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Abstract

In the formation of range-Doppler images, transient in-

terference can result in Doppler-streak artifacts. These

Doppler-streaks hinder the utility of the range-Doppler im-

age and may obscure moving targets of interest. This pa-

per describes a method for pre-processing the IQ data to

substantially attenuate Doppler streaks in the subsequently

formed range-Doppler images. The method consists of de-

composing the IQ data for each range bin into the sum of

an oscillatory component and a transient component.

1 Introduction

In the formation of range-Doppler profile images, con-

ventional Doppler processing can lead to streaking arti-

facts, such as those clearly visible in Fig. 1a1. From the

range-Doppler profile itself, the underlying reason for these

streaks is unclear. There are several potential causes: (1)

A moving target with a fast changing velocity — if a tar-

get accelerates during the dwell, the energy will be spread

with respect to Doppler. (2) Persistent (quasi-stationary)

wide-band interference. (3) A transient event (or brief in-

terference) in the IQ data — a strong interference present

for only a few pulses will be generate a wide-band Doppler

spectrum. From the range-Doppler profile itself, a Doppler-

streak could indicate any one of these possibilities. In order

to distinguish the cause, it is informative to inspect the IQ

data itself.

For the range-Doppler profile illustrated in Fig. 1a, inspec-

tion of the IQ data reveals that the Doppler-streaks are due

to transient interference in the IQ data. If it can be presumed

that a target will be present for all or most of the pulses in

the coherent pulse interval, then it can be concluded that

the transient in Fig. 1a, which lasts for only a few of the

256 pulses, is not due to a target of interest.

This paper describes a pre-processing technique that sub-

stantially attenuates Doppler streaking due to transient in-
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terference. It is proposed that the IQ data be first separated

into two components (an oscillatory component and a tran-

sient component), and second, that the range-Doppler pro-

file be generated using only the oscillatory component.

2 Oscillatory-Transient Decomposition
The proposed pre-processing approach utilizes a nonlinear

algorithm that decomposes a given signal into the sum of an

oscillatory signal and a transient signal [3, 4, 7, 9]. That is,

given a one-dimensional signal x, the algorithm determines

x1 and x2 such that

x = x1 + x2, (1)

where x1 has an oscillatory behavior and x2 has a transient

behavior. The oscillatory signal x1 need not be narrow band

nor need the frequencies of oscillation be known. Further,

the transient signal x2 need not follow a pre-determined

waveform template; it may have some unspecified shape.

In addition, x1 and x2 may overlap in time and frequency;

therefore, conventional methods of time-frequency selec-

tive filtering will be of limited use. However, non-linear

methods based on the optimization of suitably defined non-

quadratic cost functions can be used to achieve this type of

separation [7, 9, 10]. The method applies equally well to

purely real and general complex data.

It is shown below that the oscillatory-plus-transient decom-

position (1) can be used to avoid the Doppler-streaking ar-

tifacts visible in the range-Doppler profile, for example in

Fig. 1a. In particular, the IQ data can be pre-processed us-

ing the decomposition in order to separate the IQ data into

oscillatory and transient components. In this way, the tran-

sient interference (if any) can be (partially) removed from

the IQ data. Conventional Doppler processing (taper+FFT)

can then be applied to the oscillatory component of the IQ

data. The result of applying this pre-Doppler processing

procedure is illustrated in Fig. 1b. Note that in Fig. 1b,

numerous Doppler-streaks that are present in Fig. 1a have

been successfully removed. Moreover, the procedure does

not appear to adversely affect the features and potential tar-

gets of interest.

3 Example
To elucidate the method, it is informative to inspect the

original IQ data to clarify the cause for the Doppler-streak.

Consider the Doppler-streak at range bin 45 in Fig. 1a; the
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(a) Without preprocessing
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(b) With preprocessing

Figure 1: Range-Doppler profile. Note the presence of

Doppler-streaks in (a) due to high-power transients present

in the IQ data. After pre-processing the IQ data, the

Doppler-streak artifacts are substantially attenuated (b).

IQ data, corresponding to this range, is shown in Fig. 2a.

Clearly visible in the IQ data is a transient event around

pulse 115. This transient event is the cause of the Doppler-

streak in the range-Doppler profile. When the oscillatory-

plus-transient decomposition algorithm is applied to this IQ

data, the signals illustrated in Figs. 2b and 2c are obtained.

The sum of the oscillatory and transient signals is exactly

equal to the IQ signal shown in Fig. 2a. It should be noted

that this decomposition is achieved by the algorithm with

no prior knowledge of where the transient event is located

in the signal. The algorithm is not based on any explicit

segmentation of the IQ signal; instead the oscillatory and

transient components are found jointly.

The effect of the oscillatory-plus-transient decomposition

on the IQ data can be further analyzed by inspecting the

spectra of the IQ data and of the oscillatory and transient

components calculated as the result of the algorithm. To

that end, Fig. 3a illustrates the spectrum of the original IQ
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(c) Calculated transient component

Figure 2: IQ data for range bin 45 and the calculated oscil-

latory and transient components. The transient observed in

the IQ data around pulse index 115 explains the Doppler-

streaks visible in Figs.1a. The transient and oscillatory

components have been well separated. (The figure illus-

trates only the real part of the complex IQ data.)

data (shown in Fig. 2a). The transient causes a broad spec-

tral peak at a normalized Doppler of about −0.3. This broad

spectral peak constitutes the Doppler streak in Fig. 1a. Fig-

ure 3b illustrates the spectrum of the oscillatory component

(shown in Fig. 2b); because the transient has been elim-

inated, the spectrum is free of the broad spectral peak and

hence the subsequently formed range-Doppler image is free

of the Doppler streak. Figure 3c illustrates the spectrum of

the transient component which consists essentially of only

the broad peak.

Note in Fig. 3 that the spectra of the two components over-

lap, yet the algorithm achieves an effective separation nev-

ertheless.

4 Algorithm
The oscillatory-plus-transient decomposition algorithm is

based on the minimization of a convex (but non-quadratic

and non-differentiable) cost function.

The algorithm assumes the existence of two (possibly over-

complete) transforms Φ1 and Φ2 with which sparse repre-

sentations of the two components can be obtained respec-
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Figure 3: The frequency spectra of the IQ data and calcu-

lated components illustrated in Fig. 2.

tively. In this work, Φi are short-time Fourier transforms

with different window lengths. Note that the transform co-

efficients used to represent the signal x are not unique. The

algorithm assumes that x can be written as

x = Φ∗
1a1 +Φ∗

2a2,

where a1 and a2 are sparse vectors. One approach to com-

pute an (approximately) sparse representation is by mini-

mizing the �1 norms of the vectors a1 and a2. Specifically,

the optimization problem is:

argmin
a1,a2

θ ‖a1‖1 + (1− θ) ‖a2‖1 (2a)

such that x = Φ∗
1 a1 +Φ∗

2 a2. (2b)

The parameter θ is a scalar with 0 < θ < 1. Nominally,

θ can be set to 0.5, however, in practice θ can be slightly

adjusted so as to obtain a more favorable decomposition.

Once a1 and a2 are obtained, the calculated components

are given by

x1 = Φ∗
1 a1, x2 = Φ∗

2 a2.

The idea of using sparse signal representa-

tion/approximation as a means to perform signal separation

is developed in [5, 10].

The constrained optimization problem (2) can be solved us-

ing any of several iterative algorithms. Based on the re-

cent ‘split-variable augmented Lagrangian shrinkage algo-

rithm’ (SALSA) [1], a simple iterative algorithm for solv-

ing (2) using the alternating direction method of multipliers

(ADMM) is derived in Appendix B. For oscillatory-plus-

transient signal decomposition, see also [8, 7, 9] and ref-

erences therein. For further details regarding ADMM, see

[2].

4.1 Inapplicability of Least Squares

It is interesting to consider a modification of the cost func-

tion (2), where the energy of ai is used in place of the �1
norm:

argmin
a1,a2

θ ‖a1‖22 + (1− θ) ‖a2‖22 (3a)

such that x = Φ∗
1 a1 +Φ∗

2 a2. (3b)

Does this optimization problem also yield a separation of

the signal x into two distinct components? The optimiza-

tion problem (3) can be solved in closed form. As discussed

in [7], using (3), the solution is given by

x̂1 = (1− θ)x, x̂2 = θ x,

which provides absolutely no useful signal separation. Both

components are just scaled versions of the mixed signal x.

Therefore, the �1 norm (or other sparsity inducing penalty

function) in (2) is essential for this approach to be effective.

This is an example of the use of sparsity to solve a prob-

lem which does not have an analog in least squares signal

processing.

A Conclusion

The paper describes the suppression of transient interfer-

ence in IQ data for the purpose of improving range-Doppler

images and subsequent processing. The algorithm does not

require that the transients be explicitly identified, nor does

the algorithm require any exlicit segmentation. The method

is based on sparse signal representation using two simulta-

neous short-time Fourier transforms implemented in paral-

lel on the IQ data using short and long windows (frames).

The algorithm is able to reduce the Doppler smearing evi-

dent in the range-Doppler profile.

B Derivation of algorithm

Consider the constrained minimization problem:

argmin
a1,a2

λ1 ‖a1‖1 + λ2 ‖a2‖1 (4a)

such that x = Φ∗
1 a1 +Φ∗

2 a2, (4b)

where λ1 and λ2 are θ and (1− θ) in (2). We assume

Φ∗
i Φi = I, i = 1, 2. (5)



The first step is to apply variable splitting:

argmin
a1,a2,u1,u2

λ1 ‖u1‖1 + λ2 ‖u2‖1 (6a)

such that x = Φ∗
1 a1 +Φ∗

2 a2 (6b)

u1 = a1 (6c)

u2 = a2. (6d)

Now ADMM can be applied to obtain the algorithm:

u1,u2 ← argmin
u1,u2

⎧⎪⎨
⎪⎩

λ1‖u1‖1 + λ2‖u2‖2
+ μ1‖u1 − a1 − d1‖22
+ μ2‖u2 − a2 − d2‖22

(7a)

a1,a2 ←

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

argmin
a1,a2

⎧⎪⎨
⎪⎩

μ1‖u1 − a1 − d1‖22
+

μ2‖u2 − a2 − d2‖22
such that x = Φ∗

1 a1 +Φ∗
2 a2

(7b)

d1 ← d1 − (u1 − a1) (7c)

d2 ← d2 − (u2 − a2) (7d)

go to (7a). (7e)

The parameters μi should be positive scalars chosen by the

user. The value of μi will not affect the solution to which

the algorithm converges, but will affect the rate of conver-

gence.

Note that u1 and u2 are decoupled in (7a), so one can write

ui ← argmin
ui

λi‖ui‖1 + μi‖ui − ai − di‖22,

for i = 1, 2, for which the solution is given explicitly in

terms of the soft-threshold function:

ui ← soft(ai + di, 0.5λi/μi), i = 1, 2.

To find the solution to (7b) in explicit form, note that the

solution to

argmin
a1,a2

μ1 ‖b1 − a1‖22 + μ2 ‖b2 − a2‖22 (8a)

such that x = Φ∗
1 a1 +Φ∗

2 a2 (8b)

is given by

ai = bi +
1

μi

(
1

μ1
+

1

μ2

)−1

Φi (x− Φ∗
1b1 − Φ∗

2b2)

for i = 1, 2, where (5) has been used. Therefore the body

of algorithm (7) can be written as

ui ← soft(ai + di, 0.5λi/μi) (9a)

g ← x− Φ∗
1(u1 − d1)− Φ∗

2(u2 − d2) (9b)

ai ← (ui − di) +
1

μi

(
1

μ1
+

1

μ2

)−1

Φi g (9c)

di ← di − (ui − ai). (9d)

A slight simplification is obtained by a change of variables.

Defining vi = ui − di, gives the algorithm:

vi ← soft(ai + di, 0.5λi/μi)− di (10a)

g ← x− Φ∗
1 v1 − Φ∗

2 v2 (10b)

ai ← vi +
1

μi

(
1

μ1
+

1

μ2

)−1

Φi g (10c)

di ← ai − vi. (10d)

A slight rearrangement eliminates redundant computations:

vi ← soft(ai + di, 0.5λi/μi)− di (11a)

g ← x− Φ∗
1 v1 − Φ∗

2 v2 (11b)

di ← 1

μi

(
1

μ1
+

1

μ2

)−1

Φi g (11c)

ai ← di + vi, (11d)

go to (11a), (11e)

where i = 1, 2, for each line of the algorithm. For ini-

tialization: di can be initialized to the all-zero vector, with

the size of di being the same as ai. The vectors ai can

also be initialized to zero because the algorithm converges

regardless. However it makes sense to initialize using

ai = 0.5Φi x as this satisfies (4b).
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