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Interpolating Multiwavelet Bases
and the Sampling Theorem

Ivan W. SelesnickMember, IEEE

Abstract—This paper considers the classical sampling theorem
in multiresolution spaces with scaling functions as interpolants.
As discussed by Xia and Zhang, for an orthogonal scaling func-
tion to support such a sampling theorem, the scaling function
must be cardinal (interpolating). They also showed that the only
orthogonal scaling function that is both cardinal and of compact
support is the Haar function, which is not continuous. This paper
addresses the same question, but in thenultiwavelet context,
where the situation is different. This paper presents the construc-
tion of compactly supported orthogonal multiscaling functions
that are continuously differentiable and cardinal. The scaling

orthogonal scaling function of compact support for which a
Shannon-like sampling property holds, as proven in [39].

This paper takes up the same question but in the context
of multivavelet bases (wavelet bases based on more than
a single scaling function), where the situation is different.
This paper shows, via the construction of examples, that for
orthogonal multiwavelet bases, it is possible for the scaling
functions to achieve simultaneously the sampling property,
compact support, and approximation order> 1.

functions thereby support a Shannon-like sampling theorem. A variety of results regarding wavelet bases and sampling
Such wavelet bases are appealing because the initialization of thetheorems have already been described. Walter has given a
discrete wavelet transform (prefiltering) is the identity operator.  sampling theorem describing the reconstruction of a function
f in a scaling space from its samples [35]. Walter's
theorem does not require that the scaling functifn) be
cardinal (interpolatory, see below); however, the interpolant
is generally not the same function as the scaling function
and is generally of infinite support. Aldroubi and Unser have
S;‘ANNON'S sampling theorem for bandlimited signals isonsidered wavelet sampling and the role of cardinal scaling
ne of the cornerstones of signal processing and cominctions, especially in the context of biorthogonal bases

munication theory. Indeed, the representation of a functign—[3], [34]. Cardinal scaling functions (nonorthogonal) are
by its samples is an important question with a long historgiso discussed in [5], [11], and [33]. The notion of scale-
While the Shannon sampling theorem is based on bandlimitg@lited signals and the issue of translation invariance in
signals, it is natural to investigate other signal classes for whigfavelet sampling is discussed in [14]; see also [4]. Systems for
a sampling theorem holds. The assumption that a signaltti@ reconstruction of nonbandlimited (finite duration) signals
bandlimited, although eminently useful, is not always realisticom samples, and the implementation of such systems, is
Note that i) bandlimited signals are of infinite duration, and igonsidered in [17]. Other recent results regarding the properties
the sinc function, which is used to reconstruct a bandllmltqﬁ multiwavelet bases in interpo|ation are in [21] In [38]' Xia
function from its samples, is of infinite support and decays onjhd Suter discuss vector-valued wavelets and describe how
as|1/x|. We are particularly interested in sampling theoremge interpolation property of a vector-valued scaling function
for signals of finite duration and for which the reconstructiopt) is reflected in the structure of the vector-valued scaling
function is also of compact support. filter h(n). The examples constructed in Section V conform to

To this end, note that the sinc function is one of the primagie structure described in [36, Prop. 5] and have, in addition,
examples of an orthogonal scaling function from the theory @f maximal number of (balanced) zero moments given their
wavelet bases. The sinc function generates a scaling spaggports.
V' in the context of multiresolution analysis and serves as
the interpolant in the context of the sampling theorem. The
guestion naturally arises—are there orthogonal wavelet bases
for which the scaling function both i) supports a sampling From the classical Shannon sampling theoremf(if) is
theorem in the same fashion and ii) is of compact suppottandlimited to(—, r), then
(After all, orthogonal wavelets gained importance with the

(&) =" f(n)sinc (t—n)

Index Terms— Filter banks, multiwavelet bases, sampling,
wavelet transforms.

I. INTRODUCTION

Il. PRELIMINARIES

construction of scaling functions having compact support in
[9].) Unfortunately, the Haar scaling function is the only
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An important property of the sinc function is that it is ascaling filteri(n) to generate aardinal scaling functions(t),
cardinal function. A functiong(t) is said to be acardinal it is necessary thak(n) be halfbandh(2n) = (1/v/2)6(n)

function if [39]. Hence, forh(n) to generate a scaling function that is
both cardinaland orthogonal, it is necessary that bokin)
$(n) = 8(n) = { L form=0 and +(n) be halfband.
0, forn==1,£2,....

The Haar function is the only COSF of compact sup-
Cardinal functions take the value 0 on the nonzero integd¥grt because the only appropriate FIR halfband filtefs)

and take the value 1 at= 0. whose autocorrelation function are also halfband are filters
From the theory of wavelet bases, a functig(t) is said to having two nonzero coefficients. Examples of noncompactly
be anorthogonal scaling functiorif supported COSF's, given in [27] and [39], are based on IIR
1) ¢(t) satisfies a dilation equation scaling filtersh(n). Although they are not of compact support,
their decay is exponential. Note that scaling functions based
P(t) = V2 Z h(n)¢(2t — n) on scaling filters of the formH(z) = A(z%) 4 2~ (d+1),
n where A(z) is allpass, are cardinal because such scaling filters

are halfband (up to a shift). The scaling function in [27,
Fig. 2] is therefore a COSF, as it is based on a filter of that
type. Examples of IIR COSF’s, based on nonrational transfer
/ GVt —n) dt = 8(n). functions, have been recently given in [36] and [37].

whereh(n) is known as the scaling filter.
2) ¢(t) is orthogonal to its integer shifts

. L . . . IIl. M ULTIWAVELET BASES AND THE SAMPLING THEOREM
The sinc functionis such a function, with the additional

property that it is cardinal [35]. The sinc function igardinal Mult_iwavelet bases have receive_d much attention since 1994
orthogonal scaling functionor COSF. when it was shown by example in [12], [13], and [32] that
From the theory of wavelet bases, thealing space/; () symmetry, orthogonality, compact support, and approximation
associated with a scaling functiai(t) is orderK>. 1 can bg IS|muItaneoust achieved, which is not
' possible in the traditional scalar wavelet cése.
Vj(¢) = Span, {¢(2’t —n)}. In this paper, we show by using multiwavelet bases that

it is possible to achieve simultaneously cardinality, orthogo-
ity, compact support, and approximation order- 1. That

is, there exist orthogonal multiwavelet scaling functions of

compact support and approximation ordér> 1 for which a

F(t) = Z F(n)p(t —n). Shannon-like sampling property holds, which is not possible

The Shannon sampling theorem can then be stated in
wavelet context. Lep(¢) be the sinc function. Iff (¢) € Vo(¢),
then

in the scalar wavelet case.
. ) . Multiwavelet bases are wavelet bases based on several scal-
Does the sampling theorem hold for othy#)? It is shown in 4 anq wavelet functions. This paper considers multiwavelet
[39] t_hat the s_ampllng pro_perty h_olds for an (_)rthogonal scalinghces based on two scaling functiangt) and ¢, (£) and two
function ¢(t) if and only if ¢(t) is also cardinal. Therefore, yayelet functionsfo(#) andds (t). Accordingly, there are two

every cardinal orthogonal scaling function yields a samplirg:a”ng filtersho(n) and a1 (n) and two wavelet filtergia(n)
theorem. The Shannon sampling theorem for bandlimiteg ha(n).

signals is the special case obtained using the sinc function. 1,4 functionspo(t), é. (t)
An important question arises—do there exist cardinal ofy g if ’

thogonal scaling functions of compact support? The answer is, . o .

yes: The Haar function is one example. However, as mentionedl) $o(t) and ¢, (t) satisfy amatrix dilation equation

in the Introdyction, there are no others [39]. The orthogqnal P(t) = V2 Z C(n)p(2t — n) (1)

scaling functions of Daubechies, for example, are not cardinal. n

The Haar function is the only cardinal orthogonal scaling where ¢(t) = (¢o(t), $1(t))t, and C(n) are 2 x 2
function of compact support. matrices. ’ ’

2) ¢o(t) and¢,(t) are orthogonal to their integer shifts.

areorthogonal multiscaling func-

Halfband Filters

It is convenient to characterize a compactly supported COSF / ¢i(t)p;(t —n) dt = 6(i — j) - 6(n).
in terms of the scaling filtel. Recall first the definition of . . . )
a halfband filter.i(n) is halfbandif h(2n) = ¢ - 6(n) for 1he notation forC(n) used in this paper i§C(n)}i; =
some nonzera:. Halfband filters take the value 0 on theli(2n +J)- For example
even integer_s, except at = 0. The_ prope_rti_es and design C(0) = ho(0)  ho(1) c@) = ho(2)  Rho(3)
of halfband filters are summarized in detail in [26]. T\ (0) R (1) ) T\R(2) Rhi(3)

Let »(n) denote the autocorrelation sequence of . .
o 7)(7(1)) _ Sy h((E + n). For h(n) to generate S whereho(n) and hy () are the two scaling filters.

an OrthOQOnalsca"ng funCtion¢(t)y it is necessary that(”) 1To distinguish multiwavelet bases from wavelet bases based on a single
be halfbandr(2rn) = 6(n) [10]. On the other hand, for a scaling function, we will call the latescalar wavelet bases.



SELESNICK: INTERPOLATING MULTIWAVELET BASES AND THE SAMPLING THEOREM 1617

The scaling spac®;(¢o, ¢1) is given by [19], [28], and [29] for further details. Filter banks based on
h . unbalanced multiwavelet bases require specialized prefilters.
Vi(¢o, ¢1) = Span,, {$o(2't —n), ¢1(2't —n)}. From [28], the condition for order-1 balancing for multi-

let b i
The functionsgo(t) and ¢, (¢) will be called cardinal if wavelet bases 1s

Po(n/2) =6(n) . , ,
$1(n)2) = 6(n — 1). Order-1 balanced multiwavelet filter banks preserve/annihilate
constant signals. From [28], the condition for order-2 balanc-
Except fort = 0, ¢o(t) takes the value 0 on the half integersing is
and except fort = 3, so doesp,(t). <3_Z—4

(7242724271 +1) divides Ho(z)+ Hi(2).

A version of the sampling theorem, for the multiwavelet(z >4z~ *+2~"+1)* divides Ho(z)+ )Hl(z)- 2)
case, is straightforward. Lepo(t) and ¢1(¢) be cardinal
orthogonal multiscaling functions. If(t) € Vo(¢o, #1), then — Order-2 balanced multiwavelet filter banks preserve/annihilate
ramp and constant signals. A condition of this type for orHer-
ft) = Z F)do(t —n) + fin+1/2)¢p1(t — n). balancing, for generak’, is introduced in [28]. An equivalent
n condition for K-balancing is given in [19] and [20]. The
&)Iﬁlmples to be given in Section V will be balanced up to

Shannon sampling using the sinc function can be expressed M. L
their approximation order.

this form using¢o(t) = sing2t), ¢1(t) = sin2t — 1).
The question becomes: do there exist cardinal orthogonal

multiscaling functionso(t) andé: () of compact support and V. CARDINAL MULTIWAVELET BASES
approximation ordetk > 17 Yes. In Section V, examples of To obtain cardinal orthogonal multiscaling functions, it is
such functions will be given. useful to characterize them in terms of the scaling filteys

and h;. For hg, hy to generate orthogonal scaling functions
oo, P1, It is necessary thaliy and h; be orthogonal to their

shifts by 4. Specifically
For scalar wavelet bases, the number of zero moments is

an important measure of how well the discrete-time wavelet Z hi(n)h;(n +4k) = 6(i — 7) - 6(k). (3)
transform (DWT) compresses smooth signals. Recall that n
scalar wavelet bases withi zero momentsare characterized This is the condition that characterizes the orthogonality of

by the well-known condition thakl(z) must have & -order  four-channel filter banks. It arises here because the two-
zero atz = —1. For multiwavelets with' zero moment$this  channel multiwavelet filter bank can be drawn as a four-

condition has been generalized; see, for example, [7] and [1ghannelscalarfilter bank with interleaving of subband signals
Nevertheless, it is important to highlight a difference be[25]_
tween scalar- and multiwavelet bases. For scalar wavelet baseshe scaling functionsy, and#; presented below are based
the associated filter bank inherits the zero moment propertig$ scaling filtersh, and h; possessing a particular structure
of the basis. However, in the multiwavelet case, the situatig () = ;=" 4 G, (22) andHy (z) = z~"+2 +G1(2%). From
is different. For multiwavelet bases, the associated filter bagfe dilation equation (1), it is quite direct that this structure
doesnot necessarily inherit the zero moment properties of thgsperates cardinal scaling functions, as noted in [38].
basis [19], [28].
To be specific, for scalar wavelet bases with zero A Order-2 Balanced Example

moments, the lowpass/highpass channels of the associated ) _
filter bank preserve/annihilate the sBf_, of polynomials We obtained an order-2 balanced cardinal orthogonal system

of degreek < K see, for example, [30, Th. 1]. HoweverWith scaling functions supported on [0,5] and scaling filters of

in the multiwavelet case considered here, to guarantee 1RBIth 11. The scaling filters have the form
preservation/annihilation properties of the associated filter

IV. BALANCE ORDER

1
ho(n) =—=( a,0,b,1, ¢,0,d,0, ¢0,f) (4)

bank, it is not sufficient that the multiwavelet basis haye V2

zero moments. A stronger condition is required. Multiwavelet 1

bases for which the zero moment propertilescarry over to hi(n) = NG (=/,0,¢,0,=d,1,¢,0,-b,0,a) ()
the discrete-time filter bank are call&glancedafter Lebrun ) ) )

and Vetterli [18], [19]. for n =0,---,10. This structure can also be written in terms

Specifically, multiwavelet bases for which the associatél] Ho(#) and Hi(z) using their polyphase decompositions

filter bank preserves/annihilates the _; of polynomials 1 _
P Lo POy Ho(z) = = (= + G(=2))

of degreek < K are said to beorder-K balanced See [18], V2
) 1 -
21f | tkep(t) dt =0fork =0,.--, K —1 (and not fork = K), then the Hi(2)=——= (27> + 271°G(-27?))
wavelet basis is said to have approximation orfleor & zero moments. \/5

I f tFep,(t) dt = 0 fori = 0,1 andk = 0,---,K — 1 (and not for 1 - . .
k = K), then the multiwavelet basis is said to have approximation afder where G(z? =a+bz + - "+ VA th this form,
or K zero moments. orthogonality betweety and h; is structurally incorporated.



1618 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 6, JUNE 1999
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Fig. 1. Order-2 balanced cardinal orthogonal scaling function&) and Fig. 2. Order-2 balanced wavelet functiong(t) and«; (t), corresponding
¢1(t), with A = —1/8 + +/15/32. The support of each is [0, 5]. to the scaling functions shown in Fig. 1. Lik&), ¢1, the waveletsig, 11
are cardinal.

For any values:, - - -, f, the filter ho is orthogonal toh; and . ] o

to shifts of h; by 4. In addition, ifho is orthogonal to its ~ TNhe scaling functions in Fig. 1, generated hy, ., look

own shifts by 4, then so i&;. It is therefore necessary onlySimilar to each other and to the noncompactly supported

to choose the filter parameters so thatis orthogonal to its cardinal orthogonal scaling function in [39, Figs. 1(a) and

own shifts by 4. The remaining free parameters will be usef®)]- However, in [39], the single scaling functiaf(?) is

to attain balance ordekK > 1. based on a single IIR filter, whereas here, the two scaling
Our problem is to finda, ---, f such thathy and Ay in fgnctions%(t) and¢;(t) are based on two (but related) FIR

(4) and (5) satisfy the orthogonality conditions (3) and th#ters ho and 2,. _

second order balancing conditions (2). This is a system of non-The wavelet filtersh, and zsare given by

linear equations—the balancing conditions (2) are linear, but

the orthogonality conditions (3) are quadratic. The following ha(n) =(=a,0,-b,1,-¢,0,-d,0,-¢,0, = f) (6)

solutions to this system of nonlinear equations were obtained ha(n)=( f,0,—e,0, d,1,—¢,0, b,0,—a) @)

using a @bner basis [8] (for the computation of which, the

softwareSingularwas employed [15]). for n = 0,---,10 or, equivalently, in terms of polyphase
components
A=-1/8+15/32 P
= 1, _
@ =1/32 Hy(2) = (7 = G(=)
b=A+1/4 \?
c=15/16 Hiy(2) = —=(277 — 271°G(=272)).
V2
d=-2A-1/4
c=1/32 Note that h, and hz use the same values,---, f. All
f=A four analysis filters are obtained from the single prototype

filter ho. The special structure fohg, i1, h2, 3 guarantees
As indicated, two solutions exist; however, only one of themrthogonality (3), provided thak, is orthogonal to its shifts
yields acceptable scaling functions, namely,= —1/8 + by 4. In addiiton, note thatd»(z) = —Ho(—2) and that
V/15/32. That solution is shown in Fig. 1. The SobolevHs(z) = —H,(—=z).
exponent was found to be no less than 1.526. It follows thatThe use of a structure guaranteeing orthogonality was also
¢o and¢, are continuous and differentiable. Note tiggtand used in [23] and [25], where the structure employed gave rise
¢1 shown in the figure are actually shifted cardinal functionsot to cardinal functions but to symmetric (unbalanced) ones.
¢0(3/2) = 1 instead of¢o(0) = 1, etc. The other solution, The wavelets/y(¢) and+/;(¢) shown in Fig. 2 are given by
corresponding toA = —1/8 — 4/15/32, generates scaling
functions that appear fractal. P(t) =2 Z D(n)p(2t —n)

According to [6], it was shown in [22] that if neith&?(0) o ” -

nor C(M) is nilpotent, then the suppdrof ¢(t) is [0, M].
Here, C(M) is the highest coefficient in (1). Therefore, thavhere
scaling functions in Fig. 1 have, together, support [0, 5]. It

. . _ ]7,2(0) hg(l)) — <hg(2) hg(3)>
\[/(\;?ssierlfled numerically thap, and ¢; each have support D(0) <h3(0) ha(1) ) D(1) ha(2)  ha(3)

4suppé = suppeo U suppes etc.
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1) Zeros atr: It turns out that the lowpass filters, and where G(z) = g(0) + g(1)z=t + --- + g(7)z~". From [28],
hi each posses a double zero@at—= =. This condition the condition for order-3 balancmg is
characterizes scalar wavelets with two zero moments, but
for multiwavelets (both unbalanced and balanced), it is, in
general, neither typical nor necessary. The reasgnand
hi each have a double zero at = = in this multiwavelet
example turns out to be straightforward. For a multiwavelet
filter bank to be ordel” balanced, the highpass channels must 15 — 102—*
annihilate discrete-time polynomials of degrée< K. The Ho(») +< 3
annihilation of Py _; by the highpass filters, andhs implies,
in turn, that(z — 1)’ divides bothH,(») and Hs(z). Because
Hy(z) = —Ho(—z) and Hs(z) = —H1(—z), it follows that The solutions forG(z) such that the scaling filters, and

(z+1)¥ divides bothHy(z) and H,(z). That is, the lowpass "1 satisfy the orthogonality (3) and third order balancing (8)

(z 342 24+214+1)® divides

-8
3 )H1<z>. ®)

filters ho andh, each posses &-order zero atv = 7. conditions are
2) Polyphase CQF Propertyit turns out that the polyphase

componeni(z) must be a conjugate quadrature filter (CQF), A=3/1280 + \/_/2560

that is, g(n) must be orthogonal to its shifts by 2. To show 0) =24 + 1/512

this, begin with the orthogonality condition (3) for= 5 =0 9(0) =24 +1/5
g(l)=—A+1/32

Z ho(n)ho(n + 4k) = 6(k) 9(2) =—64+125/512
g(3) =34+ 15/16
_ o g(4) =6A — 125/512

and split the left-hand side into two parts g(5) = —34 +1/32
g(6) =—2A4 —1/512

zn: ho(2n)ho(2n + 4k) + En: ho(2n + 1)ho(2n + 1 + 4k). o7 4.

Note thatho(n) = g(n)/v/2 andho(2n + 1) = g(n — 1)y/2. The valueA = 3/1280 + +/31/2560 generates the smoother
We then get scaling functions. Surprisingly, these three-balanced multiscal-
ing functions ¢, and ¢; resemble the two-balanced scaling
1 functions shown in Fig. 1 so closely that they are almost
2> g(n)g(n+2k)+ Z b(n —1)o(n+2k—1) = §(k) indistinguishable. More%ver, these sc{aling func’?i/ons are even
more similar to one another than are the two-balanced ones in
Fig. 1. In addition, they do not appear to be any smoother than
the two-balanced solution. The Sobolev exponent was found
to be no less than 1.335.

n

or simply

> g(n)g(n + 2k) = 6(k)
! C. Order-4 Balanced Example

which is the classical orthogonality condition for a two- We were also able to obtain a four-balanced cardinal or-
channel orthogonal system. Consequently, the efficient methegonal multiwavelet system with filtefs of length 23.
ods for implementing and parameterizing such systems in

terms of lattice angles (see [24], for example) can be im- 1,

mediately utilized for the multiwavelet systems described in Ho(z) = E(z + G(27))

this paper. (We clarify, however, that all computations in this 1

paper use the coefficients(n).) Hi(z) = E(z_ll — 27 2G(=27%)

B. Order-3 Balanced Example whereG(z) = g(0) + g(1)z=* + - -- + g(11)=~L. From [28],

The same procedure was used to design an order-3 balangrdcondition for order-4 balancing is
cardinal orthogonal multiwavelet system. In this case, the

filters i; are of length 15 and are given by (342242141 divides

5 _ 35,4 8 _ 5,12
(77— 27HG(=272)) Hy(z)+ <3 35 +1261 )Hl(z)- )
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The solutions forG(z) suchho and ; satisfy orthogonality functions considered in this paper, balancing conditions appear
(3) and fourth-order balancing (9) conditions are to make them similar to one another, with higher balancing
leading to greater similarity. A similar phenomenon occurs
for the multiscaling functions presented in [19]; as the balance
order increases, the two scaling functions resemble each other
more.

A = —67/40960 + v/17951/81920
B=-2A+7/16384

+ \/6 710886 400 A2 — 4259840 A + 305/40 960

9(0) =B +4 A -7/8192 C. Prefiltering
9(1) = —A - 5/2048 The use of cardinal wavelet bases also simplifies the ini-
9(2) =—-3 B — 16 A —9/2048 tialization step of the discrete wavelet transform, that is, the
g(3) =5 A+21/512 estimation of the the fine scale scaling coefficients from the
_ samples of a function—the estimation ff f(t)p(t — n) dt
4) =2 B + 24 A+ 1099/4096
g(r) + j_ / from f(n). (See [33] or [31, p. 232] for overviews of ini-
9(5) =—10 A +945/1024 tialization methods.) However, with cardinal (or interpolating)
g(6) =2 B — 16 A — 553/2048 scaling functions, no such initialization step is needed. The
9(7) =10 A +21/512 samplesf(n) are themselves the values sought.
=-3B+4A+57/8192 : .
9(8) 3B+ +57/819 D. Shift Variance
g(9) =—5 A —5/2048 _ _ o :
It must be noted that if a signaf(¢) lies in a scaling
9(10) =B spaceV (¢) or V(¢o, ¢1), then generally, there are translations
g(11) = A. f(t — T) of the function that do not lie in the scaling

space. Hence, in the multiresolution context, there is a loss

In this case, four solutions emerge. The smoothest pair of SCé'ﬁ'shift-invariance, which occurs in both the wavelet and the

ing functions are more similar to one another an(_j only Slighth‘nultiwavelet cases. The requirement that a function and all
smoother than the two-balanced example. Their Spbo_lev §& shifts lie in the same scaling space is very restrictive for
ponent was found to be no less than 1.798. Again, like t 3mp|ing theorems, as discussed in [14]

three-balanced solution, this four-balanced solution closely ’ '
resembles the two-balanced solution in Figs. 1 and 2. VII. CONCLUSION
The sampling issue has long been a concern in wavelets

hoth in theory and in practice. Obtaining wavelet coefficients

d\é\(e. also investigated the.deélﬁn of examples that havel,j Bm a sampled signal has previously required approximation
addition, symmetry properties; however, we were not a prefiltering. However, with the new cardinal multiwavelet

to find any such examples, unfortunately, even for h'ghﬁ%\sis, interpolation and sampling issues are addressed with-

multiplicity multiwavelets. out departing from orthogonal FIR multirate systems. The
coefficients and the associated files for reproducing these
results are available from the author or via the Internet at
http://taco.poly.edu/selesi/.

D. Symmetry

VI. DISCUSSION

A. Smoothness

It is disappointing that as the balance order is increased, ACKNOWLEDGMENT
the cardinal multiscaling functions do not become signifi- The author would like to thank V. Strela, for computing the
cantly smoother. Apparently, the interpolation property, takeSobolev exponents of the examples presented in this paper,
together with orthogonality and compact support, is quitend the reviewers for their helpful comments.
restrictive. We suppose that by increasing the multiplicity of
the multiwavelet basis (the number of scaling and wavelet
functions) tor > 2, smoother solutions might be available. o
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