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Abstract

Background - This paper addresses the problem of detecting sleep spindles and K-complexes in human sleep EEG.
Sleep spindles and K-complexes aid in classifying stage 2 NREM human sleep.
New Method - We propose a non-linear model for the EEG, consisting of a transient, low-frequency, and an oscillatory
component. The transient component captures the non-oscillatory transients in the EEG. The oscillatory component
admits a sparse time-frequency representation. Using a convex objective function, this paper presents a fast non-linear
optimization algorithm to estimate the components in the proposed signal model. The low-frequency and oscillatory
components are used to detect K-complexes and sleep spindles respectively.
Results and comparison with other methods - The performance of the proposed method is evaluated using an
online EEG database. The F1 scores for the spindle detection averaged 0.70 ± 0.03 and the F1 scores for the K-complex
detection averaged 0.57 ± 0.02. The Matthews Correlation Coefficient and Cohen’s Kappa values were in a range similar
to the F1 scores for both the sleep spindle and K-complex detection. The F1 scores for the proposed method are higher
than existing detection algorithms.
Conclusions - Comparable run-times and better detection results than traditional detection algorithms suggests that
the proposed method is promising for the practical detection of sleep spindles and K-complexes.

Keywords: Sparse signal, convex optimization, sleep spindle detection, K-complex detection.

1. Introduction

Sleep spindles comprise of a group of rhythmic waves
that progressively increase and decrease in amplitude [1].
They are of at least 0.5 seconds in duration and have fre-
quencies in the range of 12 Hz to 14 Hz [2]. Recent studies
have suggested an extended frequency range from 11 Hz to
16 Hz [3, 4]. Sleep spindles are believed to play an impor-
tant role in synaptic plasticity and memory consolidation
during sleep [5]. Alteration in the density of sleep spindles
is observed in patients with disorders such as schizophrenia
[6], [7], autism [8] and other neurodegenerative and sleep
disorders [9]. This leads to mounting belief that sleep spin-
dles may be valuable as diagnostic biomarkers [4].

The K-complex is a transient waveform with a bipha-
sic morphology, characterized by a negative sharp wave
followed by a positive one [10]. The K-complex is a rela-
tively large waveform having a duration between 0.5 and
1.5 seconds with an amplitude larger than 75 µV.

The detection of sleep spindles and K-complexes aid
in the scoring of stage N2 of NREM sleep. Traditionally,
these morphologically distinct waveforms have been iden-
tified manually by trained experts in sleep clinics. This is
subjective, time consuming, and prone to errors. The low
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and widely varying inter-rater agreement for sleep spin-
dle and K-complex detection adds to the complexity of
the overall scoring process and diagnostic utility. The Co-
hen’s κ coefficient for inter-rater manual scoring ranges
from 0.46 to 0.89 [11]. Some studies have reported an
even lower κ coefficient [12, 13]. Solving the above issues
require a reliable automated detector for sleep spindles and
K-complexes.

1.1. Detection Algorithms

Numerous automated detectors have been developed
over the past few years for detecting sleep spindles and
K-complexes. At the core of most of the spindle detection
algorithms is the use of a constant or adaptive thresh-
old after bandpass filtering the input EEG [7, 14, 15, 16].
Few detectors have been designed to simultaneously detect
spindles and K-complexes, whereas most are designed to
detect one or the other [17]. The bandpass filter is also
excited by transients present in the input EEG. Much of
the effort of these algorithms is to either pre-process [18],
or post-process [19] the bandpass filtered data, so as to
distinguish spindles from transients.

To reduce this overhead, algorithms have been designed
using neural networks [20], sleep spindle morphology [21],
support vector machines [22], time-frequency methods via
the short-time Fourier transform (STFT) [13, 19] and adap-
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tive time-frequency methods [23, 24]. The drawback of us-
ing machine learning methods is that they may suffer from
over-learning. This increases the number of falsely detected
spindles, as compared to scoring by experts (based on the
specificity values) [20]. A non-linear pre-processor for the
EEG using convex optimization was shown to successfully
separate the transients [25]. However, that approach is
computationally inefficient as it utilizes two STFT’s with
high overlap between consecutive windows.

The Teager-Kaiser energy operator (TKEO) has been
used for the automatic detection of K-complexes, in con-
juction with the time-frequency and neural network meth-
ods highlighted above [26, 10, 27]. The TKEO is helpful
in extracting the sharp rising and falling edges of the K-
complex. However, the presence of transients adversely
affects the performance of these algorithms as the TKEO
is not able to successfully extract the K-complex activity in
the input EEG signal. The spindle and K-complex activity
can be made more prominent by suppressing transients in
the EEG. However, this suppression is difficult using linear
filters, thereby motivating non-linear methods [28].

1.2. Contribution

In this paper we propose a non-linear method for the
detection of sleep spindles and K-complexes (DETOKS).
We model the input EEG as a sum of three components:

1) Transient. The transient component is modeled as
a sparse signal possessing a sparse first-order derivative.
Essentially, the transient component is comprised of spikes
on a baseline of zero.

2) Low-frequency. The low-frequency component of the
EEG signal.

3) Oscillations. The rhythmic oscillations in the EEG
signal that admit a sparse time-frequency representation.

To estimate the three components from the input EEG
signal, we propose an optimization problem utilizing a con-
vex objective function and also derive a fast algorithm
for its solution. Post estimation of the components, we
use the low-frequency and the oscillatory components for
the detection of K-complexes and sleep spindles respec-
tively. Since the proposed method separates the transients
from the low-frequency and oscillatory components used
for detection, the bandpass filter reveals the spindle activ-
ity much more prominently with respect to the baseline.
Thus, the proposed approach aims to make traditional
spindle detection methods robust by prefacing them with
non-linear transient removal.

We list the preliminaries in Section 2 and formulate
the DETOKS problem in Section 3. We illustrate the sup-
pression of the transients in the input EEG with various
examples in Section 4. We evaluate the performance of
DETOKS by applying it on an online EEG database in
Section 5. Specifically, we compare spindle and K-complex
detection results using the proposed DETOKS method and
existing automated detectors [14, 15, 7, 29, 16, 13, 12].

2. Preliminaries

2.1. Notation

We denote vectors and matrices by lower and upper
case letters respectively. The N -point signal y is repre-
sented by the vector

y = [y(0), . . . , y(N − 1)]T , y ∈ RN , (1)

where [·]T represents the transpose. The `1 and `2 norm
of the vector y are defined as

||y||1 :=
∑
n

|y(n)|, ||y||2 :=

(∑
n

|y(n)|2
)1/2

. (2)

The matrix D is defined as

D :=


−1 1

−1 1
. . .

. . .

−1 1

 . (3)

Using the matrix D, the first order difference of an N -
point discrete signal x is given by Dx. Here D is of size
(N − 1) × N . The soft-threshold function [30] for λ >
0, λ ∈ R is defined as

soft(x, λ) :=

x− λ
x

|x|
, |x| > λ

0, |x| ≤ λ,
x ∈ C. (4)

The soft-threshold function as defined in (4) is valid for
complex valued x. The notation soft(x, λ) implies that
the soft-threshold function is applied element-wise to x
with a threshold of λ. The Teager-Kaiser Energy Operator
(TKEO), T (·), for a discrete-time signal y is defined as

[T (y)]n := y2(n)− y(n− 1) · y(n+ 1). (5)

2.2. Sparse Optimization

To estimate a signal x, possessing a sparse or approxi-
mately sparse derivative, from a noisy mixture

y = x + w, (6)

it is common to minimize the `1 norm of the first-order dif-
ference Dx subject to a data fidelity constraint [31]. Thus,
a suitable optimization problem for estimating x is

x̂ = arg min
x

{
1

2
||y − x||22 + λ||Dx||1

}
. (7)

The value λ > 0 controls the sparsity of the derivative of
x, where the `1 norm is used as a convex proxy for sparsity.
The problem in (7) is known as total variation denoising
(TVD) whose solution in linear time is given in [32]. If x is
also sparse, i.e., it comprises spikes on a baseline of zero,
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then an appropriate optimization problem is given by

x̂ = arg min
x

{
1

2
||y − x||22 + λ1||x||1 + λ2||Dx||1

}
. (8)

This problem is known as the fused lasso [33], [34] and its
solution is given by

x = soft(tvd(y, λ2), λ1), (9)

where tvd(·, ·) represents the solution to the TV denoising
problem (7).

2.3. Short-time Fourier Transform

Signals that admit a sparse representation can be de-
scribed by a small number of coefficients using an appropri-
ate transform. Such representations, when they exist, can
account for most of the energy contained in a signal [35].
Recently over-complete transforms have been exploited for
the sparse representation of signals [36]. A signal consist-
ing of oscillatory pulses can be represented sparsely using
the STFT. The STFT requires specification of several pa-
rameters such as window length, overlapping factor, and
the discrete Fourier transform (DFT) length.

In this work, we use a window length of 1.28 seconds for
the STFT and a DFT length equal to the window length.
This choice of window length ensures that the DFT length
is a power of 2 when the sampling frequency is 50 Hz,
100 Hz, or 200 Hz. In case the EEG is sampled at 128
Hz, we use a one-second window. We use 75% overlapping
between windows, i.e., a hop size of one quarter of the
window length. Hence, the STFT is 4-times over-sampled.

Precisely, using a time-frequency array for STFT coef-
ficients of size M×K, for a signal y of length N , we define
Φ : CM×K 7→ CN as

Φc := STFT−1(c), (10)

whereas ΦH : CN 7→ CM×K is defined as

ΦHy := STFT(y). (11)

Using a sine window, we implement the STFT to have the
perfect reconstruction property, specifically

ΦΦH = I, (12)

where ΦH represents the Hermitian transpose of Φ [37].

3. Simultaneous Detection using DETOKS

3.1. Problem Formulation

We model the EEG signal as

y = f + x + s + w, f, x, s,w ∈ RN , (13)

where f represents a low-frequency signal, x is a sparse sig-
nal with sparse first-order derivative, s consists of rhytmic

oscillations and is sparse with respect to Φ, and w repre-
sents the residual. This kind of a signal model is similar
to the one used for transient removal and suppression in
[38, 25]. In contrast to [25], we model the transient com-
ponent using a sparse first-order derivative rather than an
STFT.

We seek estimates for the components x, f and s from
the given signal y in (13). The component s can be mod-
eled as

s = Φc, (14)

where c ∈ CM×K is the STFT coefficient array. Using a
lowpass filter L we define the highpass filter H as

H := I− L, (15)

assuming that the frequency response of the lowpass filter
is zero-phase or at least approximately zero-phase [38]. For
a highpass filter having a 2d−order zero at z = 1, the
matrix H is of size (N − 2d)×N when applied to a signal
of length N . Applying the highpass filter to the signal
model in (13), we have

H(y − x− Φc) ≈ w. (16)

In order to estimate the components x and c from a given
y and minimize the energy of the residual w, we propose
the following unconstrained optimization problem,

arg min
x,c

{
1

2
||H(y − x− Φc)||22 + λ0||x||1

+ λ1||Dx||1 + λ2||c||1
}
. (17)

The objective function in (17) promotes the sparsity of
the signal x, its first-order derivative Dx, and the STFT
coefficient array c, using the `1 norm. The scalars λ0, λ1
and λ2 are regularization parameters. We set the highpass
filter H to be a zero-phase recursive discrete-time filter,
that we write as

H = A−1B, (18)

where A and B are banded1 Toeplitz matrices, as described
in Sec. VI of [38]. Note that A is of size (N − 2d)× (N −
2d) and B is of size (N − 2d) × N , when the 2d−order
highpass filter is applied to a signal of length N . The
banded structure of A and B aids in the computational
efficiency of the algorithm that will be developed in the
next sub-section.

3.2. Algorithm
Various problems arising in signal processing and bio-

medical engineering are formulated as convex optimization

1A banded matrix is a type of sparse matrix, whose non-zero
entries are restricted on the main diagonal and one or more diagonals
on either side of the main diagonal.
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problems. The objective function in (17) is also convex,
and can be minimized via convex optimization algorithms.
There exists a wealth of algorithms for solving problems
of type (17) with two or more sparsity inducing penalties
[39, 40]. In particular, we apply Douglas-Rachford split-
ting [41] to solve (17). The Douglas-Rachford splitting
approach results in the well-known alternating direction
method of multipliers (ADMM) [42, 43]. Applying vari-
able splitting, we rewrite (17) as

arg min
u1,u2,x,c

{
1

2
||H(y − u1 − Φu2)||22 + λ0||x||1

+ λ1||Dx||1 + λ2||c||1
}

(19a)

s.t. u1 = x, u2 = c. (19b)

Note that (19) is equivalent to (17). Using the scaled aug-
mented Lagrangian [44], we can minimize (19) by the fol-
lowing iterative procedure.

Repeat:

u1,u2 ← arg min
u1,u2

{
1

2
||H(y − u1 − Φu2)||22

+
µ

2
||u1 − x− d1||2 +

µ

2
||u2 − c− d2||22

}
(20a)

x, c← arg min
x,c

{
λ0||x||1 + λ1||Dx||1 + λ2||c||1

+
µ

2
||u1 − x− d1||2 +

µ

2
||u2 − c− d2||22

}
(20b)

d1 ← d1 − (u1 − x) (20c)

d2 ← d2 − (u2 − c) (20d)

where µ > 0. The minimization in (20b) is separable, thus
x and c can be minimized independently. Thus, we can
write (20b) as

x← arg min
x

{
λ0||x||1 + λ1||Dx||1 +

µ

2
||u1 − x− d1||2

}
(21a)

c← arg min
c

{
λ2||c||1 +

µ

2
||u2 − c− d2||22

}
(21b)

The solutions to (21a) and (21b) are readily implemented
using the solution to the fused lasso problem as described
in Sec. 2.2 and the soft threshold function (4). Specifically,
the solutions to (21a) and (21b) are given by

x← soft(tvd(u1 − d1, λ1/µ), λ0/µ), (22)

c← soft(u2 − d2, λ2/µ). (23)

To derive the solution to (20a), we make the following

substitutions,

u = [u1,u2]T , d = [d1,d2]T , (24a)

x̄ = [x, c]
T
, M = [I, Φ] , (24b)

where u, d, x̄ ∈ R2N . Due to the substitutions, we rewrite
(20a) as

u← arg min
u

{
1

2
||Hy −HMu||22 +

µ

2
||u− x̄− d||22

}
. (25)

The solution to (25) can be written explicitly as

u←
[
MT HT HM + µI2N

]−1 [
(MT HT Hy + µ(x̄ + d)

]
,

(26)

where I2N is the (2N × 2N) identity matrix. Due to the
form (18) of the highpass filter H and the perfect recon-
struction property (12) of Φ, we have

HT H = BT (AAT )−1B, (27)

MMT = 2I. (28)

Using the matrix inverse lemma [45], (27) and (28), we
write(

MT HT HM + µI2N

)−1

=

(
MT BT (AAT )−1BM + µI2N

)−1

(29)

=
1

µ

(
I2N −MT BT

[
µAAT + 2BBT

]−1

BM

)
. (30)

The matrix µAAT + 2BBT is banded, since the matrices
A and B are banded. This is advantageous as the itera-
tion now consists of solving a banded system of equations,
rather than a dense system in (29). Combining (30) and
(26), we obtain the following procedure for solving (20a)

G←
(
µAAT + 2BBT

)
(31a)

g1 ←
1

µ
BT (AAT )−1By + (x + d1) (31b)

g2 ←
1

µ
ΦBT (AAT )−1By + (c + d2) (31c)

u1 ← g1 − BT G−1B(g1 + Φg2) (31d)

u2 ← g2 − ΦHBT G−1B(g1 + Φg2) (31e)

Note that the vector (1/µ)BT (AAT )−1By is used in ev-
ery iteration. Since the signal y is not updated in each
iteration, we need only compute it once before the loop.
Combining the routines discussed above, we obtain the
DETOKS algorithm. After we obtain the estimates for
x and c, we calculate the signal components s and f as
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DETOKS algorithm

inputs:

y ∈ RN , µ > 0, λi > 0, i = 0, 1, 2.

h← (1/µ)BT (AAT )−1By

repeat:

G←
(
µAAT + 2BBT

)
g1 ← h + x + d1

g2 ← Φh + (c + d2)

u1 ← g1 − BT G−1B(g1 + Φg2)

u2 ← g2 − ΦHBT G−1B(g1 + Φg2)

x← soft(tvd(u1 − d1, λ1/µ), λ0/µ)

c← soft(u2 − d2, λ2/µ)

d1 ← d1 − (u1 − x)

d2 ← d2 − (u2 − c)

until convergence

s← Φc

f ← (y − x− s)−A−1B(y − x− s)

return x, s, f

follows

s← Φc (32)

f ← (y − x− s)−A−1B(y − x− s) (33)

where we use the highpass filter defined in (15).
Figure 1 portrays the decomposition of an EEG sig-

nal into the signal components f, s and x. Notably, the
low-frequency component f contains the K-complex. The
oscillatory component s contains the sleep spindles. The
non-oscillatory transients are contained in the sparse com-
ponent x.

3.3. Detection of sleep spindles and K-complexes

The oscillatory component s is used to detect sleep
spindles. We bandpass filter s, to remove any non-spindle
oscillations using a 4th order Butterworth filter with a
passband of 11.5 Hz to 15.5 Hz. We denote this bandpass
filtered signal as BPF(s). The TKEO T (·), as defined in
(5), is then applied to the signal BPF(s). Using a constant
value (c1) for the threshold, a binary signal bspindle(t), is
defined as

bspindle(t) =

{
1, T(BPF(s)) > c1

0, T(BPF(s)) ≤ c1.
(34)

Any detected spindle of duration less than 0.5 seconds is
rejected. We allow the maximum duration of a detected
spindle to be 3 seconds as in [4].

For detecting K-complexes, we apply the TKEO to
the low-frequency component f, and define a binary signal
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Figure 1: Decomposition of the raw EEG into the signal components
x, f and s using the DETOKS algorithm.

EEG DETOKS

Bandpass
filter

x

TKEO Threshold

TKEO Threshold
Sleep

Spindle

K-complex

s

f

Proposed detection method

Figure 2: The detection of sleep spindles and K-complexes using the
DETOKS algorithm.

bK-complex(t), as in (34), with a constant threshold value
(c2) as

bK-complex(t) =

{
1, T(f) > c2

0, T(f) ≤ c2.
(35)

The detected K-complexes of duration less than 0.5 sec-
onds are rejected.

The DETOKS algorithm uses f and s to detect sleep
spindles and K-complexes simultaneously in sleep EEG.
Figure 2 depicts the proposed detection method. Figures 3
and 4 show the detection of a sleep spindle and K-complex
respectively using DETOKS. The example EEG shown in
Fig. 3 is different from the one in Fig. 4, as the expert
annotation for K-complexes was not available for the EEG
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of the constant threshold (c2) was fixed at 1.

in Fig. 3.

4. Examples

We demonstrate the suppression of transients and de-
tection of sleep spindles and K-complexes using DETOKS
by applying it to the C3-A1 channel of an EEG. We com-
pare the performance of DETOKS for sleep spindle de-
tection with the methods proposed by Wendt et al. [14]
and by Martin et al. [15]. We refer the reader to [4] for a
summary of their detection processes.

Recall that the DETOKS algorithm calls for the specifi-
cation of the parameters λ0, λ1, λ2 and µ. The parameters
λ0 and λ1 influence the sparse nature of the component x
and its derivative Dx respectively. Similarly, λ2 controls
the time-frequency sparsity of the oscillatory component.
For the examples in Fig. 1 and the ones that follow, we
use λ0 = 0.6, λ1 = 7 and λ2 ∈ [7.5, 8.5]. The parame-
ters λ0, λ1, and λ2 were set empirically to ensure that the
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Figure 5: The convergence of the cost function (17) for different
values of µ.
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Figure 6: Comparison of the spindle detection using Wendt, Martin
and the proposed detection method.

oscillatory component was free of transients and the de-
tected spindle duration nearly matched the duration of a
designated spindle. We use threshold values c1 = 0.03 and
c2 = 1.0. Although there is no precise definition for the
frequency of K-complexes, they are usually within 0.5 Hz
to 4 Hz [26, 46, 47]. Therefore, we set the lowpass filter
cut-off frequency to 4 Hz.

We use the value µ = 0.5. This value of µ gives the
lowest value of the objective function in (17) at the 20th
iteration (Fig. 5). Note that µ does not affect the solution
to which the DETOKS algorithm converges; it only af-
fects the rate of convergence. Though several parameters
must be specified, λ2 is the only parameter that is varied
between [7.5, 8.5] by experimental observation in order to
emulate the duration of the detected spindle to that of a
designated spindle.

4.1. Sleep Spindle detection

We compare the spindle detection of the Wendt, Mar-
tin, and the proposed DETOKS method in Fig. 6. Experts
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Figure 7: False detection of spindles by the Wendt and Martin algo-
rithm due to the transient activity in the bandpass filtered data.

have annotated three sleep spindles at 818.1, 820.8 and at
823.9 seconds. The Martin algorithm detects only two of
the spindles, whereas the Wendt algorithm detects only
one spindle. On the other hand, all the three spindles are
detected by the proposed detection method. The effect of
the suppression of transients can be seen in the bandpass
filter activity in Fig. 6. The bandpass filter is excited only
during spindle activity in the EEG. In contrast, for the
Wendt and Martin algorithms, the low amplitude spindle
activity is masked by the transients, which excite the band-
pass filter. Thus the suppression of transients increases the
number of true positives for spindle detection.

As an another example, consider the issue of falsely de-
tected spindles. Figure 7 illustrates three spindles scored
by experts at 131.6, 133.4 and at 138.5 seconds. However,
the Martin and Wendt algorithms each detect an addi-
tional spindle, which is not annotated by experts. The
transient activity excited the bandpass filters again, to
the point that the Wendt and Martin algorithms detect
false spindles. On the other hand, DETOKS avoids these
false detections. Moreover, the duration of the spindles de-
tected by DETOKS better matches those of the experts.

If the parameters λ0, λ1 and λ2 for the DETOKS al-
gorithm are increased or decreased, then the duration of
the spindles detected will also be affected. Thus, one can
set the parameters λ0, λ1, and λ2, so that the duration of
a detected spindle emulates the duration of a designated
spindle.

4.2. K-complex detection

Conventional methods for K-complex detection apply
a lowpass filter directly to the EEG then use the TKEO.
However, this yields a large number of false positives as
seen in Fig. 8. There is only one true positive K-complex
at 254.4 seconds and four false positives. Removal of these

251 253 255 257 259

0
1

0

20

0

50

−50

0

50

Time (s)

A
m

pl
itu

de

Raw EEG (y)

LPF(y)

TKEO applied to LPF(y)

b
K−complex

True positive 
 K−complex

Transient
Activity

Figure 8: Detecting K-complexes with a 4th order Butterworth low-
pass filter LPF(·) and the TKEO. There are four false positive K-
complexes and only one true positive.

false positives requires additional processing stages rather
than simply using the TKEO on the lowpass filtered EEG
[26]. The transients in the EEG excite the lowpass fil-
ter, which are then mis-identified as K-complexes after
the TKEO stage. Moreover, increasing the threshold for
TKEO will not only result in low true positive values,
but the duration of the detected K-complexes will also be
shorter compared to the expert annotation. In contrast,
the component x obtained using the DETOKS algorithm
captures the transient activity, thereby reducing the num-
ber of false positives while accurately detecting the desig-
nated K-complexes.

Figure 9 compares the K-complexes detected using the
proposed method and the method by Devuyst et al. [12].
Specifically, we compare the annotations provided by De-
vuyst et al. online2 for their method, and the K-complex
detection by DETOKS. The experts have annotated two
K-complexes - at 240 and at 254 seconds. The compo-
nent f obtained by the proposed method is also shown. It
can be seen that the Devuyst algorithm [12] detects only
the K-complex at 255 seconds. Moreover, the duration
of the detected K-complex is less than that indicated by
the expert. On the other hand, DETOKS detects both
K-complexes which better match the expert detection.

5. Evaluation of DETOKS

We assess the performance of DETOKS by applying it
to an online EEG database. We use two publicly avail-
able databases3 - one for spindle detection and one for

2http://www.tcts.fpms.ac.be/~devuyst/Databases/

DatabaseKcomplexes/
3http://www.tcts.fpms.ac.be/~devuyst/#Databases
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Figure 9: Comparison of the K-complex detection by Devuyst et al.
and the proposed simultaneous detection method. The transients in
the EEG are captured in the component x.

K-complex detection. The databases4 are made available
online by Devuyst et al. [13]. For both, spindle and K-
complex detection, we use the central channel C3-A1 of
the EEG. We use these databases for the evaluation study
because they are readily available online and provide ex-
pert annotations for the scoring of sleep spindles and K-
complexes.

5.1. Database

As per [13], the EEG database for sleep spindle detec-
tion was acquired in a sleep laboratory of a Belgium hospi-
tal using a digital 32-channel polygraph (BrainnetTM Sys-
tem of MEDATEC, Brussels, Belgium). The patients pos-
sessed different pathologies (dysomnia, restless legs syn-
drome, insomnia, apnoea/ hypopnoea syndrome) [13]. Three
EEG channels (CZ-A1 or C3-A1, FP1-A1, and O1-A1),
two EOG channels and one submental EMG channel were
recorded. A 30-minute segment of the central EEG chan-
nel was extracted from each whole-night recording for sleep
spindle scoring. These excerpts were given to two experts
who independently scored spindles. Out of the 8 excerpts,
we conduct the study using the 5 that were annotated by
both experts.

The EEG database for K-complex detection was also
acquired in a sleep laboratory of a Belgium hospital us-
ing a digital 32-channel polygraph (BrainnetTM System
of MEDATEC, Brussels, Belgium) [12]. As in the case of
the sleep spindles, a 30-minute segment from each whole-
night recording was independently given to two experts

4University of MONS - TCTS Laboratory (S. Devuyst, T. Du-
toit) and Universite Libre de Bruxelles - CHU de Charleroi Sleep
Laboratory (M. Kerkhofs)

for scoring of K-complexes according to the manual [2]
and the recommendations in [12]. For this study, we use
the 5 excerpts that were scored by both experts.

5.2. Existing detection methods

For sleep-spindle detection, we compare DETOKS to
the existing algorithms by Wendt et al. (S1) [14], Martin
et al. (S2) [15], Wamsley et al. (S3) [7], Bòdizs et al. (S3)
[29], Mölle et al. (S3) [16], and Devuyst et al. (S6) [13].
A summary of these algorithms is provided in [4, 13]. We
reject any spindles detected by S1-S6 of less than 0.5 sec-
onds in duration. For K-complex detection we compare
DETOKS to the annotations provided by Devuyst et al.
for their detection method [12].

5.3. Measure of Performance

We use the detection by experts, for the sleep spin-
dles and the K-complexes, as the gold standard. A sample
point of the EEG is recorded as a sleep spindle or a K-
complex if it was scored as such by either expert. This
is the by-sample analysis of a detector [4] using a ‘union’
rule of the expert detection [13]. We create a contingency
table, for sleep spindles and K-complexes, to calculate the
values of true positive (TP), false positive (FP), true neg-
ative (TN) and false negative (FN). These values are then
used to calculate the recall and precision values for the de-
tector. We use F1 scores to evaluate the detectors. The F1

score ranges from 0 to 1, with 1 denoting the perfect detec-
tor. Using the contingency table, the statistical measures
of Cohen’s κ [48] and Matthews Correlation Coefficient
(MCC) [49] can also be calculated.

5.4. Results

The C3-A1 channel of the EEG was processed using
the proposed DETOKS algorithm and the estimates of the
components s and f were then used for sleep spindle and
K-complex detection respectively. We used the same pa-
rameters for λ0, λ1, λ2 and the threshold values c1 and
c2 as in Sec. 4. We used the STFT parameters given in
Sec. 2.3.

Figure 10 displays the F1 scores for sleep spindle de-
tection, recall, and precision values for the algorithms in
Sec. 5.2 and DETOKS. Table 1 lists the F1 scores for
K-complex detection for the Devuyst algorithm [12] and
DETOKS. The recall and precision values are also listed.

Further statistical measures of performance are listed
in the Appendix. The proposed DETOKS method takes
about 4 minutes to run 20 iterations on approximately 8
hours of EEG at sampling frequency 100 Hz.

5.5. Discussions

The proposed DETOKS method achieves high F1 scores
for spindle detection due to the suppression of transients.
As seen in Appendix A, the values of κ and MCC were sim-
ilar to the F1 scores obtained. The TP values are compara-
tively higher than those of algorithms S1-S6. The number
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Figure 10: Results of the evaluation study in Sec. 5. (a) Comparison
of the F1 scores of the spindle detection algorithms. (b) Recall and
Precision values for the algorithms S1-S6 and the proposed DETOKS
method. The error bars represent standard error of the mean.

Devuyst et al. DETOKS

F1 Score 0.51 0.57

Recall 0.40 0.61

Precision 0.74 0.56

Table 1: K-complex detection performance evaluation

of false positives are also reduced. The reduction in FP
values and an increase in TP values, result in the F1 score
of the proposed detection method for sleep spindles averag-
ing 0.7±0.03 over the five excerpts. Note that an extensive
study on sleep spindle detection by automated detectors
[4] showed that the F1 score of 24 individual experts aver-
aged 0.69±0.06 on their crowd-sourcing generated spindle
gold standard. The proposed DETOKS method achieves
the average F1 score of an expert consistently, thus making
it a reliable spindle detector.

A balanced detector shows high recall and precision
values. Figure 10 shows that DETOKS is the most bal-
anced among the 6 algorithms S1-S6 for spindle detec-
tion. The recall and precision values for DETOKS aver-
aged 0.71 ± 0.01 and 0.68 ± 0.03 respectively. The algo-
rithm by Bòdizs et al. [29] has a higher recall than the
DETOKS but low precision, indicating the detection of a
large number of false positives in contrast to DETOKS.
The proposed DETOKS method is not only reliable but
also a balanced spindle detector.

For the detection of K-complexes, the proposed method
obtained an average F1 score of 0.57 ± 0.019 over the 5
excerpts. The performance of DETOKS for K-complex
detection was also balanced compared to the Devuyst al-
gorithm [12]. It can be seen in Table 1, that the proposed
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Figure 11: Change in the F1 score of an epoch on changing the
parameters λ1 and λ2 in (17). λ0 is fixed at 0.6.

detection method has better recall and precision values
compared to the Devuyst algorithm. Note that the recall,
precision, and F1 scores for the Devuyst method were cal-
culated based on the TP, FP, TN, and FN values provided
in [12].

The algorithm by Devuyst et al. employs K-complex
detection using a training dataset [12]. It tunes the detec-
tion process, based on visually identified K-complexes. In
contrast, the proposed detection method needs no train-
ing data-set. Moreover, for different databases, based on
the sampling frequency, the only parameters that need
to be tuned are the regularization parameters λ0, λ1 and
λ2. The other parameters, for example the STFT window
length, are based on the definition of sleep spindles and
hence need no tuning. Figure 11 shows that the F1 score
for sleep spindle detection for one EEG epoch is affected
marginally when the parameters λ1 and λ2 are changed in
small increments, with λ0 fixed. Similar change is observed
when λ0 is varied in addition to λ1 and λ2.

6. Conclusion

This paper proposes an EEG signal model comprising
of 1) a transient component, 2) a low-frequency compo-
nent, and 3) an oscillatory component with sparse time-
frequency representation. We propose a convex optimiza-
tion algorithm for the detection of K-complexes and sleep
spindles (DETOKS), which estimates the three compo-
nents in the signal model. The proposed DETOKS method
utilizes the Teager Kaiser Energy Operator (TKEO) as a
means to obtain the envelope of the bandpass filtered oscil-
latory component and the low-frequency component. The
envelopes are then used for the detection of sleep spindles
and K-complexes.

An assessment of the proposed DETOKS method yields
F1 scores of average 0.70 ± 0.03 for sleep spindle detec-
tion and 0.57 ± 0.019 for K-complex detection. The pro-
posed signal model and the DETOKS algorithm give bet-
ter results for the detection of both sleep spindles and
K-complexes, compared to existing algorithms specifically
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aimed at one or the other. The average F1 score of the pro-
posed detector is about the same as the F1 score attained
by individual experts annotating crowd-sourced spindle
data [4]. Comparable run-times and better detection re-
sults than traditional spindle and K-complex detection al-
gorithms suggest that the proposed DETOKS method is
practical for the detection of sleep spindles and K-comp-
lexes.
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Appendix A. K-complex detection

Performance and comparison of the proposed method
for K-complex detection with Devuyst et al.

Devuyst DETOKS Devuyst DETOKS Devuyst DETOKS Devuyst DETOKS Devuyst DETOKS

TP 2646 4777 4800 7824 1676 1973 6672 10404 4840 7140

TN 349221 341758 348236 343917 355906 355150 335746 331796 347611 345900

FP 627 8089 1337 5655 889 1644 2674 6623 1869 3580

FN 7506 5375 5627 2603 1529 1232 14908 11176 5680 3380

Recall 0.261 0.471 0.460 0.750 0.523 0.616 0.309 0.482 0.460 0.679

Precision 0.808 0.371 0.782 0.580 0.653 0.545 0.714 0.611 0.721 0.666

F1 Score 0.394 0.415 0.580 0.655 0.581 0.578 0.431 0.539 0.562 0.672

Specificity 0.998 0.977 0.996 0.984 0.998 0.995 0.992 0.980 0.995 0.990

NPV 0.979 0.985 0.984 0.992 0.996 0.997 0.957 0.967 0.984 0.990

Accuracy 0.977 0.963 0.981 0.977 0.993 0.992 0.951 0.951 0.979 0.981

Kappa 0.386 0.396 0.570 0.643 0.578 0.574 0.410 0.513 0.552 0.652

MCC 0.451 0.399 0.591 0.649 0.581 0.575 0.450 0.517 0.566 0.661

Excerpt 3 Excerpt 4 Excerpt 5Excerpt 1 Excerpt 2
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Appendix B. Sleep spindle detection

Performance of the proposed DETOKS method for spin-
dle detection and comparison with other widely used algo-
rithms

Excerpt 1 Wendt Martin Wamsley Bodizs Moelle Devuyst DETOKS

TP 8357 4121 2374 9550 4991 9692 9354

TN 156774 164771 166242 137540 164911 159737 162632

FP 9751 1754 283 28985 1614 6788 3892

FN 5118 9354 11101 3925 8484 3783 4121

Recall 0.620 0.306 0.176 0.709 0.370 0.719 0.694

Precision 0.462 0.701 0.893 0.248 0.756 0.588 0.706

F1 Score 0.529 0.426 0.294 0.367 0.497 0.647 0.700

Specificity 0.941 0.989 0.998 0.826 0.990 0.959 0.977

NPV 0.968 0.946 0.937 0.972 0.951 0.977 0.975

Accuracy 0.917 0.938 0.937 0.817 0.944 0.941 0.955

Kappa 0.485 0.399 0.276 0.288 0.471 0.615 0.676

MCC 0.491 0.437 0.381 0.343 0.505 0.619 0.676

 

Excerpt 2 Wendt Martin Wamsley Bodizs Moelle Devuyst DETOKS

TP 9881 7954 0 11045 7006 9862 10307

TN 320771 339807 344818 268002 340517 336140 339091

FP 24754 5718 707 77523 5008 9385 6433

FN 4594 6521 14475 3430 7469 4613 4168

Recall 0.683 0.549 0.000 0.763 0.484 0.681 0.71

Precision 0.285 0.582 0.000 0.125 0.583 0.512 0.62

F1 Score 0.402 0.565 0.000 0.214 0.529 0.585 0.67

Specificity 0.928 0.983 0.998 0.776 0.986 0.973 0.98

NPV 0.986 0.981 0.960 0.987 0.979 0.986 0.99

Accuracy 0.918 0.966 0.958 0.775 0.965 0.961 0.97

Kappa 0.366 0.548 ‐0.004 0.156 0.511 0.565 0.65

MCC 0.407 0.548 ‐0.009 0.246 0.514 0.571 0.65

Excerpt 3 Wendt Martin Wamsley Bodizs Moelle Devuyst DETOKS

TP 1005 680 12 0.00 0 1400 1707

TN 86050 87234 86741 0.00 87717 86882 86772

FP 1667 483 976 0.00 0 835 944

FN 1278 1603 2271 0.00 2283 883 576

Recall 0.440 0.298 0.005 0.00 0.000 0.613 0.748

Precision 0.376 0.585 0.012 0.00 0.000 0.626 0.644

F1 Score 0.406 0.395 0.007 0.00 0.000 0.620 0.692

Specificity 0.981 0.994 0.989 0.00 1.000 0.990 0.989

NPV 0.985 0.982 0.974 0.00 0.975 0.990 0.993

Accuracy 0.967 0.977 0.964 0.00 0.975 0.981 0.983

Kappa 0.389 0.384 ‐0.008 0.00 0.000 0.610 0.683

MCC 0.390 0.407 ‐0.009 0.00 0.000 0.610 0.685

Excerpt 5 Wendt Martin Wamsley Bodizs Moelle Devuyst DETOKS

TP 10461 9672 0 14779 0 10332 14164

TN 330466 333514 337779 295704 340039 335566 333646

FP 9573 6525 2260 44335 0 4473 6392

FN 9500 10289 19961 5182 19961 9629 5797

Recall 0.524 0.485 0.000 0.740 0.000 0.518 0.710

Precision 0.522 0.597 0.000 0.250 0.000 0.698 0.689

F1 Score 0.523 0.535 0.000 0.374 0.000 0.594 0.699

Specificity 0.972 0.981 0.993 0.870 1.000 0.987 0.981

NPV 0.972 0.970 0.944 0.983 0.945 0.972 0.983

Accuracy 0.947 0.953 0.938 0.862 0.945 0.961 0.966

Kappa 0.495 0.511 ‐0.011 0.317 0.000 0.574 0.681

MCC 0.495 0.514 ‐0.019 0.377 0.000 0.581 0.681

Excerpt 6 Wendt Martin Wamsley Bodizs Moelle Devuyst DETOKS

TP 12810 11724 0 17988 11928 13381 15435

TN 327975 332715 336704 288379 331078 332761 332467

FP 9588 4848 859 49184 6485 4802 5095

FN 9627 10713 22437 4449 10509 9056 7002

Recall 0.571 0.523 0.000 0.802 0.532 0.596 0.688

Precision 0.572 0.707 0.000 0.268 0.648 0.736 0.752

F1 Score 0.571 0.601 0.000 0.401 0.584 0.659 0.718

Specificity 0.972 0.986 0.997 0.854 0.981 0.986 0.985

NPV 0.971 0.969 0.938 0.985 0.969 0.974 0.979

Accuracy 0.947 0.957 0.935 0.851 0.953 0.962 0.966

Kappa 0.543 0.579 ‐0.005 0.340 0.559 0.639 0.701

MCC 0.543 0.586 ‐0.013 0.407 0.562 0.643 0.701
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