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Abstract

Numerous signals arising from physiological and physical processes, in addition to being non-stationary, are moreover
a mixture of sustained oscillations and non-oscillatory transients that are difficult to disentangle by linear methods.
Examples of such signals include speech, biomedical, and geophysical signals. Therefore, this paper describes a new
nonlinear signal analysis method based on signal resonance, rather than on frequency or scale, as provided by the Fourier
and wavelet transforms. This method expresses a signal as the sum of a ‘high-resonance’ and a ‘low-resonance’ component
— a high-resonance component being a signal consisting of multiple simultaneous sustained oscillations; a low-resonance
component being a signal consisting of non-oscillatory transients of unspecified shape and duration. The resonance-based
signal decomposition algorithm presented in this paper utilizes sparse signal representations, morphological component
analysis, and constant-Q (wavelet) transforms with adjustable Q-factor.
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1. Introduction

Frequency-based analysis and filtering are fundamental
tools in signal processing. However, frequency and time-
frequency analysis are not productively applied to all sig-
nals indiscriminately; they are effective for signals that are
substantially oscillatory or periodic in nature. Signals that
are piecewise smooth, defined primarily by their transients
(singularities), are more fruitfully represented, analyzed
and processed in the time domain or wavelet domain; for
example, scan-lines of a photographic image, recordings of
eye movements, evoked response potentials, neurological
spike trains, etc.

However, many complex signals arising from physiolog-
ical and physical processes are not only non-stationary but
also exhibit a mixture of oscillatory and non-oscillatory
transient behaviors. For example, speech, biomedical (EEG,
phonocardiograms, etc), and geophysical signals (ocean
wave-height data, etc) all possess both sustained oscilla-
tory behavior and transients. EEG signals contain rhyth-
mic oscillations (alpha and beta waves, etc) but they also
contain transients due to measurement artifacts and non-
rhythmic brain activity. Ocean wave-height data measures
the superposition of ocean waves that have travelled many
100’s of miles [97], but weather events through which the
waves travel induce disruptions to the oscillatory behavior.
Indeed, signals obtained by measuring physiological and
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geophysical systems often consist of sustained oscillations
and transient phenomena that are difficult to disentangle
by linear methods.

In order to advance the representation, analysis, and
processing of complex non-stationary signals, we describe
a new nonlinear signal analysis method based not on fre-
quency or scale, as provided by the Fourier and wavelet
transforms, but on resonance. This method expresses a
signal as the sum of a ‘high-resonance’ and a ‘low-resonance’
component. By a high-resonance component, we mean a
signal consisting of multiple simultaneous sustained oscil-
lations. In contrast, by a low-resonance component, we
mean a signal consisting of non-oscillatory transients of
unspecified shape and duration.

Aspects of this work have been presented in two earlier
conference papers [84, 85].

2. Signal resonance

Figure 1 illustrates the concept of signal resonance.
Pulses 1 and 3 in Fig. 1 each consist of essentially a sin-
gle cycle of a sine wave. We classify both pulses as low-
resonance signals because they do not exhibit sustained os-
cillatory behavior. Note that these pulses are time-scaled
versions of one another. Time-scaling a pulse does not ef-
fect its degree of resonance. Clearly, a low-resonance pulse
may be either a high frequency signal (pulse 1) or a low
frequency signal (pulse 3). Low-resonance pulses are not
restricted to any single band of frequencies. Therefore, the
low-resonance component of a signal can not be extracted
from the signal by frequency-based filtering.
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Figure 1: The resonance of an isolated pulse can be quantified by its Q-factor, defined as the ratio of its center frequency to its bandwidth.
Pulses 1 and 3, essentially a single cycle in duration, are low-resonance pulses. Pulses 2 and 4, whose oscillations are more sustained, are
high-resonance pulses. A low Q-factor wavelet transform (for example, the classical dyadic wavelet transform) is suitable for the efficient
representation of pulses 1 and 3. The efficient representation of pulses 2 and 4 calls for a wavelet transform with higher Q-factor.

We classify pulses 2 and 4 in Fig. 1 as high-resonance
signals because they exhibit sustained1 oscillations. Both
pulses consist of about five cycles of a sine wave multi-
plied by a bell-shaped function (specifically, a Blackman
window). As above, both pulses are time-scaled versions
of one another, and they have the same degree of reso-
nance. Likewise, a high-resonance pulse may be either a
high frequency signal (pulse 2) or a low frequency signal
(pulse 4), and therefore, as above, the high-resonance com-
ponent of a signal can not be extracted from the signal by
frequency-based filtering.

2.1. Resonance-based signal decomposition

Resonance-based signal decomposition, as we present
it, should be able to (approximately) separate pulses 1 and
2 in Fig. 1, even when they overlap in time. To illustrate
the results of the resonance-based signal decomposition al-
gorithm (detailed below) we apply it to the synthetic test
signal in Fig. 2. The test signal consists of six pulses of

1We comment that pulses 2 and 4 in Fig. 1 are high-resonance
signals only in comparison with pulses 1 and 3. Depending on the
type of signal being analyzed, we may wish to classify all four pulses
in Fig. 1 as low-resonance pulses, and to classify as high-resonance
only those pulses having many more oscillations than any of these
four pulses (say 20 or 50 cycles instead of 5).

three frequencies and two levels of resonance. The goal is
to separate the test signal into a high- and a low-resonance
component. The computed high- and low-resonance com-
ponents, produced using the algorithm, are illustrated in
Fig. 2a. The algorithm also produces a residual signal to
allow for the presence of a stochastic (noise) component.
The test signal is equal to the sum of the three signals:
the high- and low-resonance components and the residual
signal. (The amplitude of the residual signal can be con-
trolled by parameters in the decomposition algorithm.)

Note that linear time-invariant (LTI) filtering will be
unable to yield the separation illustrated in Fig. 2a because
the three frequencies present in the high-resonance com-
ponent are the same three frequencies present in the low-
resonance component. The pulses in the high-resonance
component differ from those in the low-resonance compo-
nents not in their frequency, but by the degree to which
their oscillations are sustained.

Of course, LTI filtering can separate the test signal into
low, mid, and high frequencies. Using low-pass, band-pass,
and high-pass LTI filters, we obtain the frequency-based
decomposition of the test signal into frequency compo-
nents, as illustrated in Fig. 2b for comparison.

The frequency-based decomposition of a signal, as il-
lustrated in Fig. 2b, depends partly on the characteris-
tics of the frequency-selective filters utilized: transition-
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(a) Resonance-based decomposition. (b) Frequency-based filtering.

Figure 2: Resonance- and frequency-based filtering. (a) Decomposition of a test signal into high- and low-resonance components. The
high-resonance signal component is sparsely represented using a high Q-factor RADWT. Similarly, the low-resonance signal component is
sparsely represented using a low Q-factor RADWT. (b) Decomposition of a test signal into low, mid, and high frequency components using
LTI discrete-time filters.

band widths, pass-band and stop-band deviations, phase
response, etc. Likewise, the resonance-based decomposi-
tion of a signal will also depend on algorithm parameters.

2.2. Resonance-based signal decomposition must be non-
linear

Resonance-based signal decomposition and filtering, as
presented here, can not be achieved by any linear filter-
ing scheme, as illustrated in Fig. 3. Each row in Fig. 3
illustrates the (hypothetical and ideal) decomposition of
a signal into low- and high-resonance components. The
first six signals are low-resonance signals and therefore
the low-resonance components are the signals themselves
(and the high-resonance components are identically zero).
The last signal is a high-resonance signal and therefore
the high-resonance component is the signal itself (and the
low-resonance component is identically zero).

As illustrated in Fig. 3, neither the low- nor high-
resonance component of a signal satisfies the superposition
property. The high-resonance signal illustrated in the bot-
tom left panel is exactly the sum of the six low-resonance
signals illustrated above it. If the resonance-components
of a signal were linear functions of the signal, then the
low- and high-resonance components in the bottom row
of Fig. 3 should be the sum of the components above

them. But that is not the case, and therefore the pro-
posed resonance-based signal decomposition is necessarily
a nonlinear function of the signal under analysis.

2.3. Can resonance-based signal decomposition be well de-
fined?

Clearly, the separation of a signal into low- and high-
resonance components may be ill-defined. If we classify
pulses 1 and 3 (consisting of roughly one cycle) in Fig. 1
as low-resonance signals, and pulses 2 and 4 (consisting
of roughly five cycles) as high-resonance signals, then how
should we classify a pulse consisting of three cycles? Like-
wise, if a signal consists of several such pulses of inde-
terminate resonance, then how should its low- and high-
resonance components be defined?

It is not initially clear how the resonance of a generic
signal should be defined, let alone how a generic signal can
be separated into low- and high-resonance components.
In contrast, frequency-based filtering is straightforward to
define: a low-pass filter preserves (annihilates) sinusoids
oscillating with frequencies less than (greater than) the
filter’s cut-off frequency. The frequency response function
together with the linearity of the filter, fully determine the
input-output behavior of the filter.
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Figure 3: Resonance-based signal decomposition must be nonlinear: The signal in the bottom left panel is the sum of the signals above it;
however, the low-resonance component of the sum is not the sum of the low-resonance components. The same is true for the high-resonance
component. Neither the low- nor high-resonance components satisfy the superposition property.

Consequently, it may appear that the concept of reso-
nance-based signal decomposition is vague, imprecise, and
ambiguous. However, such a decomposition can be well
defined, albeit indirectly, by formulating it as the solution
to an appropriately chosen optimization problem. (The
resonance-based decomposition illustrated in Fig. 2a was
computed via numerical minimization of the cost function
(1) below.) As such, the resonance-components of a signal
depend on the specific cost function, and the exact decom-
position can be adjusted by varying a set of parameters
defining the cost function.

The resonance-based signal decomposition we present
is therefore a nonlinear function of the signal, computed
numerically by an iterative optimization algorithm. In
contrast, frequency-based filtering can be written in closed
form using the convolution integral (or sum). Resonance-
based decomposition is necessarily nonlinear and numeri-
cal, while frequency-based decomposition is linear and an-
alytic.

2.4. Quality-factor and constant-Q bases

While defining the resonance of a generic signal may
be problematic, the resonance of an isolated pulse can be
quantified by its quality-factor, or Q-factor, defined as the
ratio of its center frequency to its bandwidth; this quantity
is well known in filter design, control, and the physics of
dynamical systems.

The Q-factor of a pulse reflects its degree of resonance
as illustrated in Fig. 1. The more oscillatory cycles com-
prising a pulse, the higher is its Q-factor. The first two
pulses illustrated in Fig. 1 oscillate with the same fre-
quency, 0.04 cycles/sample; but the second pulse exhibits
oscillations that are more sustained and accordingly it has

a higher Q-factor (4-times higher). The second two pulses
illustrated in Fig. 1 each oscillate at a frequency of 0.02
cycles/sample and have the same Q-factors respectively as
the first two pulses. Note that the Q-factor of a pulse,
as illustrated in Fig. 1, essentially counts the number of
oscillations (cycles) the pulse consists of.

The method described below for computing the high-
and low-resonance components of a signal is based on the
efficient representation of these two signal components us-
ing two suitably designed bases. The efficient represen-
tation of the high-resonance signal component calls for
a basis ideally comprised entirely of high-resonance (high
Q-factor) functions; such a basis can be obtained from a
single high Q-factor pulse by translating and time-scaling
it. The functions in such a basis will all have the same
Q-factor. Similarly, for the efficient representation of the
low-resonance signal component we should utilize a basis
comprised entirely of low-resonance (low Q-factor) func-
tions; which can likewise be obtained from a single low
Q-factor pulse through translation and time-scaling. We
therefore need two ‘constant-Q’ bases — one characterized
by a high Q-factor, the other characterized by a low Q-
factor. Bases obtained from a single pulse through trans-
lation and time-scaling are well known as wavelet bases,
the generating pulse being known as the ‘wavelet’.

The best known and most widely used constant-Q ba-
sis, the dyadic wavelet basis [21], has a very low Q-factor.
Indeed, the effectiveness of the (dyadic) discrete wavelet
transform stems from its ability to provide relatively sparse
representations of piecewise smooth signals, that is, of low-
resonance signals. The dyadic wavelet transform is applied
much less frequently to oscillatory (high-resonance) signals
such as speech and audio because it does not provide par-
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Figure 4: Analysis and synthesis filter banks for the implementation of the rational-dilation wavelet transform (RADWT). The dilation factor is
q/p and the redundancy is (s (1 − p/q))−1 assuming iteration of the filter bank on its low-pass (upper) branch ad infinitum.

3. Methods

3.1. Rational-dilation wavelet transform (RADWT)

The pursuit of easily-invertible constant-Q discrete-time transforms naturally leads to discrete wavelet transforms
(WTs) based on rational dilation factors [4, 5, 59] and to perfect reconstruction filter banks based on rational sampling
factors [9, 10, 62, 106]. However, critically-sampled filter banks based on rational sampling factors are substantially
constrained and the filter bank design methods used for the dyadic case can not be used. Due to the difficulty of the
design problem, few solutions have been proposed for the rational-dilation case.

Motivated by the need for high Q-factor constant-Q (wavelet) transforms for the sparse representation of high-
resonance signals, we recently developed a new rational-dilation wavelet transform [6] that is fully discrete, easily
invertible, energy preserving, approximately shift-invariant, and which provides the user the ability to adjust the Q-
factor. The new wavelet transform can be used for high Q-factor analysis or the same low Q-factor analysis as the
widely used dyadic wavelet transform. While the transform is not critically-sampled, it can be implemented with
modest redundancy (eg., 3-times overcomplete, depending on parameters). Furthermore, the inverse filter bank is the
mirror image of the analysis filter bank, so that the transform is ‘self-inverting’ (it implements a ‘tight’ frame rather
than an orthonormal basis), which facilitates its use for sparse signal representation.

The rational-dilation wavelet transform (RADWT) introduced in [6] is based on the filter bank (FB) illustrated
in Fig. 4. When the integers p, q, and s in Fig. 4 are chosen so that the FB is overcomplete, we provide in [6] a set
of filters for this multirate filter bank achieving the perfect reconstruction property, good time-frequency localization,
and high regularity. The Q-factor of the wavelet transform, obtained when the FB is iterated on it low-pass branch,
depends on the parameters p, q, and s. Instead of being based on integer dilations, the RADWT is based on a rational
dilation (q/p) between 1 and 2. Setting the dilation factor close to 1, and s > 1, gives a WT with analysis/synthesis
functions (wavelets) having a high Q-factor. Setting s = 1, one obtains a WT with a low Q-factor like the dyadic
DWT. The non-uniform frequency decomposition and the associated wavelet are illustrated in Fig. 5 for two cases: a
low Q-factor and a high Q-factor transform.

3.2. Sparsity-based signal decomposition

We define high-resonance signals as those signals that are efficiently (sparsely) represented by a high Q-factor
constant-Q transform (or ‘high-Q transform’) such as the RADWT with appropriately chosen parameters p, q, and
s (as in Fig 5b). This definition of a high-resonance component is therefore relative to a specified constant-Q trans-
form. Similarly, we define low-resonance signals as those signals efficiently represented by a low Q-factor constant-Q
transform (or ‘low-Q transform’) such as the conventional dyadic DWT or the RADWT (as in Fig 5a). Note that a
high-resonance signal will not be efficiently represented with a low-Q transform and likewise a low-resonance signal
will not be efficiently represented with a high-Q transform. Therefore, the efficiency (sparsity) of a signal representa-
tion with respect to low-Q and high-Q transforms can be employed as a means by which to achieve resonance-based
signal decomposition.

The nonlinear separation of a signal into components defined by distinct behaviors has been addressed in several
publications. For example, Refs. [2, 3, 101, 102] propose algorithms following ideas of Meyer [74] for the decom-
position of an image into oscillatory and bounded variation components. A general framework for nonlinear signal
decomposition based on sparse representations has been described in several papers [33, 36, 51, 94, 95]. In order
for this approach, called ‘morphological component analysis’ (MCA), to be successful, the respective transforms
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Figure 4: Analysis and synthesis filter banks for the implementation of the rational-dilation wavelet transform (RADWT). The dilation factor
is q/p and the redundancy is (s (1 − p/q))−1 assuming iteration of the filter bank on its low-pass (upper) branch ad infinitum.

ticularly efficient representations of these signals.
The need for high Q-factor constant-Q transforms may

be questioned; indeed, speech and audio signals are usually
analyzed and processed using constant-bandwidth trans-
forms (for example, the MPEG 2/4 AAC codec uses the
MDCT switching between 128 and 1024 frequency bands;
speech enhancement often utilizes the STFT). Although
constant-bandwidth analysis can be implemented with high
computational efficiency using the FFT, and although it
serves as a key component of numerous audio coders, it
does not provide the constant-Q analysis needed for reso-
nance-based signal decomposition.

Constant-Q frequency analysis has been of interest in
acoustics and signal processing for many years. This inter-
est is partly inspired by biology — the characteristics of
the human and other mammalian auditory systems have
been extensively studied; and it has been established that
the cochlea possesses a near constant-Q property. Specifi-
cally, the cochlea can be modeled as a bank of highly over-
lapping band-pass filters having constant Q-factors above
a species-dependent frequency. (The human cochlea is ap-
proximately constant-Q over 500 Hz, and tends towards
constant bandwidth below that frequency.) Several para-
metric models have been proposed for these auditory filter
banks, including the Gammatone and Gammachirp filter
banks [44, 50, 98] which are designed to be consistent with
psychoacoustic measurements.

3. Methods

3.1. Rational-dilation wavelet transform (RADWT)

The pursuit of easily-invertible constant-Q discrete-time
transforms naturally leads to discrete wavelet transforms
(WTs) based on rational dilation factors [4, 5, 59] and to
perfect reconstruction filter banks based on rational sam-
pling factors [9, 10, 62, 106]. However, critically-sampled
filter banks based on rational sampling factors are substan-
tially constrained and the filter bank design methods used
for the dyadic case can not be used. Due to the difficulty
of the design problem, few solutions have been proposed
for the rational-dilation case.

Motivated by the need for high Q-factor constant-Q
(wavelet) transforms for the sparse representation of high-
resonance signals, we recently developed a new rational-
dilation wavelet transform [6] that is fully discrete, easily

invertible, energy preserving, approximately shift-invariant,
and which provides the user the ability to adjust the Q-
factor. The new wavelet transform can be used for high
Q-factor analysis or the same low Q-factor analysis as the
widely used dyadic wavelet transform. While the trans-
form is not critically-sampled, it can be implemented with
modest redundancy (eg., 3-times overcomplete, depending
on parameters). Furthermore, the inverse filter bank is
the mirror image of the analysis filter bank, so that the
transform is ‘self-inverting’ (it implements a ‘tight’ frame
rather than an orthonormal basis), which facilitates its use
for sparse signal representation.

The rational-dilation wavelet transform (RADWT) in-
troduced in [6] is based on the filter bank (FB) illustrated
in Fig. 4. When the integers p, q, and s in Fig. 4 are cho-
sen so that the FB is overcomplete, we provide in [6] a set
of filters for this multirate filter bank achieving the per-
fect reconstruction property, good time-frequency local-
ization, and high regularity. The Q-factor of the wavelet
transform, obtained when the FB is iterated on it low-pass
branch, depends on the parameters p, q, and s. Instead
of being based on integer dilations, the RADWT is based
on a rational dilation (q/p) between 1 and 2. Setting the
dilation factor close to 1, and s > 1, gives a WT with anal-
ysis/synthesis functions (wavelets) having a high Q-factor.
Setting s = 1, one obtains a WT with a low Q-factor like
the dyadic DWT. The non-uniform frequency decomposi-
tion and the associated wavelet are illustrated in Fig. 5 for
two cases: a low Q-factor and a high Q-factor transform.

3.2. Sparsity-based signal decomposition

We define high-resonance signals as those signals that
are efficiently (sparsely) represented by a high Q-factor
constant-Q transform (or ‘high-Q transform’) such as the
RADWT with appropriately chosen parameters p, q, and s
(as in Fig 5b). This definition of a high-resonance compo-
nent is therefore relative to a specified constant-Q trans-
form. Similarly, we define low-resonance signals as those
signals efficiently represented by a low Q-factor constant-Q
transform (or ‘low-Q transform’) such as the conventional
dyadic DWT or the RADWT (as in Fig 5a). Note that
a high-resonance signal will not be efficiently represented
with a low-Q transform and likewise a low-resonance signal
will not be efficiently represented with a high-Q transform.
Therefore, the efficiency (sparsity) of a signal representa-
tion with respect to low-Q and high-Q transforms can be
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(a) Low Q-factor RADWT. (b) High Q-factor RADWT.

Figure 5: Rational-dilation wavelet transforms (RADWT): Frequency responses and wavelet. (a) Low Q-factor RADWT using p = 2, q = 3,
s = 1. The wavelet is approximately the Mexican hat function. (b) High Q-factor RADWT using p = 5, q = 6, s = 2. The dilation factor
is 1.2, much closer to 1 than the dyadic wavelet transform. The RADWTs in both (a) and (b) have the same redundancy: they are both
3-times overcomplete.

employed as a means by which to achieve resonance-based
signal decomposition.

The nonlinear separation of a signal into components
defined by distinct behaviors has been addressed in several
publications. For example, Refs. [2, 3, 101, 102] propose
algorithms following ideas of Meyer [74] for the decompo-
sition of an image into oscillatory and bounded variation
components. A general framework for nonlinear signal de-
composition based on sparse representations has been de-
scribed in several papers [33, 36, 51, 94, 95]. In order for
this approach, called ‘morphological component analysis’
(MCA), to be successful, the respective transforms must
have a low coherence (the analysis/synthesis functions of
each transform should have low correlation with the analy-
sis/synthesis functions of the other transform), a condition
satisfied by low-Q and high-Q transforms; see (2) below.

Given an observed signal x = x1+x2, with x, x1, x2 ∈
RN , the goal of MCA is to estimate/determine x1 and x2

individually. Assuming that x1 and x2 can be sparsely rep-
resented in bases (or frames) S1 and S2 respectively, they
can be estimated by minimizing the objective function,

J(w1,w2) = ‖x− S1w1 − S2w2‖22 + λ1‖w1‖1 + λ2‖w2‖1
(1)

with respect to w1 and w2. Then MCA provides the esti-
mates x̂1 = S1w1 and x̂2 = S2w2.

The effectiveness of MCA for certain image processing
problems (image in-painting, interpolation, etc) has been
well demonstrated, especially with the curvelet transform,
the 2D DCT, and 2D wavelet transforms in the role of
S1 and S2 [33, 37, 35, 95]. A variant of this approach
is shown to be effective for the separation of ventricular
and atrial components in an ECG signal in [27], where the
respective representations are adapted to ventricular and
atrial activity respectively.

For resonance-based signal decomposition, we propose
to use low-Q and high-Q RADWTs in the role of S1 and
S2. Then x̂1 and x̂2 obtained by minimizing (1), will serve
as the extracted low- and high-resonance signal compo-
nents. For example, the resonance-based decomposition
illustrated in Fig. 2 was obtained by minimizing (1) with
λ1 = λ2 = 0.2 where S1 and S2 are the two RADWTs
illustrated in Fig. 5.

More general forms of MCA allow the sparsity mea-
sures for x1 and x2 in (1) to be different from each other.
Furthermore, prior information can be utilized in the ob-
jective function to further improve the achievable compo-
nent separability [28]. Additionally, the data fidelity term
need not be an `2 norm, and other sparsity priors besides
the `1-norm can be used, etc. We use the `1-norm here
because it promotes sparsity while being convex function.

3.2.1. Convexity and the `1-norm

Casting resonance-based signal decomposition as a con-
vex optimization problem as in (1) facilitates the compu-
tation of the resonance components. Here, we use the
`1-norm in (1) because it makes the objective function
convex. Although an `p-norm with 0 ≤ p < 1 in (1) pro-
motes sparsity in the solution more aggressively than the
`1-norm, the objective function J will not be convex and
the solution will therefore be more difficult to obtain —
we can generally find a solution that is only locally op-
timal, and it will depend on the particular optimization
algorithm utilized, and on the way it is initialized.

3.2.2. Coherence and the RADWT

In order for morphological component analysis to be
successful at decomposing a signal x into components x1

and x2, it is important that the two utilized transforms,
S1 and S2 have a low mutual coherence. That is, the
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3.2.2. Coherence and the RADWT
In order for morphological component analysis to be successful at decomposing a signal x into components x1

and x2, it is important that the two utilized transforms, S1 and S2 have a low mutual coherence. That is, the synthesis
functions (columns) of transform S1 should have minimal correlation with the synthesis functions (columns) of trans-
form S2. Although some pairwise correlations can be zero (some columns of S1 can be orthogonal to some columns
of S2), it is impossible that they all have zero correlation.

When MCA is performed using two wavelet transforms, characterized by wavelets ψ1(t) and ψ2(t) respectively, it
is therefore necessary that the translations and dilations of ψ1(t) and ψ2(t) have a small inner product for all dilations
and translations. Denote the maximum inner product as ρmax(Q1,Q2) where Qi is the Q-factor of wavelet ψi(t). We
assume that Q2 > Q1 in the following. To evaluate these inner products, consider a simplified case where the wavelets
ψi(t) are ideal band-pass functions with Fourier transforms given by,

Ψi( f ) :=



�
Qi/ fi fi − fi/(2Qi) < f < fi + fi/(2Qi)

0 otherwise

as illustrated in Fig. 6. The band-pass functions (single-sided in Fig. 6 for convenience) are normalized to have unit
energy,

�
|Ψi( f )|2d f = 1. In this case the inner products can be defined in the frequency domain,

ρ( f1, f2) :=
�
Ψ1( f )Ψ2( f ) d f ,

and the maximum inner product can be written as

ρmax(Q1,Q2) := max
f1, f2
ρ( f1, f2).

The inner product, ρ( f1, f2), is given explicitly as,

ρ( f1, f2) =
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The maximum value of ρ( f1, f2) occurs when f2 = f1(2 + 1/Q1)/(2 + 1/Q2) and is given by

ρmax(Q1,Q2) =

�
Q1 + 1/2
Q2 + 1/2

, Q2 > Q1. (2)
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Figure 6: For reliable resonance-based decomposition, the inner
product between the low-Q and high-Q wavelets should be small
for all dilations and translations. The computation of the maximum
inner product is simplified by assuming the wavelets are ideal band-
pass functions and expressing the inner product in the frequency
domain.

synthesis functions (columns) of transform S1 should have
minimal correlation with the synthesis functions (columns)
of transform S2. Although some pairwise correlations can
be zero (some columns of S1 can be orthogonal to some
columns of S2), it is impossible that they all have zero
correlation.

When MCA is performed using two wavelet transforms,
characterized by wavelets ψ1(t) and ψ2(t) respectively, it
is therefore necessary that the translations and dilations of
ψ1(t) and ψ2(t) have a small inner product for all dilations
and translations. Denote the maximum inner product as
ρmax(Q1, Q2) where Qi is the Q-factor of wavelet ψi(t).
We assume that Q2 > Q1 in the following. To evaluate
these inner products, consider a simplified case where the
wavelets ψi(t) are ideal band-pass functions with Fourier
transforms given by,

Ψi(f) :=

{√
Qi/fi fi − fi/(2Qi) < f < fi + fi/(2Qi)

0 otherwise

as illustrated in Fig. 6. The band-pass functions (single-
sided in Fig. 6 for convenience) are normalized to have unit
energy,

∫
|Ψi(f)|2df = 1. In this case the inner products

can be defined in the frequency domain,

ρ(f1, f2) :=

∫
Ψ1(f)Ψ2(f) df,

and the maximum inner product can be written as

ρmax(Q1, Q2) := max
f1,f2

ρ(f1, f2).

The inner product, ρ(f1, f2), is given explicitly in the equa-
tion on the top of the next page. The maximum value of
ρ(f1, f2) occurs when f2 = f1(2 + 1/Q1)/(2 + 1/Q2) and
is given by

ρmax(Q1, Q2) =

√
Q1 + 1/2

Q2 + 1/2
, Q2 > Q1. (2)

p2 q2 s2 Q2 ρmax

5 6 2 3 0.723
6 7 3 5 0.582
7 8 3 5 0.573
8 9 3 5 0.572
9 10 3 5 0.581
11 12 4 7 0.484

Table 1: The coherence, ρmax, between the low-Q RADWT with
parameters p1 = 2, q1 = 3, s1 = 1, (Q-factor = 1) and the high-Q
RADWT with parameters p2, q2, s2, for several higher-Q RADWTs
(Q-factor given in table).

Equation (2) shows how the maximum inner product
depends on the the Q-factors of the two wavelet trans-
forms. For MCA to be successful, ρmax should be sub-
stantially less than 1. If Q2 is only slightly greater than
Q1 then the maximum inner product between the two
wavelet transforms is near 1 and the result of MCA may
be poor (both components x̂1 and x̂2 may be similar to
x). On the other hand, if Q1 = 1 and Q2 = 5.5, then
ρmax = 0.5. Further increasing Q2, further decreases ρmax.
Therefore, in order to ensure the reliability and accuracy
of resonance-based signal decomposition using MCA with
low-Q and high-Q RADWTs, it is advantageous that the
two RADWTs be chosen so as to minimize their coherence;
that is, the high-Q RADWT should be designed so that
its Q-factor is sufficiently greater than the Q-factor of the
low-Q RADWT. However, if this Q-factor is too high, then
it may not be well matched to the oscillatory behaviour
expected in the high-resonance component, and accord-
ingly the high-Q RADWT may not provide an efficient
representation, thereby degrading the results of MCA. The
two Q-factors should be chosen so as to (i) roughly reflect
the expected behaviour of the two components, yet on the
other hand, so as to (ii) minimize ρmax. The two Q-factors
should therefore depend to some degree on the signal un-
der analysis.

For the RADWT described in [6], we do not have a
formula for ρmax. However, it can be computed numeri-
cally. Table 1 reports ρmax for several specific cases. As
reflected in the table, increasing the higher Q-factor causes
a decrease in ρmax.

3.3. Split augmented Lagrangian shrinkage algorithm

The proposed framework for resonance-based signal de-
composition requires the minimization of the objective func-
tion (1). Although this function is convex, its minimiza-
tion can be difficult due to (i) the non-differentiability of
the `1-norm and (ii) the large number of variables (if each
of the two transforms are 3-times overcomplete, then the
number of unknowns is 6-times the length of the signal
x). Due to the important role of sparsity-promoting ob-
jective functions such as (1) in the formulation of recent
signal processing methods (including ‘compressive sens-
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ing’ [29]), several algorithms have recently been proposed
to minimize this type of objective function. An impor-
tant early algorithm is the iterated soft-thresholding al-
gorithm (ISTA) developed in [22, 40] (this algorithm ap-
peared earlier in the optimization literature, as noted in
[18]). However, ISTA converges slowly for some problems
and faster algorithms have since been developed, for ex-
ample [7, 8, 17, 32, 39, 42, 105]. A survey of the literature
related to the minimization of convex functions arising in
signal processing, including minimization problems with
constraints, is given in [18]. In particular, FISTA [7] has
a quadratic rate of convergence instead of the linear rate
of ISTA; yet it is almost as simple an algorithm as ISTA.
We have found SALSA particularly effective for resonance-
based decomposition (and likely for MCA in general), as
it solves a sequence of `2-norm regularized problems which
for MCA can be solved easily (provided the two transforms
are tight frames, as they are here.)

The split augmented Lagrangian shrinkage algorithm
(SALSA), developed in [41, 1], is based on casting the
minimization problem

min
w

f1(w) + f2(w) (3)

as

min
u,w

f1(u) + f2(w) (4)

such that u = w

which is minimized by the alternating split augmented La-
grangian algorithm:

u(k+1) = arg min
u
f1(u) + µ ‖u−w(k) − d(k)‖22 (5)

w(k+1) = arg min
w

f2(w) + µ ‖u(k+1) −w − d(k)‖22 (6)

d(k+1) = d(k) − u(k+1) + w(k+1) (7)

where k is the iteration index and µ is a user-specified
scalar parameter. Each iteration calls for the solution of
an `2-regularized inverse problem, which is often itself a
challenge for large-scale problems. However, for resonance-
based signal decomposition as we formulate it, the relevant
`2 problem can be solved easily, as described in the follow-
ing.

In order to specialize SALSA to the MCA problem (1),
define

f1(u) = ‖x−Hu‖22, f2(w) = λ1‖w1‖1 + λ2‖w2‖1,

and

H =
[
S1 S2

]
, u =

[
u1

u2

]
, w =

[
w1

w2

]
.

Then (5)-(7) gives the iterative algorithm:

u(k+1) = arg min
u
‖x−Hu‖22 + µ ‖u−w(k) − d(k)‖22 (8)

w(k+1) = arg min
w

λ1 ‖w1‖1 + λ2 ‖w2‖1 (9)

+ µ ‖u(k+1) −w − d(k)‖22
d(k+1) = d(k) − u(k+1) + w(k+1) (10)

where k is the index of iteration. The parameter µ needs
to be selected by the user; see [41] for details. We have
used µ = 0.5λ in the MCA experiments below.

Note that (8) is an `2 problem and therefore the mini-
mization in (8) can be expressed straightforwardly:

u(k+1) = (HtH + µI)−1(Htx + µ(w(k) + d(k))).

Using S1S
t
1 = I and S2S

t
2 = I (because the RADWT is a

tight frame) and the matrix inverse lemma, we can write:

(HtH + µI)−1 =
1

µ
I− 1

µ(µ+ 2)

[
St
1

St
2

] [
S1 S2

]
.

Also, note that (9) is an `1-norm regularized denoising
problem and therefore the minimization in (9) is given by
soft-thresholding. Therefore, SALSA for the MCA prob-
lem (1) is:

b
(k)
i = St

i x + µ (w
(k)
i + d

(k)
i ), i = 1, 2 (11)

c(k) = S1b
(k)
1 + S2b

(k)
2 (12)

u
(k+1)
i =

1

µ
b
(k)
i − 1

µ(µ+ 2)
St
i c(k), i = 1, 2 (13)

w
(k+1)
i = soft

(
u
(k+1)
i − d

(k)
i ,

λi
2µ

)
, i = 1, 2 (14)

d
(k+1)
i = d

(k)
i − u

(k+1)
i + w

(k+1)
i , i = 1, 2 (15)

where soft(x, T ) is the soft-threshold rule with threshold
T , soft(x, T ) = xmax(0, 1− T/|x|).

To illustrate the convergence of ISTA and SALSA, we
apply 100 iterations of each algorithm to minimize the
objective function J(w1,w2) in (1) where x is the test
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Figure 7: Reduction of objective function during the first 100 itera-
tions. SALSA converges faster than ISTA.

signal illustrated in Fig. 2a, and where the two transforms
are the RADWTs illustrated in Figs. 5a and 5b. The decay
of the objective function (1) is illustrated in Fig. 7 for both
ISTA and SALSA. The signal decomposition obtained with
100 iterations of SALSA is illustrated in Fig. 2a. The
signal decomposition obtained with of 100 iterations of
ISTA (not-shown) is inferior because ISTA requires many
more iterations to converge than SALSA.

4. Example: Resonance-selective nonlinear band-
pass filtering

In the study of multi-resonance component signals, the
analysis of the frequency (oscillatory) content of a signal is
sometimes of primary interest; for example, the extraction
of alpha rhythms from EEG signals, sinusoidal modeling of
speech signals, and spectral analysis of ocean wave-height
data. We note that the extraction of alpha rhythms from
EEG signals is generally and most simply performed by
conventional LTI filtering using a band-pass filter designed
to pass 8-12 Hz. However, transients in the EEG signal,
which are not considered part of the alpha rhythm, can
manifest themselves in the filtered signal as oscillations in
the 8-12 Hz band. Therefore, even if no alpha rhythm
is present in the EEG signal of interest, the filtered sig-
nal may exhibit alpha oscillations. This behavior has be-
come a point of discussion in the evaluation of methods for
investigating the neural mechanism for the generation of
certain evoked response potentials (ERPs) in EEG signals
[82, 108, 109].

To illustrate the applicability of resonance-based signal
decomposition, we demonstrate that it offers a potential
alleviation of this phenomenon, namely the appearance of
oscillations at frequency f in a band-pass filtered signal
when there are no sustained oscillations at this frequency
in the signal being filtered, as illustrated in Figs. 8 and
9. Figure 8a illustrates a discrete-time test signal con-
sisting of a sinusoidal pulse oscillating with frequency 0.1

cycles/sample and a biphasic transient pulse. The two
band-pass filters, illustrated in Fig. 8b, are tuned to 0.07
cycles/sample and 0.1 cycles/sample respectively. The test
signal is filtered with each of the two filters to obtain two
output signals, illustrated in Fig. 8c and 8d. Note that the
output signal produced by ‘Filter 1’ exhibits oscillations at
a frequency of 0.07 c/s even though the test signal contains
no sustained oscillations at that frequency. Of course, this
phenomenon is a basic fact of LTI filtering, yet it can nev-
ertheless impede the interpretation of band-pass filtered
signals as noted in [108] and may lead one to the con-
clusion that the test signal contains more (and stronger)
oscillations at this frequency than it actually does.

The band-pass filters in Fig. 8 can be understood to
perform frequency analysis of the signal as a whole, whereas
we wish to apply frequency analysis only to the ‘part’ of
the signal on which it is appropriate to apply frequency
analysis – namely, the part of the signal consisting of
sustained oscillations. Resonance-based signal decompo-
sition offers an opportunity to achieve such resonance-
selective frequency-based filtering. Specifically, we can ap-
ply resonance-based decomposition to the test signal and
subsequently filter the high-resonance (oscillatory) com-
ponent with conventional LTI band-pass filters. Applying
resonance-based decomposition to the test signal in Fig. 8a
yields the high- and low-resonance components illustrated
in Fig. 9a and 9b. Filtering the high-resonance component
in Fig. 9a with each of the two band-pass filters in Fig. 8b
produces the two output signals illustrated in Fig. 9c and
9d. Observe that the oscillations in the output of ‘Filter
1’ are substantially attenuated as compared with that of
Fig. 8c. This output signal, being near zero, reflects the
fact that the test signal does not contain sustained oscil-
lations at the frequency 0.07 c/s. Similarly, the output
of ‘Filter 2’ in Fig. 9d maintains the shape of the sinu-
soidal pulse more accurately as compared with the output
illustrated in Fig. 8d.

This example illustrates the potential of resonance-
based decomposition method to overcome the limitations
of frequency-selective linear filters. By separating the sig-
nal into high- and low-resonance components (which re-
quires nonlinear processing) and subsequently performing
conventional LTI frequency-selective filters, we can utilize
conventional band-pass filters, while reducing the ring-
ing artifacts due to transients in the signal of interest.
In this way, we can achieve nonlinear band-pass filtering
that is robust (insensitive) to transients. Furthermore, the
method uses a very generic model to separate transients
and oscillatory behavior — no template is required for the
shape of the transient; the separation is based only on
sparsity in low-Q and high-Q transforms.

Note that the resonance-based decomposition in Fig. 9
is not perfect; largely because the transient pulse is not
itself in the low-Q basis. The resonance decomposition in
Fig. 9 was obtained using the low-Q and high-Q RADWTs
illustrated in Fig. 5. From Table 1, ρmax = 0.72. The
result can be improved by using a higher Q-factor for the
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Figure 8: LTI band-pass filtering. The test signal (a) consists of a sinusoidal pulse of frequency 0.1 cycles/sample and a transient. Band-pass
filters 1 and 2 in (b) are tuned to the frequencies 0.07 and 0.10 cycles/second respectively. The output signals, obtained by filtering the test
signal with each of the two band-pass filters, are shown in (c) and (d). The output of band-pass filter 1, illustrated in (c), contains oscillations
due to the transient in the test signal. Moreover, the transient oscillations in (c) have a frequency of 0.07 Hz even though the test signal (a)
contains no sustained oscillatory behavior at this frequency.
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Figure 9: Resonance-based decomposition and band-pass filtering. When resonance-based analysis method is applied to the test signal in
Fig. 8a, it yields the high- and low-resonance components illustrated in (a) and (b). The output signals, obtained by filtering the high-
resonance component (a) with each of the two band-pass filters shown in Fig. 8b, are illustrated in (c) and (d). The transient oscillations in
(c) are substantially reduced compared to Fig. 8c.

high-Q RADWT or a more aggressively sparsity promoting
(non-convex) regularizer in (1).

5. Example: Resonance-based decomposition of a
speech signal

To further illustrate how resonance-based signal de-
composition can aid the analysis of non-stationary signals,
consider the speech signal illustrated in Fig. 10. Figure
10 illustrates a 150 millisecond segment of a speech sig-
nal (“I’m” spoken by an adult male) in which a vowel-
consonant transition is visible. The high- and low-reso-
nance components obtained by minimizing (1) are illus-
trated in Fig. 10b and 10c. The high-resonance com-
ponent captures the sustained oscillations in the speech

signal while the low-resonance component captures a se-
quence of isolated impulses corresponding to the glottal
pulses produced by the vibration of the vocal folds dur-
ing voiced speech. Therefore, although the original speech
signal in Fig. 10a is largely oscillatory, it is not a purely
high-resonance signal in the sense of our definition: its
resonance-decomposition yields a non-negligible low-reso-
nance component. The decomposition was obtained using
the high-Q RADWT with parameters: p = 8, q = 9, s = 3,
with 38 levels; and using the low-Q RADWT with param-
eters: p = 2, q = 3, s = 1, with 12 levels (as illustrated in
Fig. 5a). From Table 1, ρmax = 0.57.

Note that neither the low- nor high-resonance com-
ponents shown in Fig. 10 are concentrated in a specific
frequency band. Indeed, the high-resonance component
consists of low- and high-frequency oscillations; and the
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Figure 10: Decomposition of a speech signal (“I’m”) into high- and low-resonance components. The high-resonance component (b) contains
the sustained oscillations present in the speech signal, while the low-resonance component (c) contains non-oscillatory transients. (The residual
is not shown.)

low-resonance component consists of a set of impulses and
therefore has a broad frequency-spectrum. The frequency
spectra of the original speech signal and the resonance
components, computed using the middle 50 ms (50 ms
- 100 ms) of the speech waveform, illustrated in Fig. 11,
show that the energy of each resonance component is widely
distributed in frequency and that their frequency-spectra
overlap.

The low-resonance component illustrated in Fig. 10 re-
sembles the excitation signal in source-filter model based
LPC or the cepstrum, etc. [80]. However, resonance-based
decomposition uses no such source-filter model; requires no
estimation of the pitch period; nor requires that the pitch
period be approximately constant over several pitch peri-
ods. The decomposition does not depend on any speech
model, implicit or explicit; its only model is the sparsity
of the resonance components in high-Q and low-Q trans-
forms. Therefore, although it does not yield a generative
model for speech as does a source-filter model, resonance-
based decomposition is not adversely affected by rapidly
variations in the pitch period to which some other tech-
niques are sensitive.

We also note that the high-resonance component ap-
pears more amenable to sinusoidal modeling [73] than does
the original speech signal. Sinusoidal modeling, a method
for representing speech as a sum of time-varying sinusoids,
is useful in speech coding and manipulation (pitch scaling,
voice morphing, etc). However, impulses are not efficiently
represented as a sum of sinusoids and their presence de-
grades the effectiveness of sinusoidal modeling. Because
the high-resonance component is largely free of impulses

0 500 1000 1500 2000 2500 3000
0

0.005

0.01 (a) ORIGINAL SPEECH

0 500 1000 1500 2000 2500 3000
0

0.005

0.01 (b) HIGH−RESONANCE COMPONENT

0 500 1000 1500 2000 2500 3000
0

0.005

0.01 (c) LOW−RESONANCE COMPONENT

FREQUENCY (Hz)

Figure 11: Frequency spectra of the speech signal in Fig. 10 and
of the extracted high- and low-resonance components. The spectra
are computed using the 50 msec segment from 0.05 to 0.10 seconds.
The energy of each resonance component is widely distributed in
frequency and their frequency-spectra overlap.

and transients, sinusoidal modeling can be expected to be
especially effective when applied to it.

To make a preliminary quantification of the compress-
ibility or predictability of the high-resonance component
in comparison with the original speech signal, we applied
AR modeling to both signals using the methods and model
orders listed in Table 2. In each case, the prediction error
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ehr/eorig

Method p = 6 p = 7 p = 8 p = 9 p = 10

burg 0.147 0.119 0.082 0.070 0.047
arcov 0.146 0.119 0.082 0.070 0.047
armcov 0.147 0.119 0.082 0.070 0.047
aryule 0.401 0.387 0.417 0.416 0.421
lpc 0.401 0.387 0.417 0.416 0.421

Table 2: Comparison of prediction error for AR modeling. The table
lists ehr/eorig where eorig is the prediction error (σ) for the original
speech signal, and ehr is likewise the prediction error for the high-
resonance component, illustrated in Fig. 10. The model order is
denoted by p. Each method is labeled by its Matlab function name.

(standard deviation, σ) was computed, denoted as eorig
and ehr for the original speech signal and high-resonance
component respectively. It was found that ehr is substan-
tially less than eorig. Table 2 lists the ratio, ehr/eorig, for
each method and model order. For example, using the
Burg AR method with model order p = 6, the prediction
error of the high-resonance component is 14.7% that of the
original speech signal. The values in Table 2 suggest that
the high-resonance component is substantially more pre-
dictable than the original speech signal, at least when an
AR model is used for the prediction. Fig. 12 illustrates the
estimated power spectral density using the Burg method
with p = 6; the formants are more clearly defined for the
high-resonance component, as expected from the signal
waveforms in Fig. 10. Therefore, the high-resonance com-
ponent may facilitate formant tracking with fine temporal
resolution.

As suggested by its more distinctive peaks in Fig. 12,
the high-resonance component can accentuate the speech
formants, the relative spacing of which characterize dis-
tinct vowels, etc. Meanwhile, the low-resonant component
can accentuate the harmonics, which characterize the pitch
of the speaker. In this case, coding only the high-resonance
component may serve as a method for more efficient speech
coding. Given that the speech waveform carries both the
identity of the speaker and the spoken message, it has been
postulated that ‘who’ and ‘what’ are conveyed by the au-
ditory system to the cortex along separate sensory path-
ways [64]. Resonance-based decomposition may similarly
provide a separation along these lines.

A principal tool for the analysis of speech is the spec-
trogram; according to Pitton et al., “Practically every as-
pect of speech communication has greatly benefited from
time-frequency (TF) analysis” [77]. However, the pursuit
of alternatives to the spectrogram has led to the devel-
opment of a variety of adaptive nonlinear time-frequency
distributions with improved resolution properties [16, 45,
47, 48, 88]. For certain signals (multicomponent AM/FM
signals, or more generally, ‘high-resonance’ signals) these
powerful TF techniques reveal the signal’s time-varying
frequency characteristics that can not be seen from the
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Figure 12: AR spectral estimation using the Burg method with
model order p = 6, for the speech signal and its high-resonance
component, shown in Fig. 10.

time-domain waveform itself. However, for other signals,
the information of interest is more easily ascertained from
the time-domain waveform (for example, inter-pulse inter-
vals of a neural spike sequence, or more generally, ‘low-
resonance’ signals). For signals comprised of a mixture
of simultaneous high- and low-resonance components, ex-
isting time-frequency analysis techniques might be more
effectively applied to the high-resonance component than
to the original signal.

6. Further Remarks

Parameter selection. As the minimization of the objec-
tive function in (1) depends on the parameters λ1 and λ2,
the resulting decomposition can be tuned by varying these
parameters. The relative values of λ1 and λ2 influence
the energy of the two components: for example, with λ1
fixed, increasing λ2 will decrease the energy of x̂2 and in-
crease the energy of x̂1. The values of λi also influence
the energy of the residual: increasing both λ1 and λ2 will
decrease the energy of both components and increase the
energy of the residual. For the examples in this paper, the
parameters were manually selected by visually inspecting
the induced components. An appropriate balance between
λ1 and λ2 must be struck. Automatic selection of the pa-
rameters λi could be performed using hyper-parameter es-
timation procedures, as described in [15] for example. For
image decomposition into texture and structure compo-
nents, Ref. [3] describes a method for parameter selection
based on the assumption that these two components are
not correlated; a similar approach may be useful here.

The selection of the Q-factors of the two constant-Q
transforms also influences the result. It appears reason-
able to use Q ≈ 1 for the low-Q transform (like the dyadic
wavelet transform) in order to obtain a sparse representa-
tion of the non-oscillatory component; and that the high
Q-factor should be set depending on the oscillatory be-
havior of signal in question. However, the decomposition
result does not appear to be as sensitive to the Q-factors
as it is to the λi.

Additionally, the parameters λi and Qi could be se-
lected based on optimizing appropriate performance mea-
surements, along the lines of [103] for example.
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Why not an `2-norm penalty? If the `2-norm is used in
the penalty term of (1),

J(w1,w2) = ‖x− S1w1 − S2w2‖22 + λ1‖w1‖22 + λ2‖w2‖22,
(16)

then, using S1S
t
1 = S2S

t
2 = I, the minimizing w1 and w2

can be found in closed form,

w1 =
λ1

λ1 + λ2 + λ1 λ2
St
1 x

w2 =
λ2

λ1 + λ2 + λ1 λ2
St
2 x,

and the estimated components, x̂1 = S1w1 and x̂2 =
S2w2, are given by

x̂1 =
λ1

λ1 + λ2 + λ1 λ2
x

x̂2 =
λ2

λ1 + λ2 + λ1 λ2
x

That is, both x̂1 and x̂2 are simply scaled versions of x.
Although the objective function (16) admits a closed form
minimizer, it does not lead to any decomposition whatso-
ever.

More than two resonance components. The same approach
can be used with more than two resonance components,
although we have not explored it here. The main issue
is that the use of more transforms will generally reduce
the incoherence between the transforms which diminishes
the likelihood of obtaining distinct components. How-
ever, if a constant-Q transform with sufficiently high Q-
factor is used to define a third resonance component, then
the incoherence will be maintained and the performance
of MCA should not be compromised. Specifically, Q3

should be chosen sufficient large so that ρmax(Q2, Q3) ≤
ρmax(Q1, Q2). Assuming ideal band-pass wavelets, (2) can
be used to calculate the minimum Q3.

MCA using Constant-Q and Constant-BW transforms. For
the separation of oscillatory and transient signals using
sparse signal representations, it is quite natural to uti-
lize a short-time Fourier transform (or similar constant-
bandwidth transform, like the MDCT) and a wavelet trans-
form (with low-Q, like the dyadic WT). This approach is
presented in [23, 24, 75, 96] which illustrate excellent sep-
aration results. However, depending on the parameters
(window length, etc), a constant bandwidth and a constant
Q-factor decomposition may have analysis functions with
similar frequency support, as illustrated in Fig. 13. (The
pass-bands between 0.1 and 0.2 have significant overlap, as
indicated in the figure.) In this case, the two transforms
will have a high coherence because the maximum inner
product between analysis functions of the two transforms
will be close to unity, which can degrade the achievable
component separation, depending on the signal being an-
alyzed.
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Figure 13: A constant-bandwidth and a constant-Q decomposition
may have analysis functions with similar frequency support.

On the other hand, as noted above, two constant-Q
transforms with markedly different Q-factors will have low
coherence because no analysis functions from the two de-
compositions will have similar frequency support. Like-
wise, two constant-bandwidth transforms with markedly
different bandwidths will also have low coherence and are
therefore also suitable for MCA-based signal decomposi-
tion. This calls for short and long windows for the two
constant-BW transforms respectively. This approach is
presented in [25, 38, 57].

7. Related work and concepts

Related decompositions: The problem of decomposing
a given signal into oscillatory and non-oscillatory compo-
nents has received a fair amount of attention, especially
for speech and audio processing; however, previous ap-
proaches, not being based on signal resonance, are differ-
ent from the method presented here. Speech and musical
sounds are often modeled as consisting of three compo-
nents: a quasi-sinusoidal (oscillatory) component, a com-
ponent consisting of temporal transients, and a stochas-
tic (noise-like) component. For speech and audio pro-
cessing (pitch- or time-scaling, morphing, enhancement,
de-reverberation, coding, synthesis of speech and other
sounds) it is often useful that these three components,
each of which are psycho-acoustically significant, be mod-
eled separately. Early work on this topic decomposed
sounds using a ‘deterministic + stochastic’ model [87], a
‘sine + noise’ model [86], or a ‘harmonic + noise’ model
[66]. Subsequent work decomposed sounds using a ‘sine
+ transient + noise’ model [67, 68, 100] where a tran-
sient (deterministic, non-oscillatory) component is intro-
duced. Related works consider a ‘periodic + aperiodic’
model [19, 107] and pitch-synchronous models [34, 78].
These multi-component models follow, elaborate and en-
hance, in a sense, sinusoidal modeling of speech [73, 80].
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Although these methods decompose signals into oscilla-
tory, non-oscillatory, and residual components, as does
the proposed method, they estimate and extract the os-
cillatory component using constant-bandwidth transforms
rather than constant-Q transforms, and hence they do not
perform resonance-based signal decomposition.

More recent methods for decomposing signals into os-
cillatory and transient components are based on sparse
signal representations [24, 25, 38, 75] as is the method de-
scribed here; however, these methods are again not based
on signal resonance as they use constant-bandwidth trans-
forms as one or both of the two transforms. The dyadic
(low Q-factor) wavelet transform and the modified discrete
cosine transform (MDCT) are used in [24, 75], while over-
complete modulated complex lapped transform (MCLT)
dictionaries are utilized in [25]. Note that the MDCT and
MCLT are constant-bandwidth, rather than constant-Q,
transforms. A Bayesian approach is described in [38] and
is illustrated using an MDCT basis with a long window for
the tonal component and an MDCT with a short window
for the transient component. Along these lines, the use
of MDCT and wavelet transforms for speech enhancement
was discussed in [96]. Reference [23] develops a new al-
gorithm: the molecular matching pursuit algorithm. An
example of tonal/transient separation in audio is also given
in [57] which introduces the time-frequency jigsaw puzzle.

Another class of methods utilizes low Q-factor wavelet
transforms for the detection, estimation and characteriza-
tion of transients in various (often noisy) signals [20, 79];
however, these methods differ from resonance-based sig-
nal decomposition in that they do not explicitly account
for, or model, the presence of a highly oscillatory (high-
resonance) component. These methods (for example, [20,
79]) utilize wavelet transforms having low Q-factors (the
dyadic wavelet, etc) due to the ability of such wavelet
transforms to efficiently represent the transient (low-res-
onance) component of a signal. Along these lines, a novel
approach to transient separation is the time-scale method
introduced in [13] which exploits the multi-scale charac-
terization of transients.

The decomposition of a signal into a set of pulses of
various time-frequency characteristics using matching pur-
suits [72] and related algorithms has been effective in a
number of applications; however, these methods also differ
from the proposed method in that they usually utilize sets,
or dictionaries, of functions that are far more overcomplete
than the constant-Q transforms utilized here, and the use
of these techniques for resonance-based signal analysis has
not been explored. The approximation of EEG signals by
Gabor functions using matching pursuits (MP) has been
applied to the analysis of sleep EEG [71], evoked poten-
tials [90], epileptic activities, and several other research
and clinical problems in EEG signal analysis [30, 31], as
well as to the estimation of otoacoustic emissions [58].

Empirical mode decomposition: Empirical mode de-
composition (EMD) is another nonlinear signal decomposi-

tion [46, 55]. One goal of EMD is to extract AM/FM com-
ponents from a multicomponent signal. EMD decomposes
a signal into components, called ‘intrinsic mode functions’
(IMFs), which are approximately AM/FM functions. While
EMD can yield similar results as signal-resonance decom-
position for certain signals, the objectives and algorithms
of the two approaches are quite different.

Constant-Q transforms and non-uniform frequency
decomposition: The biological prevalence of constant-
Q analysis led to the study of constant-Q transforms for
signal processing starting in the 1970’s [49, 53, 76, 110]
and continuing until the present. In fact, the continuous
wavelet transform was effectively described in [110]. The
calculation and use of constant-Q transforms for the anal-
ysis of musical notes is described in [11, 12]. However,
continuous-time integral transforms are highly overcom-
plete and not always easily inverted [43], yet some solutions
are presented in [54, 56, 69, 70]. More recent papers have
drawn on the theory of perfect-reconstruction critically-
sampled filter banks to design discrete-time transforms
with non-uniform frequency analysis. These transforms,
mostly based on wavelet-packets [104] and therefore eas-
ily invertible, have been applied to audio coding [91, 93],
speech enhancement [14, 81, 89], and speech quality evalu-
ation [60]. Wavelet-packet transforms have been designed
to approximate the critical-bands of the human auditory
system [61]; however, they can not achieve the constant-Q
property exactly [65]. As mentioned in Section 3.1, ear-
lier discrete-time rational-dilation filter banks and wavelet
transforms have been presented in [9, 10, 62, 106]. Other
approaches to the design of approximately constant-Q fil-
ter banks are described in [26, 52, 83, 92, 99]; some of
these methods use frequency warping or multiple voices
and have approximate perfect reconstruction.

8. Conclusion

Signal ‘resonance’, being an attribute distinct and in-
dependent to that of frequency, provides a dimension com-
plementary to frequency for the analysis of signals. While
frequency components are straightforwardly defined and
can be obtained by linear filtering, resonance components
are more difficult to define and procedures to obtain res-
onance components are necessarily nonlinear. Related de-
compositions (‘sines + transients + noise’, etc) have been
proposed for speech and audio processing, but are based
partly are wholly on constant-bandwidth transforms and
therefore do not provide a resonance-based decomposition.

This paper describes an algorithm for resonance-based
decomposition that relies on techniques for sparse signal
representations and on morphological component analy-
sis (MCA). The algorithm uses a rational-dilation wavelet
transform (RADWT) for the sparse representation of each
resonance component. The RADWT is a self-inverting
fully-discrete transform which is important for the SALSA
algorithm as described. We expect that other (near) cons-
tant-Q transforms may be used in place of the RADWT.
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We note that for real signals there will rarely be an
totally unambiguous distinction between the low and high
resonance components; consequently it is expected that
some low-resonance behavior appears in the high-resonance
component and vice-versa. Additional modeling, for exam-
ple by ‘structured-sparsity’ or context modeling of the two
components (e.g. [23, 63]), may improve the separation
capability of the approach.
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