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Generalized Total Variation: Tying the Knots

Ivan W. Selesnick

Abstract—This paper formulates a convex generalized total
variation functional for the estimation of discontinuous piecewise
linear signals from corrupted data. The method is based on (1)
promoting pairwise group sparsity of the second derivative signal
and (2) decoupling the principle knot parameters so they can
be separately weighted. The proposed method refines the recent
approach by Ongie and Jacob.

I. INTRODUCTION

Algorithms for signal estimation (denoising, restoration, and
reconstruction) rely on some signal model, even if the model
is implicit. Algorithms based on total variation (TV) regular-
ization assume the signal of interest is piecewise constant; i.e.,
its derivative is sparse [30]. TV regularization is widely used
in sparse signal processing. However, the piecewise constant
signal model is often unrealistic; hence, several generalizations
of TV have been proposed [1], [3], [4], [6], [14]-[17], [21],
[25], [33], [34].

Recently, Ongie and Jacob proposed a generalization of
TV for the purpose of estimating discontinuous piecewise
polynomial signals [28]. In this model, the signal consists of
polynomial segments partitioned by points (knots) where the
signal is discontinuous. This model is of relevance because
signals in various domains exhibit discontinuities; for example
(1) edges of objects in images may produce discontinuities in
pixel values and (2) arrivals of particles in biosensors may
produce discontinuities in measured signals [7].

Following Ongie and Jacob, we propose a generalized TV
(GTV) functional for the purpose of estimating discontinuous
piecewise linear signals. The GTV functional, proposed by
Ongie and Jacob, is based on group sparsity of the second
derivative [28]. Our approach builds upon this approach, but
differs in two ways. First, we apply a linear transform to each
group in the group-sparse representation of the second deriva-
tive. This linear transform serves to separate the two principle
knot parameters so they can be separately weighted. Second,
we promote group sparsity using a synthesis formulation rather
than an analysis formulation of group sparsity.

Ongie and Jacob describe both convex and non-convex
forms of their proposed GTV functional, but emphasize the
non-convex form. Experiments show that the convex form of
their proposed GTV functional tends to miss signal disconti-
nuities. The two refinements we propose lead to a new convex
GTYV functional that more accurately recovers discontinuities.
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A. Tying the Knots

Figure 1 illustrates the difficulty in accurately recovering
discontinuities of piecewise linear signals by convex regu-
larization. Figures 1(a) and 1(b) illustrate a representative
discontinuous signal (with and without noise). The signal
obtained by TV denoising, i.e.,

3= argngn{%z:(yn — )2 +)\Z|xn —xn71|} (1)

where y is the noisy data, accurately recovers the discontinuity
but not the linear behavior of the signal (c.f., staircase artifacts,
Fig. 1(c)). On the other hand, the signal obtained by second-
order TV denoising, i.e., minimizing

1
5 Z(yn - xn)Q + /\Z |xn — 2T, + mn—2|
= 5“9 — |3 + X[ Dz|y

where D is the second-order difference operator, accurately
recovers the linear behavior of the signal but not the disconti-
nuity (Fig. 1(d)). Instead of a single knot at the discontinuity,
the denoised signal possesses two knots, identifiable as isolated
negative and positive impulses in the second-order difference
signal. These two impulses are separated by a gap.

To accurately recover the discontinuity, the denoised signal
should possess a single knot at the discontinuity (hence,
the second-order difference signal should exhibit a positive-
negative impulse pair). The two knots in the second-order
TV solution should be brought (tied) together. To achieve this
behavior, it is reasonable to use a regularization functional that
promotes pairwise group sparsity [28]. The denoised signal
obtained using this approach indeed exhibits group sparsity in
its second-order difference signal (Fig. 1(e)). However, the
denoised signal is very similar to the one obtained using
second-order TV (Fig. 1(d)). In particular, the discontinuity
is not more accurately recovered.

A more accurate recovery of the discontinuity is possible us-
ing a non-convex formulation [28]; but this raises the question:
can the discontinuity be more accurately recovered using some
other convex functional? A positive answer is demonstrated
by the denoised signal, shown in Fig. 1(f), obtained using the
convex functional (20) proposed below. It accurately recovers
both the discontinuity and linear behavior of the signal.

II. KNOT PARAMETERS

To introduce the approach, consider the discrete-time signal
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Fig. 1. Comparison of denoising using several convex TV functionals. (a)
Noise-free signal. (b) Noisy signal. (¢) TV. (d) Second-order TV. (e) GTV
[28]. (f) GTV (proposed). (g) GTV (P = I2).

illustrated in Fig. 2. Informally, this signal exhibits a disconti-
nuity in both its value and its slope. Let v be the discrete-time
second derivative

Up = ZTp — 2Tp—1 + Tp-2 “4)

illustrated in Fig. 2. Using (3), the signal v is given by

Vo = bo — Qaop, (Sa)
v = (b1 —a1) — (bo — ao), (5b)
v, =0, n¢{0,1}. (5¢)

Not only is v group-sparse, but its non-zero values are corre-
lated. To clarify, define two functions on the real line,

Tier(t) = art + ao, Tright(t) = b1t + bo, (6)

Fig. 2. Discontinuous piecewise linear signal with a knot at ¢t = —1/2.

as illustrated in Fig. 2. Both the value and slope of the function

are discontinuous at the knot t = —1/2. The amplitudes of the
discontinuities are given respectively by
Avalue = xrighl(*0-5) - x]eft(*0.5) (7)
= (bo — ao) — (b1 — a1)/2 (8)
and
Asiope = Tpigni(—0.5) — Zje(—0.5) 9
= b1 —aj. (10)

We consider Ay,ye and Agope to be the principle knot param-
eters. From (5), it can be observed that

Vo = Aslope/2 + AValue
v = Aslope/2 — Avalge-
Both vy and v; depend on both knot parameters. For a given
class of signals, it is likely that Ay,ue and Aggpe exhibit quite

distinct amplitude ranges. Hence, they should be weighted
differently. From (11), we write

1L

Aslope =0 + U1 (12)
2Aae = Vo — V1.

That is, the change in value and slope can be decoupled and

separately weighted.

In light of this, our approach is based on un-mixing the
knot parameters, Agjope and Ayqjue, and using different weights
for them (in addition to promoting group sparsity). This is
accomplished with the matrix P in (21) below.

III. DEFINITIONS

The elements of the discrete-time signal z € (2(Z) are
denoted z, or [z],. We define the second-order difference
operator D: (?(Z) — (*(Z) by

[Dz)p = xp — 2251 + Tpa. (13)

The operator D is a discrete approximation of the second
derivative. We define B,,: (?(Z) — R? by

Bn(r) = [TZna r2n+1]T (14)
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The operator B,, extracts non-overlapping two-point blocks.
To promote group sparsity, we use a synthesis formulation

of group sparsity [26]. First, we define S: (?(Z) — (*(Z) by
[ST]n = ron—1 + T25. (15)

Next, we define the group-sparse regularizer R: ((Z) — R,

= min Z | B (r) 12

such that v = Sr.

(16)

In the functional (16), the operator S synthesizes the signal v
as a sum of overlapping two-point blocks. For a finite-length
signal v, we truncate the operator S to a finite matrix. For
example, a four-point signal v can be written as a sum of
three overlapping blocks (groups) as

To
Vo 1 1
V1 1 1 T2
v=9Sr<& v | = 11 ra | (17)
(%] 1 Ta
5

where the three groups are

Bo(r) = M, Bi(r) = M Bs(r) = [’”4]. (18)

1 s

The vector r is the group-sparse representation of the signal
v. The cost function to be minimized in (16) is a mixed fo—¢
norm [18]; it is geared to minimize the number of non-zero
groups. (Previous works on group-sparse TV use an analysis
formulation of group sparsity [22], [28], [31].)

To achieve the goals of this work, we generalize the group-
sparse regularizer (16) to include an invertible matrix P,

R(v;P) =min Y [[PB,(r)ll2
[ (19)
such that v = Sr.
Note that R(v;aP) = aR(v; P) for a > 0.
Also, if K is a banded matrix, then SK ST is also banded.

This fact contributes to the computational efficiency of the
algorithm developed in Sec. V.

IV. PROBLEM FORMULATION

We formulate the denoising of a discontinuous piecewise
linear signal as the strictly convex optimization problem,

1
% = arg min {gHy—xH%—F)\R(Dx;P)} (20)
where R is defined by (19), A > 0, and
p1 1 1 P11 p1
{ P2] [1 —1] L’z —PJ @D

where p; > 0. The formulation promotes pairwise group
sparsity of the second-order difference signal. The parameters
p1 and po weight the parameters Aggpe and Ayqyye respectively;
hence, they influence the knot behavior.

Three parameters (A, p1, p2) appear in problem (20), but the
problem really has only two independent parameters. Without
loss of generality, we may set A = 1, because AR(Dz; P) =
R(Dz; AP) for A > 0.

V. ALGORITHM

In this section, we derive an algorithm to solve (20). The
function (19) can be written as

R(v; P) = min ZHB NE (22)
such that { or
B,.(u) = PB,(r) for all n.

The constraint B,,(u) = PB,(r) for all n can be written as
= (I ® P)r, where ® is the Kronecker product. Hence,

r= (I ® P~')u and we may write (22) as
R(v; P) = min ZHB NE
(23)
such that v = S(I®P Y.
Therefore, problem (20) can be expressed as
. 1
min { F(a,u) = 3 Iy = 2ll§ + A [ Ba(wl:}
o (24)

such that Dz = S(I ® P~ )u.

To find the solution of problem (24) (and thereby of (20)),
we use the majorization-minimization (MM) approach [11],
[20]. This leads to the iteration

{2 D} = argmin FM(z, u;ul~Y)
x,u (25)
such that Dz = S(I ® P~ ')u

where i is the iteration index and FM is a majorizer of F, i.e.,

FM(z,u;2) > F(z,u), FM(z,u;u) = F(z,u). (26)
To obtain a majorizer of F', we use the inequality
Lull3
5 *II l2 = [[ull2, z#0. 27)
2 [|z[l2

A key point is that the left-hand side is quadratic in u. Using
(27), a majorizer FM is given by

FM(z,u;2) = ”
2

1 el
1Bn (=
where C' depends on neither x nor u. Using this majorizer,
the iteration (25) is given by
{2 D} = argmin {H?/ —zlZ + (WD » Iz)u}
such that Dz = S(I® P~ )u

1 2
Sl — al3 +

where () is a diagonal matrix with elements

1
Wi =
[1Bn (u)]l2

This is a least squares problem and its explicit solution is
obtained straightforwardly as

(29)

rG-1 — [W(iq)]q (30)
. 9 -1
p = (ADDT+ A (T @ 1) AT) Dy, G
. 1 .
o) =y~ S DT, (32)
u® = (F(i—l) ® IQ)ATu(i)7 33)
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TABLE I
ALGORITHM FOR GTV-TK DENOISING (20).

Input: y € RN, A >0, p1 >0, p2 >0
Initialization: v = Dy or u = 1
_[PL P
P = [P; *Plz}
A=SUI®P1)
Repeat:
Fn,n = (ugn + u§n+l)l/2
-1
u=(ADDT+A(T @ R)AT) Dy
u=(T®IL)A
Until convergence
Return: ¢ =y — (1/A)D

where A = S (I®P~1). Using (29) and (14), T(¥) is a diagonal
matrix with elements
I, = [|Ba(u®)]l2

= ((u)” + (b)) "
The total algorithm to solve (20) is summarized in Table I.
Each iteration has cost O(N) as all matrices are banded. In
particular, the matrix to be inverted in (31) is banded; hence,
1 can be obtained using a fast banded system solver.

By MM principles, the value of the objective function F
decreases at each iteration. However, if By (u)) = 0 for
some iteration j and index m, then F%)m = 0. Consequently,
Bm(u(i)) = 0 for all subsequent iterations, ¢ > j, by (33).
In this case, convergence to the global minima is not assured.
In practice, this ‘zero-locking’ phenomenon is safely avoided
by initializing u to non-zero values [11], [27]. An alternate
approach to solve (24) is to use proximal methods, e.g.,
Douglas-Rachford splitting [5].

(34)
(35)

VI. EXAMPLES

Example 1. The denoised signal obtained by applying the
proposed method to the noisy data in Fig. 1(b) is shown in
Fig. 1(f). We used the algorithm in Table I to minimize (20)
with A = 1, p; = 10, and ps = 0.5. As intended, the signal
approximates the discontinuity by a single knot. The ratio
p1/p2 = 20 means that Aggpe is more penalized than Ayyye,
which promotes discontinuities in the denoised signal.

To illustrate the importance of matrix P in (20), we apply
the proposed method with P = I, (Fig. 1(g)). The second-
order difference signal exhibits pairwise group sparsity; how-
ever, the signal does not accurately recover the discontinuity.
The discontinuity is approximated by two isolated knots, not
a single knot. With P = I, the method fails to tie the knots.

Similarly, we have found that analysis group sparsity with
P # I, fails to accurately recover the discontinuity. Hence,
we conclude that both synthesis group sparsity and weighting
(i.e., P # Iy) are important in the proposed GTV method.

Example 2. To further evaluate the proposed method, we
simulate random discontinuous piecewise linear signals as
in [28]. We simulate signals of length 300 each with 10

True Noisy
2 2
0 0
2 -2
0 100 200 300 0 100 200 300
Total variation Second order TV
2 2
0 '\\—ﬂl\ ’ \f\’\\
-2 [ RMSE = 0.142 -2 [RMSE =0.135
0 100 200 300 0 100 200 300
GTV (Ongie & Jacob) GTV (Proposed)
2 2
0 /\__\[\—\ 0 \f\'\\
-2 RMSE = 0.135 -2 [ RMSE = 0.109
0 100 200 300 0 100 200 300

Fig. 3. Example 2. Denoising of a random discrete piecewise linear signal.

uniformly distributed discontinuities. The jumps and slopes
are distributed as N'(0,1) and N (0, 0.1), respectively. We add
white noise distributed as A(0,0.4). We then denoise each
signal using first-order TV, second-order TV, and GTV using
the method of [28] and the proposed method. In the proposed
method, we set p; = 10 and py = 1. For each method and each
realization, we set A to minimize the root-mean-square-error
(RMSE). Over 50 realizations, the average RMSE is 0.199
for first-order TV, 0.181 for second-order TV, 0.179 for GTV
(method of [28]), and 0.151 for GTV (proposed method). An
example realization is illustrated in Fig. 3.

Generally, the ratio p;/ps should depend on the average
ratio of the discontinuities in the value and the slope, respec-
tively. If py/po is too small or too large, then the proposed
GTV method will be like second-order or first-order TV
denoising, respectively. In Example 1, p1/p2 =1 (i.e., P =1I)
is a ‘small’ value which yields results resembling second-order
TV. On the other hand, setting p; /p2 much greater than 20 in
Example 1 will yield a result like that of first-order TV.

VII. CONCLUSION

We have proposed a convex generalized total variation
(GTV) functional for estimating discontinuous piecewise lin-
ear signals from corrupted data. The approach uses the syn-
thesis form of group sparsity to promote pairwise group
sparsity of the second derivative. Additionally, a pairwise
linear transform is used to decouple the knot parameters.

Extensions to (1) discontinuous higher-order polynomial
signals and (2) multidimensional signals will be of interest.
It will also be of interest to develop a formulation of convex
GTYV denoising using a non-convex form of the proposed GTV
regularizer, as has been done for standard TV denoising [32].

Finally, we remark that TV regularization is perhaps most
effective when used in combination with wavelets or other
transforms [2], [8]-[10], [12], [13], [19], [23], [24], [29], [35].
The proposed GTV functional may likewise be most effective
when used in conjunction with other regularization methods.
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MATLAB PROGRAM
function [x, u, cost] = gtvd(y, rhol, rho2, Nit)
[x, u, cost] = gtvd(y, rhol, rho2, Nit)
Generalized Total Variation Denoising

The method is based on pairwise group sparse representation of
second derivative (using synthesis group sparsity).

o0 o0 o0 0 A A0 O A A0 I d° o A o0 o° o

INPUT
y — noisy signal
rhol, rho2 - knot regularization parameters (positive)
Nit - number of iterations
OUTPUT
x — denoised signal
u - sparse representation
cost — cost function history

Ivan Selesnick, selesi@nyu.edu, 2015
Reference:

Generalized Total Variation: Tying the Knots
IEEE Signal Processing Letters

o0 o° oo de

Convert to column vector
Cost function history

y = y(:);
cost = zeros(l, Nit);
N = length(y);

3
e
3
S

e = ones (N, 1);
D = spdiags([e -2%e e], [0 1 2], N-2, N); % second order difference
DDT = D * D’';

S = kron(speye (N-2), [1 1]);
S = S(:, 2:end-1);

P = [rhol rhol; rho2 -rho2];

L =N - 3; % Number of groups = L = N-3
A = S * kron(speye(L), inv(P) );

Dy = Dx*y;

w = ones(L,1); % Initialization

for k = 1:Nit

G = spdiags (kron(w, [1; 1]1), 0, 2«L, 2%L);

mu = (DDT + A « G = A’) \ Dy;

x =y - D' % mu;

u =G A" *x mu;

w = sqgqrt(u(l:2:end).”2 + u(2:2:end)."2);

% max (abs (Axu - Dxx)) % verify (should be zero)
cost (k) = 0.5 » sum(abs( x — y )."2) + sum( w );

end



