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ABSTRACT

Due to the prevalence of edges in image content, various directional transforms have been proposed for the
efficient representation of images. Such transforms are useful for coding, denoising, and image restoration using
sparse signal representation techniques. This paper describes a new non-separable 2D DCT-like orthonormal
block transform that is optimized for a specified orientation angle. The approach taken in this paper is to extend
to two-dimensions one approach (of several) for constructing the standard 1D DCT. The proposed transform is
obtained as the eigenvectors of particular matrices, as is the standard 1D DCT.
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1. INTRODUCTION

Various directional linear transforms have been proposed for the efficient representation of images. Some direc-
tional transforms (steerable pyramids, curvelets, complex wavelets, shearlets, etc) consist of orientation-selective
subbands and are effective for the efficient representation of almost arbitrary oriented image content. On the
other hand, other directional transforms are optimized to a specific direction; for example several types of di-
rectional discrete cosine transforms (DCTs) have been proposed; see Refs. 2, 3, 7, 8. As another example, a
dictionary learning method for designing directional transforms from image patches has been proposed.4 For
image processing and coding using a set of orientation-specific transforms, the transform used for a specific image
block is selected depending on the orientation of that block.

This paper describes an approach for the design of oriented DCT-like block transforms that attempts to
maintain certain properties of the one-dimensional DCT. In particular, Strang has noted that the basis functions
of the DCT1 can be obtained exactly as the eigenvectors of a particular matrix.5,6 Viewed in another way, the
DCT can be associated with the sequential constrained minimization of a specific cost function. To elaborate,
consider the design of an orthonormal transform to be used to represent smooth signals; the transform should
contain smooth basis functions. We can proceed with the design of the orthonormal basis by first finding the
unit-norm vector that is maximally smooth (a constant function). This is the ‘first’ basis function of the basis.
We then find the second basis function by finding the smoothest unit-norm vector among all vectors orthogonal
to the first basis function. Next, we find the third basis function by finding the smoothest unit-norm vector
among all vectors orthogonal to the first two, etc. When we use, as the measure of smoothness, the energy of the
first-order difference, the result of this sequence of constrained optimization problems yields exactly the DCT.

We will use the same procedure to derive new directional DCT-like 2D orthonormal block transforms.

2. DCT AS EIGENVECTORS

Consider the design of a unit-norm eight-point sequence x(n), n = 1, . . . , 8, chosen so as to minimize the energy
of the first-order difference of x = [x(1), . . . , x(8)]t. We can write this as

min
x

8∑
n=2

[x(n)− x(n− 1)]2 subject to xtx = 1

or as
min
x

J(x) subject to xtx = 1
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where the cost function J(x) is given by

J(x) :=

8∑
n=2

(x(n)− x(n− 1))2 = ‖Ax‖22 = xtAtAx = xtRx

where

A :=



1 -1 0 0 0 0 0 0
0 1 -1 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 1 -1 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 0 1 -1 0
0 0 0 0 0 0 1 -1


, (1)

and

R := At A



1 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0
0 0 0 -1 2 -1 0 0
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -1
0 0 0 0 0 0 -1 1


. (2)

Of course, the unit-norm 8-point sequence x minimizing J(x) is simply the ‘constant’ function, x(n) = 1/
√

8 for
1 ≤ n ≤ 8 which gives J(x) = 0. Let us call this sequence x1 = [1/

√
8, . . . , 1/

√
8]t.

It turns out, that in the general case where A is arbitrary, the vector x minimizing J(x) is given by the
eigenvector of AtA having minimum eigenvalue. The derivation, using Lagrange multipliers, is given in Appendix
A, with K = I in that appendix.

Now, let us find another unit-norm 8-point sequence, we will call it x2, minimizing J(x) but which is orthog-
onal to the vector just found, x1. We can write

min
x

xt AtAx subject to xt x = 1 and xt
1 x = 0.

It turns out that the solution x is the eigenvector of AtA corresponding to the next smallest eigenvalue. Pro-
ceeding similarly, we look for a vector x3 minimizing J(x) but which is orthogonal to the previous two vectors;
this optimization problem is stated as

min
x

xt AtAx subject to xt x = 1 and [x1, x2]t x = 0

where x1 and x2 are eigenvectors of AtA. The solution is the next eigenvector of AtA.

In general, if x1, . . . ,xm are a given set of eigenvectors of AtA, the problem of finding the unit-norm vector
x minimizing J(x) but which is orthogonal to the given eigenvectors, can be written as:

min
x

xt AtAx subject to xt x = 1 and [x1, x2, · · · , xm]t x = 0.

The solution x is the eigenvector of AtA corresponding to the next smallest eigenvalue of AtA. This is shown
in Appendix B, with K = I in that appendix,

According to the forgoing discussion, we may find the solution to this sequence of constrained optimization
problems by simply computing the eigenvector decomposition of the matrix R := AtA,

R = VDVt

where D is diagonal matrix and V is an orthonormal matrix, V−1 = VT . It turns out5 that for the matrix R
in (2), the eigenvectors (the columns of V) are exactly the basis functions of the DCT, illustrated in Fig. 1.
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Figure 1. Basis functions of the eight-point DCT.

3. DIAGONALLY-ORIENTED 2D BASIS FUNCTIONS

Our goal is the design of a diagonally-oriented 2D orthonormal block transform. It appears reasonable that
several of the 2D basis functions of such a transform should be constant along all their diagonals. That is to say,
for an 8× 8 block transform, some of the basis functions should have the structure:

b =



x1 x2 x3 x4 x5 x6 x7 x8
x2 x3 x4 x5 x6 x7 x8 x9
x3 x4 x5 x6 x7 x8 x9 x10
x4 x5 x6 x7 x8 x9 x10 x11
x5 x6 x7 x8 x9 x10 x11 x12
x6 x7 x8 x9 x10 x11 x12 x13
x7 x8 x9 x10 x11 x12 x13 x14
x8 x9 x10 x11 x12 x13 x14 x15


. (3)

In order to construct an orthonormal set of 2D basis functions of this form, we can utilize the sequential
constrained optimization process that gives rise to the 1D DCT. However, a few modifications are required
(primarily, the need for the matrix K in the following).

The 2D basis function b can be represented by a vector x,

x = [x(1), . . . , x(15)]t

Let us use the cost function,

J(x) =

15∑
n=2

[x(n)− x(n− 1)]2 = ‖Ax‖22 = xtAtAx = xtRx

where A and R are as in (1) and (2), only larger in size. This cost function penalizes changes in values between
adjacent diagonals.

Note that the norm of b can be written as

‖b‖22 = xt Kx



where K is the diagonal matrix

K = diag([1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]). (4)

Therefore, finding the unit-norm 2D basis function b minimizing the cost function J , requires solving the con-
strained optimization problem

min
x

xtAtAx subject to xt Kx = 1.

As shown in Appendix A, the minimizing vector x is given by the generalized eigenvector of (AtA,K) corre-
sponding to the minimum eigenvalue. For our A, the minimizing vector x is, as expected, the constant function,
x(n) = 1/8, for 1 ≤ n ≤ 15. So the first 2D basis function, denoted as b1, is the constant function.

Next, we would like to find a second unit-norm 2D basis function minimizing J(x) but which is orthogonal
to the first basis function. Note that if b1 and b2 are 2D basis functions having the structure shown in (3), then
they are orthogonal if

xt
1 Kx2 = 0.

Therefore, to find the second unit-norm 2D basis function b2, we need to solve,

min
x

xAtAx subject to xt Kx = 1 and xt
1 Kx = 0.

As shown in Appendix B, the solution is the generalized eigenvector of (AtA,K) corresponding to the second
smallest eigenvalue.

Similar to what we saw in Section 2, if x1, . . . ,xm are a given set of generalized eigenvectors of (AtA, K),
then the problem of finding the unit-norm vector x minimizing J(x) but which is K-orthogonal to the given
eigenvectors, can be written as:

min
x

xAtAx subject to xt Kx = 1 and [x1, x2, · · · , xm]t Kx = 0.

The solution x is the generalized eigenvector of (AtA,K) corresponding to the next smallest eigenvalue. This is
shown in Appendix B.

According to the forgoing discussion, we may find the solution to this sequence of constrained optimization
problems by simply computing the generalized eigenvector decomposition

RV = KVD (5)

where D is diagonal matrix and V satisfies VtKV = I.

For K in (4) and A in (1), the resulting vectors are illustrated in Fig. 2. Notice that roughly the first half
of these vectors resemble the basis functions of the DCT — the second basis function resembles half a period
of a cosine function, the third basis function resembles a whole period of a cosine, etc. However, these are not
exactly cosine functions. The last few functions are quite different from DCT basis functions — the last few
functions are localized at both ends which is not desirable for efficient representation of image blocks. In the
following section, we will use just the first eight of these fifteen functions.

The 15-point K-orthonormal vectors illustrated in Fig. 2 yield the 8 × 8 2D orthonormal basis functions
illustrated in Fig. 3. To construct an orthonormal basis for 8 × 8 blocks, we need 64 2D basis functions.
Therefore, we need to find additional 2D basis functions that are orthogonal to the ones shown in Fig. 3 (or to
the subset thereof which we wish to employ).

4. 2D DCT AS EIGENVECTORS

The 2D DCT is usually implemented and derived as a row-column separable transform. However, our goal here
is to develop a (non-separable) DCT-like 2D transform. Therefore, it is informative to examine a derivation the
2D DCT that does not utilize row-column separability. It turns out, the sequential constrained optimization
procedure that yields the 1D DCT (as described in Section 2) can be applied directly in 2D.



Figure 2. 15-point DCT-like transform. The basis functions are orthonormal with respect to K in (4). They are obtained
as generalized eigenvectors, see (5).

Figure 3. Orthonormal 2D basis functions. Each basis function is constant along all of its diagonals.



Consider the vector x to be a ‘vectorization’ of the 8× 8 2D array, x(n1, n2) for 1 ≤ n1, n2,≤ 8.

Define the cost function

J(x) = c2h

8∑
n1=2

8∑
n2=1

[x(n1, n2)− x(n1 − 1, n2)]2 + c2v

8∑
n1=1

8∑
n2=2

[x(n1, n2)− x(n1, n2 − 1)]2.

This cost function is the sum of the energy of the horizontal first-order difference and the energy of the vertical
first-order difference. The cost function can be written as J(x) = ‖chAhx‖22 + ‖cvAvx‖22 where Ah represents
the horizontal difference operator, and Av represents the vertical difference operator. Therefore, we can write
the cost function as

J(x) = xtAtAx where A =

[
chAh

cvAv

]
. (6)

To find an orthonormal 2D basis, we can find the eigenvectors of AtA.

With cv = 1 and ch = 0.1, we obtain the orthonormal 2D basis illustrated in Fig. 4a. The eigenvalues of
AtA are illustrated in Fig. 4b. Note that here we have penalized vertical differences much more than horizontal
differences (cv = 10 ch), so the first basis functions, corresponding to the smallest eigenvalues, are all vertically-
oriented. (The top row in Fig. 4a are the basis functions corresponding to the eight lowest eigenvalues.) Also,
notice that the eigenvalues are well-separated in value; the ninth basis function is the first one to have vertical
variation, and the ninth eigenvalue is substantially higher than the eighth, etc.

With cv = 1 and ch = 0.8, we obtain the orthonormal 2D basis and eigenvalues illustrated in Figs. 4c and
4d. Note that here vertical and horizontal differences are penalized quite similarly so the ordering of the basis
functions is quite different than that in Fig. 4a. The vertical and horizontal basis functions are interleaved more
evenly, similar to the zig-zag ordering of 2D DCT coefficients in JPEG.

5. COMPLETING THE DIAGONALLY-ORIENTED 2D BASIS FUNCTIONS

In Section 3 we derived an orthonormal set of 2D functions, where each 2D function is constant along each of its
diagonals. In this section, we wish to complete this set of basis functions to a full orthonormal basis for 8 × 8
blocks. Following the 2D DCT as a guide, we wish to utilize the cost function in (6) in Section 4.

In order to complete the orthonormal basis, we can find a sequence of 2D basis functions where each basis
function minimizes a specified cost function but is also orthogonal to the previously found basis functions. Let
b1, . . . ,bm represent an orthonormal set of 2D basis functions already found. Then we can find a new 2D basis
function by solving the constrained optimization problem,

min
x

xAtAx subject to xt x = 1 and [b1, b2, · · · , bm]t x = 0 (7)

where A is the matrix in (6) and where bi and x represent vectorized forms of 2D basis functions. Similarly, a
sequence of such optimization problems can be formulated so as to find a complete orthonormal basis.

The solution vectors to this sequence of optimizations problems can be found as Cui where ui are the
generalized eigenvectors of (CtAtAC,CtC) where C is a basis for the null space of Bt = [b1, b2, · · · , bm]t, as
described in Appendix C.

Starting with the first eight of the fifteen diagonally-oriented 2D basis functions illustrated in Fig. 3, the
completion to an orthonormal 2D basis yields the sixty-four orthonormal basis functions illustrated in Fig. 5.
This basis may be considered a diagonally-oriented 2D DCT-like transform.

6. 2D BASIS WITH OTHER ORIENTATION ANGLES

The approach we have used above, can not produce transforms optimized for arbitrary orientation angles; how-
ever, in can be extended to some orientations. For example, if the slope of the orientation is taken to be one half
(26.56 degrees), then the approach can be used.
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Figure 4. Orthonormal 2D basis functions obtained by minimizing J(x) in (6).



Figure 5. Orthonormal 8 × 8 2D basis. The first eight basis functions are constant along their diagonals. The remaining
basis functions complete the basis by minimizing the cost function in (6) subject to orthogonality constraints.

6.1 Orientation Slope of 1/2

By asking that the 2D transform contain smooth basis functions with the structure,

b =



x1 x2 x3 x4 x5 x6 x7 x8
x3 x4 x5 x6 x7 x8 x9 x10
x5 x6 x7 x8 x9 x10 x11 x12
x7 x8 x9 x10 x11 x12 x13 x14
x9 x10 x11 x12 x13 x14 x15 x16
x11 x12 x13 x14 x15 x16 x17 x18
x13 x14 x15 x16 x17 x18 x19 x20
x15 x16 x17 x18 x19 x20 x21 x22


(8)

we obtain a 2D transform optimized for orientation slopes of 1/2, that is 26.5 degrees. Each pixel is equal in
value to the pixel two samples to the right and one sample above. It can be seen that there are 22 independent
pixel values; therefore, the set of all such 8× 8 blocks is a 22-dimensional subspace.

We can construct a basis for this this 22-dimensional subspace by sequential minimization with orthogonality
conditions. As above, it is equivalent to computing a set of eigenvectors. In this case, K is given by

K = diag([1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1]). (9)

The resulting 1D functions, and the 2D functions to which they are mapped, are illustrated in Fig. 6. As above,
the later vectors are localized at both endpoints which is not desirable for efficient image representation. We can
also complete the set to a full orthonormal basis for 8× 8 blocks, as illustrated in Fig. 7.



(a) 1D basis orthogonal with respect to K in (9).

(b) 2D orthonormal basis for subpace of 8× 8 blocks.

Figure 6. Constrained pixels, slope = 1/2.



Figure 7. Orthonormal 8× 8 2D basis with orientation angle of 26.5 degrees (corresp. to an orientation slope of 0.5). The
first eight basis functions have the structure given in (8). The remaining basis functions complete the basis by minimizing
the cost function in (6) subject to orthogonality constraints. Compare to Fig. 5.

6.2 Orientation Slope of 1/3

By asking that the 2D transform contain smooth basis functions with the structure,

b =



x1 x2 x3 x4 x5 x6 x7 x8
x4 x5 x6 x7 x8 x9 x10 x11
x7 x8 x9 x10 x11 x12 x13 x14
x10 x11 x12 x13 x14 x15 x16 x17
x13 x14 x15 x16 x17 x18 x19 x20
x16 x17 x18 x19 x20 x21 x22 x23
x19 x20 x21 x22 x23 x24 x25 x26
x22 x23 x24 x25 x26 x27 x28 x29


(10)

we obtain a 2D transform optimized for orientation slopes of 1/3, that is 18.4 degrees. The matrix K is given by

K = diag([1, 1, 1, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 1, 1, 1]). (11)

The resulting orthonormal 2D basis, after completion to a full set of 64 functions, is illustrated in Fig. 8.

6.3 Orientation Slope of 2/3

By asking that the 2D transform contain smooth basis functions with the structure,

b =



x1 x3 x5 x7 x9 x11 x13 x15
x4 x6 x8 x10 x12 x14 x16 x18
x7 x9 x11 x13 x15 x17 x19 x21
x10 x12 x14 x16 x18 x20 x22 x24
x13 x15 x17 x19 x21 x23 x25 x27
x16 x18 x20 x22 x24 x26 x28 x30
x19 x21 x23 x25 x27 x29 x31 x33
x22 x24 x26 x28 x30 x32 x34 x36


(12)



Figure 8. Orthonormal 8×8 2D basis with orientation angle of 18.4 degrees (corresp. to an orientation slope of 1/3). The
construction uses K in (10) and the same procedure as above.

Figure 9. Orthonormal 8 × 8 2D basis with orientation angle of 33.7 degrees (corresp. to an orientation slope of 2/3).

we obtain a 2D transform optimized for orientation slopes of 2/3, that is 33.7 degrees. The b(i, j) entry of b is
given by the formula

b(i, j) = x3i+2j−4, 1 ≤ i, j,≤ 8

Note that, unlike the previous examples, two elements of the matrix K are zero (second and second last location),

K = diag([1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1]) (13)

However, it is not an issue — the procedure still yields a basis with the desired properties. The resulting
orthonormal 2D basis, after completion to a full set of 64 functions, is illustrated in Fig. 9.



7. CONCLUSION

This paper presents a simple approach to produce directional orthonormal block transforms that resemble in a
sense the classical 2D DCT. The primary basis functions are structurally directional, due to equality constraints
among pixels in a specified orientation. The method can be used to generate a set of orthonormal transforms (one
for each orientation) so that different blocks in an image can be processed using different transforms according
to the dominant orientation of the block. The transform is optimal in a sense similar to the DCT — the design
is based on the minimization of an object function maximizing smoothness, and the basis functions are obtained
via generalized eigenvectors. The resulting transforms are truly non-separable (there are no row/col/grid issues
arising from applying 1D transforms along specified orientations). The proposed method is easily extended (to
other block shapes/size, higher dimensions, etc).

Note, however, unlike the classical DCT, the proposed transform has no explicit functional form and has no
fast algorithm. In addition, the orientation angle not continuously variable and nor does it have a multiscale
property, which can be desirable.

APPENDIX A. MINIMIZATION WITH WEIGHTED INNER PRODUCT

Consider the cost function is given by
J(x) = xt AtAx,

and consider the constrained minimization problem:

min
x

J(x) subject to xt Kx = 1

where Kt = K.

The Lagrangian is given by

L = xt AtAx + µ (xt Kx− 1) (14)

and its derivatives are given by

dL

dx
= 2AtAx + 2µKx (15)

dL

dµ
= xt Kx− 1 (16)

Setting the derivatives to zero, gives

dL

dx
= 0 =⇒ AtAx = −µKx (17)

dL

dµ
= 0 =⇒ xt Kx = 1 (18)

Equation (17) means that x is a generalized eigenvector of (AtA,K) with eigenvalue −µ. Furthermore, by
multiplying (17) on the left by xt, we get

xtAtAx = −µxtKx = −µ (19)

where we used (18) for the second equality. Note that the left-hand-side of (19) is the cost function J(x); it can
be concluded that J(x) is minimized subject to xtKx = 1 by the generalized eigenvector corresponding to the
minimum eigenvalue.



APPENDIX B. MINIMIZATION WITH WEIGHTED INNER PRODUCT - 2

Consider the cost function
J(x) = xt AtAx

and a given symmetric positive semidefinite matrix K. Suppose the columns of B are a partial set of generalized
eigenvectors B of (AtA,K),

AtAB = KBD (20)

where D is a diagonal matrix. Suppose also that the columns of B are normalized to have unit norm with respect
to K, that is,

BtKB = I.

Consider the constrained minimization problem:

min
x

J(x) subject to BtKx = 0 and xt Kx = 1.

The Lagrangian is given by

L = xt AtAx + µt
1 B

tKx + µ2 (xt Kx− 1) (21)

and its derivatives are given by

dL

dx
= 2AtAx + KBµ1 + 2µ2 Kx (22)

dL

dµ1

= BtKx (23)

dL

dµ2
= xt Kx− 1 (24)

Setting the derivatives to zero, gives

dL

dx
= 0 =⇒ AtAx = −1

2
KBµ1 − µ2 Kx (25)

dL

dµ1

= 0 =⇒ Bt Kx = 0 (26)

dL

dµ2
= 0 =⇒ xt Kx = 1 (27)

Multiplying (25) on the left by Bt gives

BtAtAx = −1

2
BtKBµ1 − µ2 B

tKx

Using BtKB = I and BtKx = 0 gives

BtAtAx = −1

2
µ1

From (20) we have BtAtA = DBtK, so we get

DBtKx = −1

2
µ1.

From (26) we have
µ1 = 0

so (25) becomes
AtAx = −µ2 Kx (28)

which implies that x is a generalized eigenvector of (AtA,K) with eigenvalue −µ2. In addition, multiplying (28)
on the right by xt gives

xtAtAx = −µ2 x
tKx = −µ2 =⇒ J(x) = −µ2

where we used (27). Therefore, we should select the eigenvector (not already in B) with minimum eigenvalue.



APPENDIX C. MINIMIZATION WITH ORTHOGONALITY CONSTRAINTS

Consider the cost function
J(x) = xt AtAx

and a given symmetric positive semidefinite matrix K. Consider the constrained minimization problem:

min
x

xt AtAx subject to Btx = 0 and xt Kx = 1. (29)

Write Bt x = 0 as x = Cu where C is an orthonormal basis for the null space of Bt. Now we have an optimization
problem over u and Cu then yields the optimal x. Therefore, consider the constrained optimization problem

min
u

ut CtAtACu subject to ut CtKCu = 1,

or
min
u

ut ÃtÃ u subject to ut K̃u = 1,

where Ã := AC and K̃ := CtKC. This is exactly the constrained optimization problem considered in Appendix
A. Accordingly, the solution to (29) is given by Cu where u is the generalized eigenvector of (CtAtAC,CtKC)
with minimum eigenvalue.
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