semidefinite, we write A < B. The matrix norm
‖A‖1 is defined as

‖A‖1 = max
j

∑
i

|Ai,j |. (3)

Also, ‖A‖22 is defined as the maximum eigenvalue of ATA.
We also use the notation R+ = {x ∈ R : x > 0} and R∗+ =
{x ∈ R : x > 0}.
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Fig. 1. The rational penalty φ, the corresponding function s, and its
derivatives.

II. UNIVARIATE PENALTIES

We define a class of non-convex univariate penalty functions
φ : R→ R as follows.

Property 1. The penalty function φ : R → R satisfies the
following properties.

1) φ is continuous on R
2) φ is continuously differentiable, non-decreasing, and

concave on R+

3) φ′ is convex on R+.
4) φ(0) = 0
5) φ(−t) = φ(t)
6) φ′(0+) = 1
7) t→ t2/2 + φ(t) is convex on R
8) φ′′(t)→ 0 as t→∞
9) φ(t) > |t| − t2/2 for all t ∈ R

Table I lists several penalty functions (penalties) satisfying
Property 1: the logarithmic [12], [59], rational [34], [59],
arctangent [70], and exponential [47], [49], [54] penalties,
and the minimax-concave (MC) penalty [6], [64], [89]. The
rational and MC penalties are illustrated in Figs. 1 and 2,
respectively. We note that point 7 in Property 1 implies that
φ is ‘weakly’ convex [6], [18].

Definition 1. Let penalty φ : R → R satisfy Property 1. We
define s : R→ R, as

s(t) = |t| − φ(t). (4)

It will be useful later to write φ(t) as |t| − s(t). Figures 1
and 2 illustrate the function s corresponding to φ. The first
two derivatives of s are also illustrated. We note that when φ
is the MC penalty, then s is the Huber function [41],

s0(t) :=

{
1
2 t

2, |t| 6 1

|t| − 1
2 , |t| > 1.

(5)

For the representative penalties in Table I, the function s
satisfies

0 6 s(t) 6 |t| (6)

and
s(t) ≈ 1

2 t
2 as t→ 0. (7)
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Fig. 2. The minimax concave (MC) penalty φ, the corresponding function s,
and its derivatives. The function s here is the Huber function.

The function s defined in (4) is a convex function. Further-
more, since the derivative φ′ is convex on R+, it follows that
the derivative s′ is concave on R+. Further properties of s
based on Property 1 are listed in Proposition 1.

Proposition 1. Let penalty φ : R→ R satisfy Property 1. Then
the corresponding function s : R → R defined in (4) satisfies
the following properties.

1) s is continuously differentiable and convex on R
2) s′ is concave on R+

3) s(0) = 0
4) s(−t) = s(t)
5) s′(0) = 0
6) t→ t2/2− s(t) is convex on R
7) s′′(t)→ 0 as t→∞
8) s(t) 6 t2/2 for all t ∈ R

Proof. We prove s is differentiable at zero. We have s′(0+) =
1 − φ′(0+) = 0. Due to symmetry of φ, we have φ′(0−) =
−φ′(0+) = −1. Hence, s′(0−) = −1−φ′(0−) = 0. That gives
the equality: s′(0−) = s′(0+) = 0. The rest of the proposition
is straightforward.

The MC penalty and the Huber function (5) play a particular
role in this work. We will use the representation of the Huber
function as a Moreau envelope [3], [65].

Proposition 2. Let φ0 : R→ R be the MC penalty (Table I).
Let s0 : R → R be the convex function correspondingly
defined by (4). The function s0 in (5) (the Huber function)
can be expressed as the Moreau envelope of the absolute value
function, i.e.,

s0(t) = min
τ∈R

{
|τ |+ 1

2 (t− τ)
2
}
. (8)

This is noted, for example, in [23] and Sec. 3.1 of Ref. [65].
The proof comprises a straightforward calculation.

Lemma 1. Let φ be a univariate penalty satisfying Property
1 with the additional property that the corresponding function
s defined by (4) is three-times continuously differentiable on
R∗+. Let s0 be the Huber function. Then s can be written as

a scale mixture of s0, i.e.,

s(t) =

∫ ∞
0

w(a) s0(t/a) da. (9)

The weight function w is given by

w(a) = −a2 s′′′(a), a > 0. (10)

Proof. For the Huber function, we have

s′′0(t) =

{
1, |t| < 1

0, |t| > 1.
(11)

Following (9), define

f(t) =

∫ ∞
0

w(a) s0(t/a) da. (12)

Then

f ′′(t) =

∫ |t|
0

w(a)
1

a2
s′′0(t/a) da

+

∫ ∞
|t|
w(a)

1

a2
s′′0(t/a) da. (13)

We write the integral in two parts here because s0 is not twice
differentiable at 1. Using (11), we have

f ′′(t) =

∫ ∞
|t|
w(a)

1

a2
da. (14)

Using (10) we have

f ′′(t) = −
∫ ∞
|t|
s′′′(a) da (15)

= s′′(t)− lim
a→∞

s′′(a) (16)

= s′′(t). (17)

where we use the property s′′(t)→ 0 as t→∞. Since s(0) =
s′(0) = 0, it follows that f = s, proving (9).

Note that the weight function w in (10) is non-negative
because by assumption φ′ is convex on R+, hence s′ is
concave on R+ and s′′′ is non-positive on R+.

The first four penalties listed in Table I satisfy the hypoth-
esis of Lemma 1. Therefore, the function s corresponding to
these penalties can be written as a scale mixture (9) of the
Huber function s0. For example, when φ is the rational penalty
(‘Rat’ in Table I), the weight function w in (10) is given by

w(a) =
24a2

(2 + a)4
. (18)

III. MULTIVARIATE PENALTIES

Based on a given univariate penalty φ satisfying Property
1, we will define a multivariate penalty ψ : RN → R. For
this purpose, we first define a multivariate analog of the
corresponding function s in (4).

Definition 2. Let φ : R→ R satisfy Property 1. Let s : R→ R
be correspondingly defined in (4). We define S : RN → R as

S(x) =
∑
n

s(xn). (19)
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Fig. 3. Separable functions corresponding to the rational penalty. Subtract-
ing the differentiable convex function S from the `1-norm yields a non-
differentiable non-convex penalty that strongly promotes sparsity.

Proposition 3. Let penalty φ : R→ R satisfy Property 1. Then
the corresponding function S : RN → R defined in (19) has
the properties:

1) S is continuously differentiable and convex on RN
2) S(0) = 0
3) x→ ‖x‖22/2− S(x) is convex on RN
4) S(x) 6 ‖x‖22/2 for all x ∈ RN

For the representative penalties in Table I, the function S
also satisfies

0 6 S(x) 6 ‖x‖1 (20)

and
S(x) ≈ 1

2‖x‖
2
2 as x→ 0. (21)

Separable (additive) penalties can be expressed in terms of S,∑
n

φ(xn) =
∑
n

(
|xn| − s(xn)

)
(22)

= ‖x‖1 − S(x). (23)

An example in R2 is shown in Fig. 3, which illustrates the
separable function S and associated penalty, when φ is the
rational penalty.

The non-separable regularizer to be described in Section IV
is given in terms of the composition of S and a linear mapping.

In order to determine suitable parameter values, we consider
how S(x) can be scaled so as to tightly approximate S(Ax)
from above. This result is given in Theorem 1, which is the
focus of the remainder of this section.

The following follows straightforwardly from Proposition 2.

Proposition 4. Let φ0 : R→ R be the MC penalty (i.e., s0 is
the Huber function). Then the separable function S0 : RN →
R defined in (19) can be expressed as the Moreau envelope of
the `1 norm, i.e.,

S0(x) = min
v∈RN

{
‖v‖1 +

1
2‖x− v‖

2
2

}
. (24)

Lemma 2. Let φ0 be the MC penalty (Table I). Let S0 be
correspondingly defined by (19). Let A ∈ RM×N . If A 6= 0,
then S0 satisfies

S0(Ax) 6
‖A‖21
‖A‖22

S0

(
‖A‖22
‖A‖1

x

)
(25)

for all x ∈ RN .

Proof. The proof will use the Moreau envelope representation
of S0. Using (24) we have

S0(Ax) = min
u∈RM

{
‖u‖1 +

1
2‖Ax− u‖

2
2

}
(26)

6 min
v∈RN

{
‖Av‖1 +

1
2‖Ax−Av‖

2
2

}
(27)

6 min
v∈RN

{
‖A‖1‖v‖1 +

1
2‖A‖

2
2 ‖x− v‖

2
2

}
. (28)

To obtain (27) we used {Av, v ∈ RN} ⊆ RM . To obtain (28)
we used

‖Ax‖1 6 ‖A‖1‖x‖1, (29)
‖Ax‖2 6 ‖A‖2‖x‖2, (30)

for all x ∈ RN .
Using (24) we similarly have

S0

(
‖A‖22
‖A‖1

x

)
(31)

= min
v∈RN

{
‖v‖1 +

1

2

∥∥∥∥‖A‖22‖A‖1
x− v

∥∥∥∥2
2

}
(32)

= min
v∈RN

{∥∥∥∥‖A‖22‖A‖1
v

∥∥∥∥
1

+
1

2

∥∥∥∥‖A‖22‖A‖1
x−
‖A‖22
‖A‖1

v

∥∥∥∥2
2

}
(33)

= min
v∈RN

{
‖A‖22
‖A‖1

‖v‖1 +
1

2

‖A‖42
‖A‖21

‖x− v‖22

}
(34)

=
‖A‖22
‖A‖21

· min
v∈RN

{
‖A‖1 ‖v‖1 +

1
2‖A‖

2
2 ‖x− v‖22

}
(35)

>
‖A‖22
‖A‖21

S0(Ax) (36)

where we use (28) in the last line.

Lemma 3. Let S0 : RN → R satisfy (25). Let w : R+ → R+.
Then a new function S : RN → R defined as

S(x) :=

∫ ∞
0

w(a)S0(x/a) da (37)
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Fig. 4. Illustration of inequality (41). The upper and lower bounds are
separable and non-separable, respectively. The inequality seeks an isotropic
scaling of the separable function S (upper bound) so as to tightly approximate
the non-separable scaling of S by matrix A (lower bound).

also satisfies (25).

Proof. Using (37) we have

S(Ax) =

∫ ∞
0

w(a)S0(Ax/a) da (38)

6
‖A‖21
‖A‖22

∫ ∞
0

w(a)S0

(
‖A‖22
‖A‖1

x/a

)
da (39)

=
‖A‖21
‖A‖22

S

(
‖A‖22
‖A‖1

x

)
(40)

where we use (25) to obtain the inequality.

Theorem 1. Let φ be a univariate penalty satisfying Property
1 with the additional property that the corresponding function
s defined in (4) can be written as a scale mixture (9) of
the Huber function s0. Let S : RN → R be correspondingly
defined in (19). Let A ∈ RM×N . Then S satisfies

S(Ax) 6
‖A‖21
‖A‖22

S

(
‖A‖22
‖A‖1

x

)
(41)

for all x ∈ RN .

Proof. From (9) and (19), we have

S(x) =

∫ ∞
0

w(a)S0(x/a) da. (42)

By Lemma 2, S0 satisfies (25). Hence, by Lemma 3, S satisfies
(41).

By Lemma 1, the function S corresponding to each penalty
listed in Table I satisfies (41). For example, Fig. 4 illustrates
(41) where

A =

1 0
1 1
0 1

 (43)

and φ is the rational penalty.

IV. SPARSE REGULARIZATION

Based on a given univariate penalty φ satisfying Property
1, we will define a multivariate penalty ψ : RN → R as

ψ(x) = ‖x‖1 − αS(βBx) (44)

where S is given by (19), α and β are appropriate scalars, and
B is an appropriate matrix. In the following, we address how
to set α, β, and B.

Lemma 4. Let φ be a univariate penalty satisfying Property
1. Let s and S be correspondingly defined by (4) and (19).
Let A ∈ RM×N . Let F : RN → R be the objective function

F (x) =
1

2
‖y −Ax‖22 + λψ(x) (45)

where λ > 0 and the multivariate penalty ψ : RN → R is
given by

ψ(x) = ‖x‖1 − αS(βBx) (46)

where α > 0, β > 0, and B ∈ RL×N is a matrix such that
BTB 4 ATA. Then F is a convex function if

αβ2 6 1/λ. (47)

Proof. Define G : RN → R as

G(x) = 1
2‖Ax‖

2
2 − λαS(βBx). (48)

Then F (x) = G(x) + λ‖x‖1 − yTAx+ ‖y‖
2
2/2, i.e., F is the

sum of G and a convex function. Hence, F is convex if G is
convex. Hence, it is sufficient to show G is convex. We write

G(x) = G1(x) +G2(x) (49)

where
G1(x) =

1
2‖Ax‖

2
2 −

1
2λα‖βBx‖

2
2 (50)

G2(x) =
1
2λα‖βBx‖

2
2 − λαS(βBx). (51)

The function G1 is convex if ATA < λαβ2BTB. Since it is
given that ATA < BTB and 1 > λαβ2, it follows that G1 is
convex.

We now show G2 is convex. Since t → t2/2 − s(t) is
convex by Proposition 1, it follows that f : RN → R defined
by f(x) = ‖x‖22/2− S(x) is convex. Hence G1 = λαf ◦ βB
is convex(because the composition of a convex function with a
linear functional is convex, and the multiplication of a convex
function by a positive number is convex).

Since G1 and G2 are convex, G is convex.

Condition (47) by itself is not sufficient to properly set
α and β. Figure 5 illustrates a function ψ of the form (44)
where α and β satisfy (47); but ψ is decreasing over some
of its domain and even becomes negative. Such a function
is generally not considered a suitable penalty. To avoid this
behavior, we will prescribe a non-negative function and we
will see to it that the penalty is greater than or equal to the
prescribed function. (See Property 2 below.) The lower bound
will be derived by considering the case where the data fidelity
term is separable.
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Fig. 5. Badly formed penalty (44). Inappropriately chosen parameter values
yield a function that is not a useful sparsity-inducing penalty. (The function
is negative on part of its domain.)

A. Separable case

As a baseline, it is useful to consider the special case where
A is a scaled identity matrix, i.e., A = ρI where ρ > 0. We
will use this case to guide the choice of parameters for the
general case. The following lemma addresses how to set a
separable penalty ψ so that F in (45) is convex when A = ρI .

Lemma 5. Let φ be a univariate penalty satisfying Property
1. Let s and S be correspondingly defined by (4) and (19).
Let F : RN → R be the objective function

F (x) =
1

2
‖y − ρ x‖22 + λψ(x) (52)

where λ > 0 and ρ > 0, and the separable multivariate
penalty ψ : RN → R is given by

ψ(x) =
λ

γρ2

∑
n

φ
(γρ2
λ
xn

)
(53)

= ‖x‖1 −
λ

γρ2
S
(γρ2
λ
x
)
. (54)

Then F is a convex function if

0 < γ 6 1. (55)

Proof. The proof uses Lemma 4 with A = ρI in (45). The
penalty (54) is given by (46) with α = λ/(γρ2), β = γ/(λρ),
and B = ρI . Hence, the convexity condition (47) is given by
γ 6 1.

B. Lower bound function

This section prescribes a lower bound function that will
be used to guide the setting of parameters of the proposed
multivariate penalty. To obtain sparse approximate solutions
to y = Ax, we minimize the objective function F : RN → R

F (x) =
1

2
‖y −Ax‖22 + λψ(x) (56)

where ψ is chosen such that F is convex. To induce sparsity
more strongly than the `1 norm, our approach is to make ψ
non-convex (specifically, weakly convex). The convexity of

the quadratic term ‖Ax‖22 determines the allowed negative
curvature of ψ. We consider only penalties that are tangent
to the `1 norm at the origin (i.e., ψ(x) → ‖x‖1 as x → 0).
Therefore, the negative curvature of ψ determines how slowly
ψ may increase away from zero. We write

ψLB
A (x) 6 ψ(x) (57)

for some hypothetical lower bound function that depends on
A. The more convex the quadratic term, the smaller the lower
bound function, i.e.,

AT
1A1 4 AT

2A2 ⇐⇒ ψLB
A2

(x) 6 ψLB
A1

(x). (58)

If the quadratic term has no positive curvature, then F is
convex only if ψ is also convex. Hence, as A → 0 we have
ψLB
A (x)→ ‖x‖1.
Since ATA 4 ‖A‖22 I , it follows that a lower bound for ψ

is given in turn by the lower bound ψLB
ρI , i.e.,

ψLB
ρI (x) 6 ψLB

A (x) 6 ψ(x), ρ = ‖A‖2. (59)

When A is a scaled identity matrix, we obtain a specific lower
bound using Lemma 5 with ρ = ‖A‖2 and γ = 1. This
motivates defining the following property.

Property 2. Let φ be a univariate penalty satisfying Property
1. Let S be correspondingly defined by (19). Let λ > 0 and
let A be a matrix of size M × N . We consider the penalty
ψ : RN → R to be well formed if it satisfies

ψ(x) >
λ

‖A‖22

∑
n

φ

(
‖A‖22
λ

xn

)
(60)

= ‖x‖1 −
λ

‖A‖22
S

(
‖A‖22
λ

x

)
(61)

for all x ∈ RN .

Condition (60) prevents the penalty ψ from straying too far
from the `1 norm. If ψ(x) violates the condition, then it can
become negative for large x as illustrated in Fig. 5, which
we wish to avoid (if large x were penalized less than x = 0,
then totally non-sparse solutions would be more preferred than
sparse solutions).

C. Sparsity-inducing non-separable penalty

Theorem 2 specifies the proposed multivariate penalty.

Theorem 2. Let φ be a univariate penalty satisfying Property
1 with the additional property that the corresponding function
s can be written as a scale mixture (9) of the Huber function
s0. Let S be correspondingly defined by (19). Let F : RN → R
be the objective function

F (x) =
1

2
‖y −Ax‖22 + λψ(x) (62)

where λ > 0 and the penalty ψ : RN → R is given by

ψ(x) = ‖x‖1 −
λ

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)

(63)

where the non-zero matrix B satisfies BTB 4 ATA. If 0 <
γ 6 1, then F is convex and the penalty satisfies Property 2.
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Fig. 6. Penalty ψ in (63) and its contour plot. The star-shaped contour plot
is characteristic of non-convex sparsity-inducing penalties. The design of the
penalty so as to preserve convexity of the objective function results in distinct
behavior in different quadrants.

Proof. The penalty ψ in (63) has the form (46) where α =
λ/(γ‖B‖21) and β = γ‖B‖1/λ. Thus αβ2 = γ/λ. Hence, by
Lemma 4, F is convex for 0 < γ 6 1.

The penalty ψ in (63) satisfies (60) for all x ∈ RN , if S
satisfies

λ

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)
6

λ

‖A‖22
S
(‖A‖22

λ
x
)

(64)

for all x ∈ RN , where we have cancelled the `1 norm common
to (60) and (63). The function S satisfies (64) for all x ∈ RN
if

S
(γ‖B‖1

λ
Bx
)
6 γ
‖B‖21
‖A‖22

S
(‖A‖22

λ
x
)

(65)

for all x ∈ RN . The function S satisfies (65) for all x ∈ RN
if

S(Bx) 6 γ
‖B‖21
‖A‖22

S
( 1
γ

‖A‖22
‖B‖1

x
)

(66)

for all x ∈ RN . Since S is convex and S(0) = 0 and 0 <
γ 6 1, we have γ S(x) > S(γ x) for all x ∈ RN . Hence, S
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Fig. 7. Illustration that the penalty ψ in (63) satisfies the lower-bound
condition (60). This avoids the undesirable behavior shown in Fig. 5.

satisfies (66) for all x ∈ RN if it satisfies the tighter condition

S(Bx) 6
‖B‖21
‖A‖22

S
(‖A‖22
‖B‖1

x
)

(67)

for all x ∈ RN . Since BTB 4 ATA, we have ‖B‖2 6 ‖A‖2.
Hence, S satisfies (67) for all x ∈ RN if it satisfies the tighter
condition

S(Bx) 6
‖B‖21
‖B‖22

S
(‖B‖22
‖B‖1

x
)

(68)

for all x ∈ RN ; just as (67) implies (66). By Theorem 1, S
satisfies (68) for all x ∈ RN .

Figure 6 illustrates the penalty ψ in (63) for the matrix A
in (43), λ = 1, γ = 1, and B = A. The contours of ψ are
star-shaped, which is characteristic of non-convex penalties.
But the curvature of the contours is less pronounced in some
quadrants relative to other quadrants. This behavior is because
ψ is designed to maintain the convexity of the objective
function F . Figure 7 illustrates that ψ satisfies inequality (60).

The matrix B determines the shape of ψ. When B is a
diagonal matrix, then ψ is a separable (additive) function.
When B = ρI , the separable penalty (54) is retrieved as a
special case of (63). (If B = ρI , then ‖B‖1 = |ρ|.) In this
case, B satisfies BTB 4 ATA only if ρ2 is less than the
minimum eigenvalue of ATA. If B = ρI and ATA is singular,
then BTB 4 ATA only if B = 0, which precludes non-convex
regularization while maintaining convexity of the objective
function F . Hence, non-diagonal B, i.e., non-separable reg-
ularization, is required in this case in order to induce sparsity
more strongly than the `1 norm.

The parameter γ adjusts the degree of non-convexity of ψ.
If γ is close to zero, then ψ is nearly convex. We have ψ(x)→
‖x‖1 as γ → 0.

We note that the proposed regularizer (63) depends on the
linear operator A. Customarily, the regularizer is chosen inde-
pendently of A. However, the dependence of the regularizer
on A is a property of certain optimal estimators, as noted
in works discussing connections between regularization-based
and Bayesian-based estimation approaches [37], [38], [67].
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D. Remark

The motivation for the proposed class of penalties is two-
fold. First, many methods for obtaining sparse solutions use
non-convex penalties of the separable form

∑
n φ(xn) which

can be written ‖x‖1 −
∑
n s(xn) where s is correspondingly

defined. Second, it is of some interest to formulate problems
as convex when possible, which often precludes penalties of
the form ‖x‖1−

∑
n s(xn). In particular, penalties of this form

are precluded if the forward mapping A is non-injective which
is the usual case for ill-conditioned linear inverse problems.
The proposed penalty is aimed to capture the strongly sparsity-
inducing behavior of penalties of the form

∑
n φ(xn) while at

the same time maintaining convexity of the objective function
to be minimized.

We also remark on the question of how to prescribe the
linear operator B. Our view is that B should in some sense
approximate a scaled identity matrix. For if B = cI , then the
proposed penalty is separable, as appropriate to induce pure
(non-structured) sparsity. On the other hand, we aim that BTB
be close to ATA while satisfying BTB 4 ATA, so the penalty
is ‘as non-convex as it can be’ while preserving convexity
of the objective function to be minimized. However, given an
arbitrary A, the form B should take to achieve these properties,
remains an open question.

E. Additional properties

The following lemmas regard the differentiable part of the
objective function F . These lemmas will be used in Section V
to prove convergence of the iterative thresholding algorithm.

Lemma 6. Let φ be a univariate penalty satisfying Property
1. Let S be correspondingly defined by (19). Let A ∈ RM×N
and BTB 4 ATA. Let λ > 0 and 0 < γ < 1. Then

1

2
‖y −Ax‖22 −

λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)

>
(1− γ)

2

∥∥∥ 1

(1− γ)
y −Ax

∥∥∥2
2
− γ

2(1− γ)
‖y‖22 (69)

for all x ∈ RN .

Proof. From Proposition 3, S(x) 6 ‖x‖22/2 for all x ∈ RN .
Hence,

λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)
6
γ

2
‖Bx‖22 (70)

6
γ

2
‖Ax‖22 (71)

for all x ∈ RN , where we have used BTB 4 ATA. It follows
that

1

2
‖Ax‖22 −

λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)
>

(1− γ)
2
‖Ax‖22. (72)

A completion of the square leads straightforwardly to inequal-
ity (69).

Lemma 6 leads straightforward to the following corollary.

Corollary 1. In the setting of Lemma 6, let f : RN → R be
defined

f(x) =
1

2
‖y −Ax‖22 −

λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)
. (73)

Then f is bounded below, i.e., f(x) > c for all x ∈ RN for
some c ∈ R that does not depend on x.

Following [5], we will use the following result which is the
equivalence (i) ⇔ (vi) of Theorem 18.15 in [3].

Lemma 7. Let f : RN → R be convex and differentiable.
Then the gradient ∇f is ρ-Lipschitz continuous if and only if
(ρ/2)‖·‖22 − f is convex.

Lemma 8. In the setting of Lemma 6, let f : RN → R be
defined

f(x) =
1

2
‖y −Ax‖22 −

λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)
. (74)

Then the gradient ∇f is ρ-Lipschitz continuous where ρ =
‖A‖22. (That is, ρ is the maximum eigenvalue of ATA.)

Proof. The proof will use Lemma 7. Since both terms in (74)
are differentiable, f is differentiable. Proceeding as in the
proof of Lemma 4, it follows that f is convex. Note also that
q : R2 → R defined as

q(x) =
ρ

2
‖x‖22 −

1

2
‖y −Ax‖22 (75)

is convex. We now show (ρ/2)‖·‖22 − f is convex. Define
g : RN → R as

g(x) =
ρ

2
‖x‖22 − f(x) (76)

=
ρ

2
‖x‖22 −

1

2
‖y −Ax‖22 +

λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)

= q(x) +
λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)
. (77)

Then g is is convex because both terms in (77) are convex. By
Lemma 7, it follows that ∇f is ρ-Lipschitz continuous.

V. ITERATIVE THRESHOLDING ALGORITHM

The forward-backward splitting (FBS) algorithm [24], [25]
can be used to obtain a minimizer of the objective function
F in (62). The resulting iterative thresholding algorithm uses
the soft-threshold function, which is defined as

soft(t, T ) :=


t− T, t > T

0, |t| 6 T

t+ T, t 6 −T.
(78)

Lemma 9. In the setting of Theorem 2, with 0 < γ < 1, let
ρ = ‖A‖22 and 0 < µ < 2/ρ. Then the sequence x(k), k ∈ N,
generated by the iteration,

z(k) = x(k) − µ
[
AT(Ax(k) − y) (79a)

− λ

‖B‖1
BT∇S

(γ‖B‖1
λ

Bx(k)
)]

x(k+1) = soft(z(k), µλ) (79b)
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converges to a minimizer of the objective function F defined
by (62). The soft thresholding function is applied element-wise
to vector z(k).

Proof. As described in Proposition 1.3.4 in [24], the FBS
algorithm can be used to minimize a function of the form

F (x) = f1(x) + f2(x) (80)

where f1 is convex and differentiable with ρ-Lipschitz contin-
uous gradient ∇f1, f2 is lower semicontinuous convex, and
F (x)→∞ as ‖x‖ → ∞. To apply FBS to F in (62), we set

f1(x) =
1

2
‖y −Ax‖22 −

λ2

γ‖B‖21
S
(γ‖B‖1

λ
Bx
)

(81)

f2(x) = λ‖x‖1. (82)

By Lemma 8, ∇f1 is ρ-Lipschitz continuous. Since f2 is
a norm and any norm is continuous and convex, f2 is a
lower semicontinuous convex function. By Corollary 1, f1 is
bounded below. Hence, F (x) → ∞ as ‖x‖ → ∞. Hence the
hypothesis of Proposition 1.3.4 in [24] is satisfied, i.e., the
iterates x(k) produced by the FBS algorithm converge to a
minimizer of F .

A basic form of FBS comprises the iteration

z(k) = x(k) − µ
[
∇f1(x(k))

]
(83a)

x(k+1) = min
x

{1
2
‖z(k) − x‖22 + µf2(x)

}
(83b)

where 0 < µ < 2/ρ, which leads to (79).

The parameter µ in (79) can be interpreted as a step size.
We usually implement the algorithm with µ = 1.9/ρ (near
the upper allowed value) because larger step sizes often yield
faster convergence in practice. The algorithm has the property
that F (x(k)) monotonically decreases [6], [74].

This algorithm (79) is like the classical iterative shrink-
age/thresholding algorithm (ISTA) [26], [30] which can be
viewed as a special case of the FBS algorithm. Other algo-
rithms are also applicable [24], including accelerated versions
of ISTA such as fast ISTA (FISTA) [8] and FASTA [36]. Ad-
ditionally, new extensions and generalizations of FBS further
extends its applicability [22].

A. Optimality condition

Since F is convex, the optimality of a prospective mini-
mizer of F can be validated using the optimality condition
0 ∈ ∂F (xopt) where ∂F is the subdifferential of F . For (80),
a vector xopt is optimal if

−∇f1(xopt) ∈ ∂f2(xopt) (84)

where ∂f2 is the subdifferential of f2. For f2 in (82), this
leads to

−
[ 1
λ
∇f1(xopt)

]
n
∈ SGN(xoptn ) (85)

for n = 1, . . . , N where SGN is the set-valued signum
function,

SGN(t) :=


{1}, t > 0

[−1, 1], t = 0

{−1}, t < 0.

(86)

B. Complex-valued case

In many problems, the matrix A in problem (62) is complex-
valued and the minimization of F is performed over CN .
For example, A and x may comprise Fourier transforms and
Fourier coefficients, respectively. In this case, the real and
imaginary parts of x can be embedded into a real optimiza-
tion problem of greater size. The forward-backward splitting
algorithm leads again to the iteration (79) except the transpose
is replaced by the complex-conjugate transpose and the soft-
threshold rule (78) is replaced by its generalization,

soft(u, T ) :=

{
0, |u| 6 T

(|u| − T )u/|u|, |u| > T
(87)

for u ∈ C and T > 0.

VI. NUMERICAL EXAMPLES

A. Denoising by sparse signal approximation (SSA)

In this section, we apply multivariate sparse regularization
(MUSR) as described in Theorem 2 to denoising using sparse
signal approximation (SSA), i.e., by obtaining a sparse approx-
imate solution to the linear system y = Ax for the purpose of
estimating a signal s in zero-mean noise wherein the signal
admits a sparse representation with respect to the columns
of matrix A. In particular, we consider the case where the
columns of A form a tight frame for RN , i.e., A satisfies

AAT = pI (88)

for some p > 0 [44]. The matrix A may be square or wide.
Numerous transforms designed for the sparse representation of
signals can be implemented as tight frames, including Fourier
transforms, short-time Fourier transforms, filter banks, and
multiscale transforms [42]. In these cases, A is a wide matrix
satisfying (88) or AAH = pI in the complex case. Note that in
this context, A represents the ‘inverse’ transform (i.e., mapping
transform coefficients to the signal domain), and AT represents
the ‘forward’ transform.

If y = v + w is an observation of v corrupted by additive
Gaussian noise, then an estimates v̂ is given by v̂ = Axopt

where xopt is the solution to the SSA denoising problem, i.e.,
the minimizer of F .

Given a sparsifying transform A and univariate penalty φ,
the use of MUSR for SSA means the minimization of F in
(62). We must specify the matrix B and the parameters λ and
γ. First, we set the matrix B such that BTB 4 ATA. We
suggest setting

B =
1
√
p
ATA, (89)

because then B satisfies

BTB =
( 1
√
p
ATA

)T( 1
√
p
ATA

)
(90)

=
1

p
ATAATA (91)

=
1

p
AT(pI)A (92)

= ATA. (93)
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The choice of B in (89) is motivated by the fact that if A
is orthonormal, then this B is the identity matrix and the
proposed regularizer ψ reduces to a separable non-convex
regularizer, i.e., the natural sparsity-inducing regularizer. With
B given by (89), the update equation (79a) can be written as

z(k) = x(k) − µAT

×
(
A

[
x(k) − λ

√
p ‖B‖1

∇S
(γ‖B‖1
λ
√
p
ATAx(k)

)]
− y
)
.

This expression of the update equation is computationally
more efficient because BT is adsorbed into ATA which reduces
the instances the transform A must be applied per iteration.

To perform denoising using SSA we must also select the
positive regularization parameter λ. We remark first that a
λ value that works well for the `1-norm form of SSA (i.e.,
BPD) serves as a reasonable value for the proposed MUSR-
SSA problem (62). This is because the proposed regularizer
ψ is designed to approximate the `1 norm around zero and
to preserve the convexity of the objective function F . Hence,
the primary effect of the MUSR-SSA formulation in relation
to L1-SSA is to relax the penalization of large magnitude
components of x. We remark further that a reasonable value
of λ may be simply obtained by the ‘three sigma’ rule, i.e., a
pure zero-mean noise signal lies mostly within three standard
deviations of zero, hence setting signal values below three
sigma to zero effectively attenuates the noise. The view of
λ as a quasi-threshold value in the context of BPD follows
from using the optimality condition (85) and by considering
the output of BPD as applied to a pure white noise signal; see
[32], [72]. Assuming each column of A has the same `2 norm
η, we hence suggest setting λ = βησ, where 2.5 6 β 6 3.0, η
is the common column norm, and σ is the standard deviation
of the noise in the signal domain. Tight frame transforms A
such as oversampled Fourier transforms, short-time Fourier
transforms, and some filter banks have the property that each
column of A has the same `2 norm.

To perform MUSR-SSA we must also set γ in (62). Values
of γ close to 1.0 induce sparsity more strongly. As γ goes
to zero, the minimizer xopt goes to the `1 norm solution. We
usually set γ between 0.5 and 0.9.

1) Example 1: We use SSA to estimate the signal

vn = 2 cos(2πf1n) + sin(2πf2n), n = 0, . . . , N − 1 (94)

of length N = 100 with frequencies f1 = 0.1 and f2 = 0.22.
The noisy signal is yn = vn + wn where w is additive white
Gaussian noise (AWGN) with σ = 1.0. The matrix A is an
overcomplete discrete Fourier transform (DFT) matrix of size
100 × 256 normalized so that AAH = I . The operator A is
implemented as a truncated inverse FFT; the operator AH is
implemented as a zero-padded FFT. Each vector comprising A
has an `2 norm of 5/8. According to the discussion above, we
set λ = 2.5 × (5/8) × σ = 1.5625. For MUSR-SSA, we use
the MC penalty and we set B = AHA and γ = 0.9. Figure 8
illustrates the signal v, the noisy signal y, and the L1-SSA and
MUSR-SSA solutions obtained using the forward-backward
splitting (FBS) algorithm. MUSR-SSA reduces the root-mean-
square error (RMSE) by more than 25% relative to L1-SSA.
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Fig. 8. Denoising via sparse signal approximation (SSA) using the `1-norm
and MUSR (proposed). The plot of the optimized coefficients shows only the
non-zero values.
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Figure 8 shows that the `1 norm optimized Fourier coefficients
underestimate the true coefficients. The MUSR optimized
coefficients estimate the true coefficients more accurately. This
experiment is repeated for 0.2 6 σ 6 2.0 (with 50 noise
realization for each σ) and the average RMSE as a function of
σ is shown in Fig. 9. In this experiment, MUSR-SSA reduces
the average RMSE by more than 20% relative to L1-SSA.

We compare with the iterative p-shrinkage (IPS) algorithm
[82], [87], an iterative thresholding algorithm designed to
locally minimize a non-convex objective function. The IPS
algorithm was found to be particularly effective in comparison
to several other algorithms [71]. As shown in Fig. 9, the
average RMSE of MUSR is similar to that of IPS.

We also compare with the two-step approach wherein the
`1-norm solution is followed by a debiasing step [31]. First, the
`1-norm solution is used to estimate the support (the indices
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Fig. 10. Speech denoising via sparse signal approximation (SSA) using the
`1-norm and MUSR (proposed).

of the non-zero values of x). Second, the identified non-
zero values are re-estimated by unregularized least squares
approximation. The debiasing post-processing step avoids the
systematic underestimation of non-zero amplitudes, yet it is
nevertheless influenced by noise in the observed data. As
shown in Fig 9, this method yields average RMSE values
the same or slightly better than the other considered methods.
While `1-norm with debiasing is effective in this example, it
is not wholly based on a variational principle (does not mini-
mize a prescribed objective function) as the other considered
methods do.

2) Example 2: This example uses SSA to estimate a speech
signal in AWGN. The signal has a sampling rate of 16,000
samples/second and the noise standard deviation is σ = 0.025.
For the sparsifying transform A we use a short-time Fourier
transform (STFT) implemented so that AAH = I . We use an
STFT window of 512 samples (32 msec) with 75% overlap-
ping. Figure 10 illustrates the spectrogram (STFT magnitude)
in dB of the noisy speech signal. Each vector comprising A has
an `2 norm of 0.5, hence we set λ = 3× 0.5×σ = 0.0375 as
discussed above. For MUSR-SSA, we use the MC penalty and
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Fig. 11. RMSE corresponding to Fig. 10.

we set B = AHA and γ = 0.9 as in Example 1. The denoised
signals using L1-SSA and MUSR-SSA are calculated using
the FBS algorithm. The spectrogram of the denoised signal
shows the noise is well suppressed. A slice of the STFT at
time t = 0.34 seconds (i.e., the Fourier transform of a 32 msec
segment) shows the `1 norm solution tends to underestimate
the true spectrum in comparison to the MUSR solution at
frequencies around 1 kHz and above. This experiment is
repeated for 0.005 6 σ 6 0.05 and the RMSE as a function of
σ is shown in Fig. 11 for the three methods: L1-SSA, MUSR-
SSA, and IPS. As shown, MUSR-SSA consistently reduces the
RMSE by about 20% relative to L1-SSA. The IPS algorithm
performs similarly (slightly better).

Improved speech denoising can be achieved using overlap-
ping group sparsity (OGS) which better models the behavior
of a speech spectrogram [19]. In future work, we hope to
generalize the MUSR approach to utilize OGS.

B. Simultaneous denoising and missing data estimation

Here we consider the problem of estimating a signal from
partial, noisy data [1], [75], [85]. We assume the unknown
signal v can be well-approximated as a linear combination of
relatively few columns of a known matrix A. We denote by P
the operator that selects partial data. We model the observed
data g as

g = PAx+ w (95)

where x is the vector of sparse coefficients and w is AWGN.
Specifically, the matrix P is obtained by deleting rows from
the identity matrix, where the deleted rows correspond to the
indices of the missing data. Note that PPT = I . We assume
that AAH = pI for some p > 0 as in Sec. VI-A.

The problem of estimating the unknown signal v can be
expressed as

xopt = argmin
x

{
1

2
‖g − PAx‖22 + λψ(x)

}
(96)

where ψ is a sparsity-inducing penalty. The estimated signal
is then given by v̂ = Axopt. We define A2 = PA. Hence,
A2A

H
2 = pI , i.e., the columns of A2 form a tight frame.

Therefore, (96) can be solved as in Section VI-A.
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Fig. 12. Estimation of missing data and denoising using the `1-norm and
MUSR (proposed). The plot of the optimized coefficients shows only the
non-zero values.

In this example, we use the signal (94) again, but with
40 randomly located values missing. We use AWGN with
σ = 1. A realization is illustrated in Fig. 12. The goal is
to estimate the signal from the noisy partial data. We set A as
in Example 1; hence, x represents Fourier coefficients to be
optimized.

As above, we use four methods: `1 norm and MUSR sparse
regularization, debiasing of the `1 norm solution, and the
IPS algorithm [87]. Each method calls for a regularization
parameter λ to be set. We vary λ from 0.1 to 2.5 and evaluate
the RMSE for each method. For MUSR, we set the parameter
γ = 0.8 and use the MC penalty. Furthermore, we repeat
this for 20 realizations of the noise. The average RMSE as a
function of λ is shown in Fig. 13. The solution obtained by
debiasing the `1 norm solution achieves the minimum average
RMSE. The MUSR solution reduces the average RMSE by
about 10% compared to `1 norm solution.

Figure 12 shows a particular realization, and the `1 norm
and MUSR solutions, where in each case, the value of λ was
taken to be the value that minimizes the average RMSE for
the respective methods.

C. Sparse Deconvolution

This example illustrates MUSR as applied to the sparse
deconvolution problem where the unknown sparse signal x is
to be determined from data y = Ax+ w where A represents
convolution and w is AWGN. In contrast to the previous
examples, the columns of A do not comprise a tight frame,
i.e., AAT 6= pI . Therefore, the choice of matrix B according
to (89) is no longer justified. The proposed MUSR approach is
still applicable; however, the matrix B appearing in the penalty
ψ in (63) must be specified otherwise. In this example, we set
B = A which trivially satisfies the condition BBT 4 AAT

required by Theorem 2.
We generate sparse signals of length N = 200 with 10

non-zero values (uniformly distributed in value between 0
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Fig. 13. Average RMSE corresponding to Fig. 12.

and 100, located at random positions). Figure 14 illustrates
one realization. We set the convolution operator A to be a
10-point moving average filter, i.e., y = h ∗ x + w where
h(n) = 0.1 for n = 0, . . . , 9 and h(n) = 0 otherwise. We set
the AWGN standard deviation to σ = 2. The observed signal
y is shown in Fig. 14. To perform sparse deconvolution using
`1 norm regularization and MUSR, we set λ straightforwardly
as λ = βσ‖h‖2 with β = 2.5. For MUSR we set γ = 0.6 and
use the MC penalty. The sparse signal estimated using MUSR
is illustrated in Fig. 14. With 200 realizations, the average
RMSE values are 4.87 and 4.32 for `1 norm regularization
and MUSR, respectively. MUSR reduces the average RMSE
by about 10% relative to `1 norm regularization. For each
realization, the RMSE of the MUSR solution versus the RMSE
of the `1 norm solution is designated as a single point in
the scatter plot in Fig. 15. Points below the diagonal line
represent realizations where MUSR improves upon `1 norm
regularization. Even though the average RMSE of MUSR is
less (better) than `1 norm regularization, for a few realizations
the RMSE of MUSR is worse.

For comparison, we also perform sparse deconvolution
using the IPS algorithm for each realization, with λ chosen
to minimize the average RMSE. We initialize the IPS algo-
rithm with the `1 norm solution. The IPS average RMSE is
3.89, about 20% better than `1 norm regularization. For each
realization, the RMSE of the IPS solution versus the RMSE of
the `1 norm solution is illustrated in Fig. 15. The scatter plot
shows that IPS reduces the RMSE relative to both MUSR and
`1 norm regularization on average. But as above, for a few
realizations IPS performs worse than `1 norm regularization.
The scatter plots shows the IPS RMSE values are substantially
more spread than the MUSR RMSE values. Compared to IPS,
MUSR more often performs better than the `1 norm, but on
average IPS provides twice the improvement of MUSR relative
to `1 norm regularization.

This example suggest that, while the MUSR approach can
yield an improvement relative to `1 norm regularization for
general A, the improvement is more significant when the
columns of A form a tight frame.
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Fig. 14. Sparse deconvolution example.
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Fig. 15. RMSE values of 200 realizations of sparse deconvolution.

VII. CONCLUSION

This paper has considered the question of how to formulate,
as a convex optimization problem, the calculation of a sparse
approximate solution to a system of linear equations. To this
end, we proposed a class of non-convex (specifically, weakly
convex) penalty functions obtained by subtracting a smooth
convex function from the `1 norm. The proposed approach
compares favorably to `1 norm regularization, especially for
sparse signal approximation using tight-frames.

The functional form of the proposed penalty (44) [compris-
ing the difference of the `1 norm and a separable function
composed with a linear operator] is a rather constrained class
of non-separable functions. To prescribe non-convex penalties
that preserve objective function convexity, there may be other
classes of non-separable functions (yet to be determined)
that are even more effective. For example, for total variation
denoising, we have recently found that a quite different kind
of non-separable penalty is particularly effective [69]. Hence,
further research on this topic will be of interest.
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