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Interpolating Multiwavelet Bases
and the Sampling Theorem

Ivan W. Selesnick,Member, IEEE

Abstract—This paper considers the classical sampling theorem
in multiresolution spaces with scaling functions as interpolants.
As discussed by Xia and Zhang, for an orthogonal scaling func-
tion to support such a sampling theorem, the scaling function
must be cardinal (interpolating). They also showed that the only
orthogonal scaling function that is both cardinal and of compact
support is the Haar function, which is not continuous. This paper
addresses the same question, but in themultiwavelet context,
where the situation is different. This paper presents the construc-
tion of compactly supported orthogonal multiscaling functions
that are continuously differentiable and cardinal. The scaling
functions thereby support a Shannon-like sampling theorem.
Such wavelet bases are appealing because the initialization of the
discrete wavelet transform (prefiltering) is the identity operator.

Index Terms— Filter banks, multiwavelet bases, sampling,
wavelet transforms.

I. INTRODUCTION

SHANNON’S sampling theorem for bandlimited signals is
one of the cornerstones of signal processing and com-

munication theory. Indeed, the representation of a function
by its samples is an important question with a long history.
While the Shannon sampling theorem is based on bandlimited
signals, it is natural to investigate other signal classes for which
a sampling theorem holds. The assumption that a signal is
bandlimited, although eminently useful, is not always realistic.
Note that i) bandlimited signals are of infinite duration, and ii)
the sinc function, which is used to reconstruct a bandlimited
function from its samples, is of infinite support and decays only
as We are particularly interested in sampling theorems
for signals of finite duration and for which the reconstruction
function is also of compact support.

To this end, note that the sinc function is one of the primary
examples of an orthogonal scaling function from the theory of
wavelet bases. The sinc function generates a scaling space

in the context of multiresolution analysis and serves as
the interpolant in the context of the sampling theorem. The
question naturally arises—are there orthogonal wavelet bases
for which the scaling function both i) supports a sampling
theorem in the same fashion and ii) is of compact support?
(After all, orthogonal wavelets gained importance with the
construction of scaling functions having compact support in
[9].) Unfortunately, the Haar scaling function is the only
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orthogonal scaling function of compact support for which a
Shannon-like sampling property holds, as proven in [39].

This paper takes up the same question but in the context
of multiwavelet bases (wavelet bases based on more than
a single scaling function), where the situation is different.
This paper shows, via the construction of examples, that for
orthogonal multiwavelet bases, it is possible for the scaling
functions to achieve simultaneously the sampling property,
compact support, and approximation order

A variety of results regarding wavelet bases and sampling
theorems have already been described. Walter has given a
sampling theorem describing the reconstruction of a function

in a scaling space from its samples [35]. Walter’s
theorem does not require that the scaling function be
cardinal (interpolatory, see below); however, the interpolant
is generally not the same function as the scaling function
and is generally of infinite support. Aldroubi and Unser have
considered wavelet sampling and the role of cardinal scaling
functions, especially in the context of biorthogonal bases
[1]–[3], [34]. Cardinal scaling functions (nonorthogonal) are
also discussed in [5], [11], and [33]. The notion of scale-
limited signals and the issue of translation invariance in
wavelet sampling is discussed in [14]; see also [4]. Systems for
the reconstruction of nonbandlimited (finite duration) signals
from samples, and the implementation of such systems, is
considered in [17]. Other recent results regarding the properties
of multiwavelet bases in interpolation are in [21]. In [38], Xia
and Suter discuss vector-valued wavelets and describe how
the interpolation property of a vector-valued scaling function

is reflected in the structure of the vector-valued scaling
filter The examples constructed in Section V conform to
the structure described in [36, Prop. 5] and have, in addition,
a maximal number of (balanced) zero moments given their
supports.

II. PRELIMINARIES

From the classical Shannon sampling theorem, if is
bandlimited to , then

where

sinc

Throughout the paper, is real, and is integer.
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An important property of the sinc function is that it is a
cardinal function. A function is said to be acardinal
function if

for
for

Cardinal functions take the value 0 on the nonzero integers
and take the value 1 at

From the theory of wavelet bases, a function is said to
be anorthogonal scaling functionif

1) satisfies a dilation equation

where is known as the scaling filter.
2) is orthogonal to its integer shifts

The sinc function is such a function, with the additional
property that it is cardinal [35]. The sinc function is acardinal
orthogonal scaling function, or COSF.

From the theory of wavelet bases, thescaling space
associated with a scaling function is

Span

The Shannon sampling theorem can then be stated in the
wavelet context. Let be the sinc function. If ,
then

Does the sampling theorem hold for other ? It is shown in
[39] that the sampling property holds for an orthogonal scaling
function if and only if is also cardinal. Therefore,
every cardinal orthogonal scaling function yields a sampling
theorem. The Shannon sampling theorem for bandlimited
signals is the special case obtained using the sinc function.

An important question arises—do there exist cardinal or-
thogonal scaling functions of compact support? The answer is
yes: The Haar function is one example. However, as mentioned
in the Introduction, there are no others [39]. The orthogonal
scaling functions of Daubechies, for example, are not cardinal.
The Haar function is the only cardinal orthogonal scaling
function of compact support.

Halfband Filters

It is convenient to characterize a compactly supported COSF
in terms of the scaling filter Recall first the definition of
a halfband filter. is halfband if for
some nonzero Halfband filters take the value 0 on the
even integers, except at The properties and design
of halfband filters are summarized in detail in [26].

Let denote the autocorrelation sequence of
For to generate

an orthogonalscaling function , it is necessary that
be halfband [10]. On the other hand, for a

scaling filter to generate acardinal scaling function ,
it is necessary that be halfband,
[39]. Hence, for to generate a scaling function that is
both cardinaland orthogonal, it is necessary that both
and be halfband.

The Haar function is the only COSF of compact sup-
port because the only appropriate FIR halfband filters
whose autocorrelation function are also halfband are filters
having two nonzero coefficients. Examples of noncompactly
supported COSF’s, given in [27] and [39], are based on IIR
scaling filters Although they are not of compact support,
their decay is exponential. Note that scaling functions based
on scaling filters of the form ,
where is allpass, are cardinal because such scaling filters
are halfband (up to a shift). The scaling function in [27,
Fig. 2] is therefore a COSF, as it is based on a filter of that
type. Examples of IIR COSF’s, based on nonrational transfer
functions, have been recently given in [36] and [37].

III. M ULTIWAVELET BASES AND THE SAMPLING THEOREM

Multiwavelet bases have received much attention since 1994
when it was shown by example in [12], [13], and [32] that
symmetry, orthogonality, compact support, and approximation
order can be simultaneously achieved, which is not
possible in the traditional scalar wavelet case.1

In this paper, we show by using multiwavelet bases that
it is possible to achieve simultaneously cardinality, orthogo-
nality, compact support, and approximation order That
is, there exist orthogonal multiwavelet scaling functions of
compact support and approximation order for which a
Shannon-like sampling property holds, which is not possible
in the scalar wavelet case.

Multiwavelet bases are wavelet bases based on several scal-
ing and wavelet functions. This paper considers multiwavelet
bases based on two scaling functions and and two
wavelet functions and Accordingly, there are two
scaling filters and and two wavelet filters
and

The functions areorthogonal multiscaling func-
tions if

1) and satisfy amatrix dilation equation

(1)

where , and are 2 2
matrices.

2) and are orthogonal to their integer shifts.

The notation for used in this paper is
For example

etc., where and are the two scaling filters.

1To distinguish multiwavelet bases from wavelet bases based on a single
scaling function, we will call the laterscalar wavelet bases.
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The scaling space is given by

The functions and will be calledcardinal if

Except for takes the value 0 on the half integers,
and except for , so does

A version of the sampling theorem, for the multiwavelet
case, is straightforward. Let and be cardinal
orthogonal multiscaling functions. If , then

Shannon sampling using the sinc function can be expressed in
this form using sinc sinc

The question becomes: do there exist cardinal orthogonal
multiscaling functions and of compact support and
approximation order Yes. In Section V, examples of
such functions will be given.

IV. BALANCE ORDER

For scalar wavelet bases, the number of zero moments is
an important measure of how well the discrete-time wavelet
transform (DWT) compresses smooth signals. Recall that
scalar wavelet bases with zero moments2 are characterized
by the well-known condition that must have a -order
zero at For multiwavelets with zero moments,3 this
condition has been generalized; see, for example, [7] and [16].

Nevertheless, it is important to highlight a difference be-
tween scalar- and multiwavelet bases. For scalar wavelet bases,
the associated filter bank inherits the zero moment properties
of the basis. However, in the multiwavelet case, the situation
is different. For multiwavelet bases, the associated filter bank
doesnot necessarily inherit the zero moment properties of the
basis [19], [28].

To be specific, for scalar wavelet bases with zero
moments, the lowpass/highpass channels of the associated
filter bank preserve/annihilate the set of polynomials
of degree ; see, for example, [30, Th. 1]. However,
in the multiwavelet case considered here, to guarantee the
preservation/annihilation properties of the associated filter
bank, it is not sufficient that the multiwavelet basis have
zero moments. A stronger condition is required. Multiwavelet
bases for which the zero moment propertiesdo carry over to
the discrete-time filter bank are calledbalancedafter Lebrun
and Vetterli [18], [19].

Specifically, multiwavelet bases for which the associated
filter bank preserves/annihilates the set of polynomials
of degree are said to beorder- balanced. See [18],

2If s tk (t) dt = 0 for k = 0; � � � ; K � 1 (and not fork = K), then the
wavelet basis is said to have approximation orderK or K zero moments.

3If s tk i(t) dt = 0 for i = 0; 1 and k = 0; � � � ;K � 1 (and not for
k = K), then the multiwavelet basis is said to have approximation orderK

or K zero moments.

[19], [28], and [29] for further details. Filter banks based on
unbalanced multiwavelet bases require specialized prefilters.

From [28], the condition for order-1 balancing for multi-
wavelet bases is

divides

Order-1 balanced multiwavelet filter banks preserve/annihilate
constant signals. From [28], the condition for order-2 balanc-
ing is

divides (2)

Order-2 balanced multiwavelet filter banks preserve/annihilate
ramp and constant signals. A condition of this type for order-
balancing, for general , is introduced in [28]. An equivalent
condition for -balancing is given in [19] and [20]. The
examples to be given in Section V will be balanced up to
their approximation order.

V. CARDINAL MULTIWAVELET BASES

To obtain cardinal orthogonal multiscaling functions, it is
useful to characterize them in terms of the scaling filters
and For to generate orthogonal scaling functions

, it is necessary that and be orthogonal to their
shifts by 4. Specifically

(3)

This is the condition that characterizes the orthogonality of
four-channel filter banks. It arises here because the two-
channel multiwavelet filter bank can be drawn as a four-
channelscalarfilter bank with interleaving of subband signals
[25].

The scaling functions and presented below are based
on scaling filters and possessing a particular structure

and From
the dilation equation (1), it is quite direct that this structure
generates cardinal scaling functions, as noted in [38].

A. Order-2 Balanced Example

We obtained an order-2 balanced cardinal orthogonal system
with scaling functions supported on [0,5] and scaling filters of
length 11. The scaling filters have the form

(4)

(5)

for This structure can also be written in terms
of and using their polyphase decompositions

where With this form,
orthogonality between and is structurally incorporated.
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Fig. 1. Order-2 balanced cardinal orthogonal scaling functions�0(t) and
�1(t), with A = �1=8 +

p
15=32: The support of each is [0, 5].

For any values , the filter is orthogonal to and
to shifts of by 4. In addition, if is orthogonal to its
own shifts by 4, then so is It is therefore necessary only
to choose the filter parameters so thatis orthogonal to its
own shifts by 4. The remaining free parameters will be used
to attain balance order

Our problem is to find such that and in
(4) and (5) satisfy the orthogonality conditions (3) and the
second order balancing conditions (2). This is a system of non-
linear equations—the balancing conditions (2) are linear, but
the orthogonality conditions (3) are quadratic. The following
solutions to this system of nonlinear equations were obtained
using a G̈obner basis [8] (for the computation of which, the
softwareSingular was employed [15]).

As indicated, two solutions exist; however, only one of them
yields acceptable scaling functions, namely,

That solution is shown in Fig. 1. The Sobolev
exponent was found to be no less than 1.526. It follows that

and are continuous and differentiable. Note thatand
shown in the figure are actually shifted cardinal functions

instead of , etc. The other solution,
corresponding to , generates scaling
functions that appear fractal.

According to [6], it was shown in [22] that if neither
nor is nilpotent, then the support4 of is
Here, is the highest coefficient in (1). Therefore, the
scaling functions in Fig. 1 have, together, support [0, 5]. It
was verified numerically that and each have support
[0, 5].

4supp� = supp�0 [ supp�1

Fig. 2. Order-2 balanced wavelet functions 0(t) and 1(t); corresponding
to the scaling functions shown in Fig. 1. Like�0; �1, the wavelets 0;  1
are cardinal.

The scaling functions in Fig. 1, generated by , look
similar to each other and to the noncompactly supported
cardinal orthogonal scaling function in [39, Figs. 1(a) and
3(a)]. However, in [39], the single scaling function is
based on a single IIR filter, whereas here, the two scaling
functions and are based on two (but related) FIR
filters and .

The wavelet filters and are given by

(6)

(7)

for or, equivalently, in terms of polyphase
components

Note that and use the same values All
four analysis filters are obtained from the single prototype
filter The special structure for guarantees
orthogonality (3), provided that is orthogonal to its shifts
by 4. In addiiton, note that and that

The use of a structure guaranteeing orthogonality was also
used in [23] and [25], where the structure employed gave rise
not to cardinal functions but to symmetric (unbalanced) ones.

The wavelets and shown in Fig. 2 are given by

where

etc.
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1) Zeros at : It turns out that the lowpass filters and
each posses a double zero at This condition

characterizes scalar wavelets with two zero moments, but
for multiwavelets (both unbalanced and balanced), it is, in
general, neither typical nor necessary. The reasonand

each have a double zero at in this multiwavelet
example turns out to be straightforward. For a multiwavelet
filter bank to be order- balanced, the highpass channels must
annihilate discrete-time polynomials of degree The
annihilation of by the highpass filters and implies,
in turn, that divides both and Because

and , it follows that
divides both and That is, the lowpass

filters and each posses a -order zero at
2) Polyphase CQF Property:It turns out that the polyphase

component must be a conjugate quadrature filter (CQF),
that is, must be orthogonal to its shifts by 2. To show
this, begin with the orthogonality condition (3) for

and split the left-hand side into two parts

Note that and
We then get

or simply

which is the classical orthogonality condition for a two-
channel orthogonal system. Consequently, the efficient meth-
ods for implementing and parameterizing such systems in
terms of lattice angles (see [24], for example) can be im-
mediately utilized for the multiwavelet systems described in
this paper. (We clarify, however, that all computations in this
paper use the coefficients .)

B. Order-3 Balanced Example

The same procedure was used to design an order-3 balanced
cardinal orthogonal multiwavelet system. In this case, the
filters are of length 15 and are given by

where From [28],
the condition for order-3 balancing is

divides

(8)

The solutions for such that the scaling filters and
satisfy the orthogonality (3) and third order balancing (8)

conditions are

The value generates the smoother
scaling functions. Surprisingly, these three-balanced multiscal-
ing functions and resemble the two-balanced scaling
functions shown in Fig. 1 so closely that they are almost
indistinguishable. Moreover, these scaling functions are even
more similar to one another than are the two-balanced ones in
Fig. 1. In addition, they do not appear to be any smoother than
the two-balanced solution. The Sobolev exponent was found
to be no less than 1.335.

C. Order-4 Balanced Example

We were also able to obtain a four-balanced cardinal or-
thogonal multiwavelet system with filters of length 23.

where From [28],
the condition for order-4 balancing is

divides

(9)
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The solutions for such and satisfy orthogonality
(3) and fourth-order balancing (9) conditions are

In this case, four solutions emerge. The smoothest pair of scal-
ing functions are more similar to one another and only slightly
smoother than the two-balanced example. Their Sobolev ex-
ponent was found to be no less than 1.798. Again, like the
three-balanced solution, this four-balanced solution closely
resembles the two-balanced solution in Figs. 1 and 2.

D. Symmetry

We also investigated the design of examples that have, in
addition, symmetry properties; however, we were not able
to find any such examples, unfortunately, even for higher
multiplicity multiwavelets.

VI. DISCUSSION

A. Smoothness

It is disappointing that as the balance order is increased,
the cardinal multiscaling functions do not become signifi-
cantly smoother. Apparently, the interpolation property, taken
together with orthogonality and compact support, is quite
restrictive. We suppose that by increasing the multiplicity of
the multiwavelet basis (the number of scaling and wavelet
functions) to , smoother solutions might be available.

B. Scaling Function Similarity

As noted by Rieder and Nossek in [25], the two-channel
multiwavelet filter bank can be drawn as a four-channelscalar
filter bank with interleaving of subband signals. See also [18]
and [28]. If the filters are too different, then the interleaving
becomes a problem when the filter bank is iterated on one of its
subband signals. Either a prefilter is required, or the filters must
be appropriately designed. Certainly, when one scaling filter is
simply the shift of the other (or nearly so), then the interleaving
of subband signals presents no problem. For the multiscaling

functions considered in this paper, balancing conditions appear
to make them similar to one another, with higher balancing
leading to greater similarity. A similar phenomenon occurs
for the multiscaling functions presented in [19]; as the balance
order increases, the two scaling functions resemble each other
more.

C. Prefiltering

The use of cardinal wavelet bases also simplifies the ini-
tialization step of the discrete wavelet transform, that is, the
estimation of the the fine scale scaling coefficients from the
samples of a function—the estimation of
from (See [33] or [31, p. 232] for overviews of ini-
tialization methods.) However, with cardinal (or interpolating)
scaling functions, no such initialization step is needed. The
samples are themselves the values sought.

D. Shift Variance

It must be noted that if a signal lies in a scaling
space or , then generally, there are translations

of the function that do not lie in the scaling
space. Hence, in the multiresolution context, there is a loss
of shift-invariance, which occurs in both the wavelet and the
multiwavelet cases. The requirement that a function and all
its shifts lie in the same scaling space is very restrictive for
sampling theorems, as discussed in [14].

VII. CONCLUSION

The sampling issue has long been a concern in wavelets
both in theory and in practice. Obtaining wavelet coefficients
from a sampled signal has previously required approximation
or prefiltering. However, with the new cardinal multiwavelet
basis, interpolation and sampling issues are addressed with-
out departing from orthogonal FIR multirate systems. The
coefficients and the associated files for reproducing these
results are available from the author or via the Internet at
http://taco.poly.edu/selesi/.
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