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Abstract— This paper proposes an EEG processor for sleep spindle
detection algorithms. It non-linearly separates the raw EEG signal into
non-oscillatory transient and sustained rhythmic oscillation components
using long and short windows for the short-time Fourier transform. The
processor utilizes the fact that sleep spindles can be sparsely represented
via the inverse of a short-time Fourier transform. Five sleep spindle
detectors were tested on the EEG database with and without the proposed
EEG processor. We achieved an improvement of 13.3% in the by-sample
F1 score, and 13.9% in the by-sample Matthews Correlation Coefficient
score of these algorithms when the processed EEG was used for spindle
detection. The processor was able to improve the scores by reducing
the number of false positive spindles and increasing the number of true
positive spindles detected.

Index Terms—Short time Fourier transform, spectrogram, convex
optimization, pursuit algorithms

I. INTRODUCTION

Sleep spindles comprise of a group of rhythmic waves that progres-
sively increase and decrease in amplitude [32]. They are measured
by electroencephalography (EEG) and the duration of these waves
range from 0.5 to 3 seconds [37]. Any spindle-like waveform that
has a duration less than 0.5 seconds is generally not considered a
sleep spindle [25], [32]. The frequency range of spindles is between
12 and 14 Hz [25]. However, recent studies have extended this range
to 11-16 Hz [35], [24], [9], [8].

It is believed that sleep spindles play an important functional role
in synaptic plasticity and memory consolidation during sleep [13].
Alterations in their density have been observed in EEG of several
patients with disorders such as schizophrenia [12], [34], autism [18],
other neurodegenerative and sleep disorders [23]. For this reason, it is
thought that sleep spindles may be valuable as diagnostic biomarkers
[35].

Traditionally, spindles have been identified and scored visually by
experts in sleep clinics. The experts have been trained to not only
detect spindles, but also classify the patient’s EEG data into different
stages of sleep. The patient’s EEG is divided into 30 second epochs
and scored [32]. This is a labor intensive and subjective method of
detecting spindles. Further complicating the detection process is the
low inter-expert agreement of spindle identification [38].

A. State-of-the-art

Several detectors have been developed in the past few decades
with their number growing in the past few years. Most of the widely
used detectors employ the method of bandpass filtering and amplitude
thresholding [26], [12], [34], [36], [4], [14], [20]. Several spindle
detectors employ advanced methods such as artificial intelligence
[16], [17], neural networks [15], likelihood [22] and support vector
machines [1]. Some of the detection algorithms are able to extract
and classify features other than sleep spindles [21].

Time-frequency analysis using the short-time Fourier transform
(STFT) is a commonly used method for spindle detection [7], [15],
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[6]. The peaks in the spectrogram obtained using the STFT can
be used to detect sleep spindles. Another adaptive time-frequency
method of signal analysis is Matching Pursuit (MP) [19]. The idea
of MP was used in sleep spindle detection as early as 1996 [11] and
more recently in [16], [17]. The performance of MP, however, for
sleep spindle detection of healthy male subjects was not at par with
the other detectors employing more basic detection methods [27].

B. Motivation

The EEG is a non-stationary signal exhibiting a mixture of oscil-
latory and non-oscillatory transient behaviors. It possesses rhythmic
oscillations as well as transients due to measurement artifacts and
non-rhythmic brain activity. Furthermore, the bandpass filter used by
the sleep spindle detection algorithms is excited by these transients
in the EEG. As a result, the spindle activity in the bandpass
filtered data is not always prominent. This emphasizes the need for
the separation of the sustained oscillations and the non-oscillatory
transients. Separation of these components for analysis using linear
methods is difficult. On the other hand, non-linear methods have the
potential to process and analyze complex non-stationary signals more
efficiently than linear methods [29].

In this paper, we present a non-linear method that separates the
transients from the sustained rhythmic oscillations and apply it to
the problem of sleep spindle detection. This non-linear method acts
as a processor for algorithms that use bandpass filtering as a means
to detect spindles. Using the proposed processor, the algorithms in
[34], [36], [4], [14], and [20] see significant improvement in sleep
spindle detection.

II. PRELIMINARIES

A. Notation

Vectors and matrices are represented by lower- and upper-case bold
letters respectively. For a vector x = [x0, . . . , xN−1],x ∈ RN , the
l1 and l2 norms are defined as

||x||1 =

N∑
k=1

|xk|, ||x||2 =

(
N∑

k=1

|xk|2
)1/2

(1)

Further, the root mean square (RMS) value of the vector x is defined
as

xrms =

(
1

N

N∑
k=1

|xk|2
)1/2

(2)

B. Basis Pursuit Denoising

Utilizing convex optimization, basis pursuit denoising (BPD) finds
signal representations in over-complete transforms by minimizing
the l1 norm of the representation coefficients [5]. Minimizing the
l1 norm results in a sparse representation for the signal x. Sparse
representations are representations which account for most of the
information in a signal with a linear combination of a small number
of representation coefficients. If we define the input signal y,∈ RN

as
y = Ac+w (3)
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Fig. 1. The proposed dual-BPD EEG processor. The processor decomposes
the input EEG channel into two components s1, s2 and the residual w. The
long-window component along with the residual (s2 +w) is used for spindle
detection.

where the columns of A form an over-complete basis for RN ,
and w is the residual, then basis-pursuit denoising (BPD) yields an
approximation to y by minimizing the following objective function-

argmin
c

1

2
||y −Ac||22 + λ||c||1 (4)

BPD admits the presence of a residual in the decomposition which
is useful for practical signals that contain measurement artifacts. A
similar type of sparse approximation method is matching pursuit
(MP). MP, compared to BPD, has a tendency of selecting coefficients
wrongly, thereby resulting in an erroneous approximation, in the
initial iterations [5]. This forces the MP algorithm to make alternating
corrections suggesting a complex structure for the input signal. Due to
this, the original structure of the input signal is often missed entirely
[5].

C. Short-time Fourier Transform

For the sparse representation of an input signal consisting of
oscillatory pulses, A in (3) can be taken as the inverse of a short-
time Fourier transform (STFT). The STFT depends on the window
length, overlapping factor and the discrete Fourier transform (DFT)
length. We use 93.75% overlapping between the windows, i.e., a
hop-size of 1/16 of the window length and a DFT length equal to the
window length. Consequently, the STFT is 16 times over-sampled.
Moreover, if the time-frequency array of the STFT coefficients c is
of size M ×K, for a signal y of length N , then A : CM×K → CN

is defined as

[Ac]n =
[
STFT−1(c)

]
n
, n ∈ ZN (5)

whereas AH : CN → CM×K is defined as

[AHy](m,k) = [STFT(y)](m,k) , m ∈ ZM , k ∈ ZK (6)

We implement A using a sine window such that AAH = I as in
[28].

III. DUAL BASIS PURSUIT DENOISING

We model the raw EEG signal as

y = s1 + s2 +w, y, s1, s2,w ∈ RN (7)

where s1, s2 are vectors which are sparsely represented using the
over-complete transforms A1,A2, and w is the residual obtained
after the decomposition. This kind of a model is used in ‘Morpholog-
ical Component Analysis’ (MCA) for non-linear separation of signal
components [33].

For the separation of the non-oscillatory transients and the sus-
tained oscillations, we use A1 and A2 to be the inverse STFT using
different window lengths. We use a short window for A1 to sparsely
represent the transients and a long window for A2 for representing
the sustained rhythmic oscillations.

22 23 24 25 26 27 28 29 30
Time (sec)

Raw EEG (y)

Short Window component (s
1
) 

Long Window component (s
2
) 

Residual (w) 

Fig. 2. The raw EEG decomposed into the short (s1) and long window (s2)
components using dual-BPD. The residual w obtained after the decomposition
is also shown.

Given y we will estimate s1, s2 by solving the following mini-
mization problem-

{c∗1, c∗2} = argmin
c1,c2

1

2
||y −Ac1 −Ac2||22 + λ1||c1||1 + λ2||c2||1

(8)
The individual components s1, s2 are then estimated as

si = Aic
∗
i i = 1, 2. (9)

If we let

A = [A1 A2] , c = [c1 c2]
T (10)

where

AiA
H
i = I, i = 1, 2 (11)

then using the split augmented Lagrangian shrinkage algorithm
(SALSA) as in [2], [30], and [31] we obtain the following algorithm
for solving (8)

Algorithm 1 dual-BPD (8) with AiA
H
i = I

1: inputs:

y ∈ RN , λ1, λ2, µ

2: initialize:

di, ci ∈ CM×K

3: repeat

4: vi ← soft (ci + di, λi/µ)− di, i = 1, 2

5: di ←
1

µ+ 2
AH

i [y −A1v1 −A2v2] , i = 1, 2

6: ci ← di + vi, i = 1, 2

7: until convergence

8: return c1, c2

The soft-threshold function, soft(x, T ) is defined as in [10],
generalized here to the complex plane.

Figure 2 shows the decomposition of the raw EEG using dual-BPD.
The sum of the three components shown, s1, s2 and w equals the
raw EEG, emphasizing that none of the information in the raw EEG
is lost. Further, it can be seen that s1 contains the non-oscillatory
transients and none of the sustained oscillations in the input signal
y. The sustained oscillations are contained in s2 component.
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Fig. 3. A false positive spindle detected by the Wendt algorithm applied
on the raw EEG. The false positive is not produced by the Wendt algorithm
when the transient corrected EEG, instead of the raw EEG, is used for spindle
detection.
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Fig. 4. The raw and processed EEG filtered with the bandpass filter (BPF)
used by the Wendt algorithm for spindle detection.

IV. EXAMPLES

To illustrate sleep spindle detection using the dual-BPD processor,
we apply dual-BPD to the C3-A1 channel of the EEG. The algorithms
in [36] and [20] are then used to detect spindles. The database used
in this and the following example is explained in Section V-A.

We use a window length of 0.32 seconds for A1 and a window
length of 1.28 seconds for A2. This particular choice of window
length for A1 tends to separate transients of duration less than
approximately 0.3 seconds from the sustained oscillatory waveforms
of longer duration. The window length for A2 is chosen in accordance
with the mean duration, 1.25 seconds, of the sleep spindles [36]. Also,
the window lengths of 0.32 and 1.28 seconds ensure that the DFT
lengths used are powers of 2 at a sampling rate of 100 Hz and 200
Hz.

Note that the dual-BPD algorithm requires the specification of
the parameters λ1, λ2. For the examples in this section and the
experimental study in Section V, we use λ1 = λ2 = 0.06 · yrms,
where the RMS value of y is defined as (2).

For the raw and unprocessed EEG, it can be seen in Fig. 3, the
Wendt algorithm [36] detects two spindles - one starting at 26.2
seconds and the other at 27.6 seconds. However, the experts have
classified only one spindle, starting at 26.2 seconds. Thus the Wendt
algorithm detects a false positive. On the other hand, when the Wendt
algorithm is applied to the dual-BPD processed EEG data, it does not
produce this false positive.

To further explain, it can be seen in Fig. 4 that the bandpass
filter used by Wendt [36] is excited by the non-oscillatory transients
present in the EEG. The dual-BPD algorithm, however, separates the
transients from the sustained oscillations. The component s1 contains
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Fig. 5. Spindles originally missed by the Martin algorithm, and their detection
on using the dual-BPD processed EEG instead of the raw EEG.
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Fig. 6. The input EEG, raw and processed, filtered with the bandpass filter
(BPF) used by the Martin algorithm.

most of the transients. Thus, when the dual-BPD processed EEG,
y − s1, is used for spindle detection, the spindle activity is much
more prominent, with respect to the baseline, in the bandpass filtered
output.

As an another example, we consider the Martin algorithm in
[20] for sleep spindle detection. Visible in Fig. 5, the experts have
annotated 3 sleep spindles starting at 538.8, 543, and 544.6 seconds.
However, the Martin algorithm [20] detects only the first spindle.
Running the detection on the dual-BPD processed EEG, the Martin
algorithm detects the spindles starting at 543 and 544.6 seconds as
well.

Once again, it can be seen in Fig. 6 that the bandpass filter used by
Martin [20] is excited by the non-oscillatory transients. However, due
to the suppression of these transients in y − s1, the spindle activity
is enhanced, with respect to the baseline, in the filtered output.

V. EXPERIMENTAL EVALUATION

To study the performance of the dual-BPD EEG processor for sleep
spindle detection, we implement it on the readily available EEG
database1 in [9]. It provides 30 minute excerpts of raw EEG data
with annotations for sleep spindles. We apply existing sleep spindle
detection algorithms to both raw EEG and EEG processed using dual-
BPD.

A. Database

According to [9], the EEG was acquired in a sleep laboratory
of a Belgium hospital using a digital 32-channel polygraph (Brain-

1University of MONS - TCTS Laboratory (S. Devuyst, T. Dutoit)
and Universit Libre de Bruxelles - CHU de Charleroi Sleep Laboratory
(M. Kerkhofs) available at http://www.tcts.fpms.ac.be/∼devuyst/Databases/
DatabaseSpindles/

http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
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netTM System of MEDATEC, Brussels, Belgium). The patients from
whom the data was obtained, possessed different pathologies (dysom-
nia,restless legs syndrome, insomnia, apnoea/hypopnoea syndrome)
[9]. Three EEG channels (CZ-A1 or C3-A1, FP1-A1, and O1-A1)
were recorded in addition to two EOG channels and one submental
EMG channel. A segment of 30 minutes of the central EEG channel
was extracted from each whole-night recording for sleep spindle
scoring. These excerpts were given to two experts who independently
scored spindles [9]. The mean age of the 8 patients (male and female)
was 46 with standard deviation of 7.45 years.

B. Existing Detection Algorithms

A recent paper [35], studied the performance of 6 widely used
sleep spindle detectors. Except for the algorithm in [12]2, we imple-
mented the remaining 5 detectors on the sleep spindle database. We
implemented the algorithms with the aid of the software provided in
[35], with and without the proposed dual-BPD processor. Below, we
detail the detectors and the parameters, changed and unchanged in
this paper.

Bódizs et al. [4] - The algorithm detects spindles by bandpass
filtering the EEG and calculating Hanning-corrected moving average
when a constant threshold is exceeded. It derives spindle frequency
boundaries and amplitude criteria, for slow and fast spindles, using
the all night average spectrum during stage 2, 3, 4 of sleep. We
changed the minimum spindle duration to 0.5 seconds from 0.3
seconds. The boundary frequencies were kept unchanged at 9 Hz
and 16 Hz.

Mölle et al. [14] - Spindles are detected by bandpass filtering
the EEG, calculating RMS value of the signal in sliding windows
and applying a constant threshold. We modified the duration of the
spindles to be from 0.5 seconds - 3 seconds as per the manual [32],
since the same manual was used by the experts who scored the sleep
spindles visually. The frequencies used for the pass-band and stop-
band were unchanged.

Martin et al. [20] - The algorithm uses the same procedure as in
[14] for sleep spindle detection. The primary difference between the
two algorithms is that the Martin algorithm uses a time resolution of
25ms for the windows with no overlap, whereas the Mölle algorithm
uses a time resolution of 50ms and 50% overlap. We kept all
parameters the same as in [20], except for the spindle duration which
was changed to 0.5 seconds - 3 seconds.

Wamsley et al. [34] - Sleep spindles are detected by applying the
continuous wavelet transform, using complex Morlet wavelet with
center frequency 13.5 Hz and calculating the moving average in
sliding windows. We changed the minimum duration of the spindles
to 0.5 seconds from 0.3 seconds.

Wendt et al. [36] - The spindle detection algorithm uses both the
C3-A1 and the O1-A1 channel of the EEG. It detects spindles by
bandpass filtering the EEG and using a time-varying threshold with
a given offset. We changed the duration of the spindles to 0.5 seconds
- 3 seconds.

C. Statistical Measures of Performance

Using spindle detection by experts as the gold standard, we
evaluate the performance of a sleep spindle detector using the by-
sample analysis method. In the by-sample analysis, a unit is a sample
point of the EEG [35]. A sample point is recorded as a sleep spindle
if it was scored as such by both the experts [9].

2The detector required the availability of a stage-file which was not
provided by the database [9]. The hypnogram provided consisted of 5 sec
epochs instead of 30 sec epochs as required by the algorithm.

The sleep spindle detection algorithms output a binary vector,
where 1 indicates a spindle and 0 otherwise. Using this binary
vector, a 2 × 2 contingency table can be created to calculate the
values of true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) for the detectors. These values are used to
further calculate the recall (RE) and precision (PR) of the detectors.
For the rigorous evaluation of the detectors, with and without the
proposed EEG processor, we will use the F1 score and the Matthews
Correlation Coefficient (MCC). Both the scores range from 0 to 1,
with 1 denoting the perfect detector.

RE =
TP

TP + FN
(12a)

PR =
TP

TP + FP
(12b)

F1 = 2× RE× PR
RE + PR

(12c)

MCC =
TP× TN− FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(12d)

The MCC provides a balanced evaluation of the detector [3].
Moreover, since the spindles are rare events the TN values will be
high. Hence, the MCC and F1 score provide better evaluation of the
detector as compared to only sensitivity and specificity values.

D. Results

The dual-BPD processed EEG (C3-A1 channel) was used for sleep
spindle detection. We used the same parameters for the dual-BPD
algorithm and the window lengths for the transforms A1,A2 as in
Section IV.

The F1 score and further statistics for each of the detectors and their
corresponding improvement with the proposed dual-BPD processor
were recorded and are listed in the appendix. Also available are the
TP, FP, TN, and FN values from which further evaluation can be
carried out by the reader. The dual-BPD and the detection algorithms
were run on a 2.50 Ghz Intel core i5 machine. The dual-BPD
algorithm takes 40 seconds to run 60 iterations on an input EEG
signal of 30 minutes with a sampling frequency of 200 Hz.

E. Discussion

For the Martin algorithm [20], the TP values were increased by as
much as 23% due to which the RE values increased on an average by
7.8% over the 8 patients. The Wendt algorithm [36] saw a reduction
in FP values by as much as 59% thereby increasing the PR values
by 14% on an average.

When detecting spindles with the dual-BPD processed EEG, the
F1 scores of the detectors, on an average, improved by 13.3%. The
MCC score of these detectors was also improved by 13.9%. The
improvement in the F1 score ranged from 2% to as much as 38%
with a similar range of improvement in the MCC score.

The suppression of the non-oscillatory transient waves in the
EEG, using dual-BPD, leads to fewer FP values. As a result, the
performance of the spindle detection algorithms in Section V-B is
improved when they are applied on the dual-BPD processed EEG as
compared to the raw EEG.

Indirectly, the experimental study assesses the performance of the
5 spindle detectors on a database different than the one used for their
design. Among the detectors, the Wamsley algorithm [34] performed
the worst as compared to its performance in [35] where it surpassed
the other detectors. It was hardly able to detect spindles in all but
one of the 30 min excerpts. The Martin algorithm [20] achieved the
highest F1 score of 0.64 with the proposed EEG processor and 0.60
without it.
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It is worth noting that the algorithms in Section V-B were tested
on healthy subjects in contrast to the database [9] on which we tested
them.

VI. CONCLUSION

This paper proposes to improve the performance of existing sleep
spindle detection algorithms by pre-processing the raw EEG using
dual-BPD. The non-linear dual-BPD method separates the non-
oscillatory transient and the sustained rhythmic oscillations compo-
nents. The non-oscillatory transient component is not used for spindle
detection. When the rhythmic oscillations component is filtered, the
spindle activity is much more prominent with respect to the baseline.
This leads to an increase in the true positive values of the sleep
spindle detectors and a decrease in the false positive values of
the detectors. This increases the F1 score of the spindle detection
algorithms. The dual-BPD processor was able to increase the F1 score
by 13.3% on an average, with a similar range of improvement in the
Matthews Correlation Coefficient of the detectors.

The results suggest that the proposed dual-BPD processor for EEG
signals may be used to enhance sleep spindle detection. Since sleep
spindle detection is an important component of sleep scoring, it
would be desirable to further validate the results on a wider database
including full nights of sleep EEG in both, normal and patient
populations.
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APPENDIX

Performance and Statistics

Excerpt1 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 8357 7605 4121 4519 2374 2657 9550 10151 4991 6164

TN 156774 161922 164771 165494 166242 166314 137540 135673 164911 164734

FP 9751 4603 1754 1031 283 211 28985 30852 1614 1791

FN 5118 5870 9354 8956 11101 10818 3925 3324 8484 7311

Recall 0.620 0.564 0.306 0.335 0.176 0.197 0.709 0.753 0.370 0.457

Precision 0.462 0.623 0.701 0.814 0.893 0.926 0.248 0.248 0.756 0.775

F1 Score 0.529 0.592 0.426 0.475 0.294 0.325 0.367 0.373 0.497 0.575

SPC 0.941 0.972 0.989 0.994 0.998 0.999 0.826 0.815 0.990 0.989

NPV 0.968 0.965 0.946 0.949 0.937 0.939 0.972 0.976 0.951 0.958

Accuracy 0.917 0.942 0.938 0.945 0.937 0.939 0.817 0.810 0.944 0.949

Kappa 0.485 0.561 0.399 0.451 0.276 0.307 0.288 0.293 0.471 0.550

MCC 0.491 0.562 0.437 0.501 0.381 0.412 0.343 0.356 0.505 0.572

Excerpt3 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 1005 1013 680 973 12 40 0 0

TN 86050 87031 87234 87313 86741 86146 87717 87717

FP 1667 686 483 404 976 1571 0 0

FN 1278 1270 1603 1310 2271 2243 2283 2283

Recall 0.440 0.444 0.298 0.426 0.005 0.018 0.000 0.000

Precision 0.376 0.596 0.585 0.707 0.012 0.025 0.000 0.000

F1 Score 0.406 0.509 0.395 0.532 0.007 0.021 0.000 0.000

SPC 0.981 0.992 0.994 0.995 0.989 0.982 1.000 1.000

NPV 0.985 0.986 0.982 0.985 0.974 0.975 0.975 0.975

Accuracy 0.967 0.978 0.977 0.981 0.964 0.958 0.975 0.975

Kappa 0.389 0.498 0.384 0.523 ‐0.008 0.000 0.000 0.000

MCC 0.390 0.504 0.407 0.540 ‐0.009 0.000 0.000 0.000

Excerpt5 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 10265 10735 9672 10925 0 150 14779 15061 0 0

TN 331120 331841 333514 334112 337779 337630 295704 297552 340039 340039

FP 8919 8198 6525 5927 2260 2409 44335 42487 0 0

FN 9696 9226 10289 9036 19961 19811 5182 4900 19961 19961

Recall 0.514 0.538 0.485 0.547 0.000 0.008 0.740 0.755 0.000 0.000

Precision 0.535 0.567 0.597 0.648 0.000 0.059 0.250 0.262 0.000 0.000

F1 Score 0.524 0.552 0.535 0.594 0.000 0.013 0.374 0.389 0.000 0.000

SPC 0.974 0.976 0.981 0.983 0.993 0.993 0.870 0.875 1.000 1.000

NPV 0.972 0.973 0.970 0.974 0.944 0.945 0.983 0.984 0.945 0.945

Accuracy 0.948 0.952 0.953 0.958 0.938 0.938 0.862 0.868 0.945 0.945

Kappa 0.497 0.526 0.511 0.572 ‐0.011 0.001 0.317 0.334 0.000 0.000

MCC 0.497 0.527 0.514 0.574 ‐0.019 0.001 0.377 0.393 0.000 0.000

Excerpt7 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 1340 1358 1752 2017 0.000 0.000 1339 1648 0 0

TN 331445 346026 341105 339655 356199 355653 272664 265978 357044 357044

FP 25599 11018 15939 17389 845 1391 84380 91066 0 0

FN 1616 1598 1204 939 2956 2956 1617 1308 2956 2956

Recall 0.453 0.459 0.593 0.682 0.000 0.000 0.453 0.558 0.000 0.000

Precision 0.050 0.110 0.099 0.104 0.000 0.000 0.016 0.018 0.000 0.000

F1 Score 0.090 0.177 0.170 0.180 0.000 0.000 0.030 0.034 0.000 0.000

SPC 0.928 0.969 0.955 0.951 0.998 0.996 0.764 0.745 1.000 1.000

NPV 0.995 0.995 0.996 0.997 0.992 0.992 0.994 0.995 0.992 0.992

Accuracy 0.924 0.965 0.952 0.949 0.989 0.988 0.761 0.743 0.992 0.992

Kappa 0.076 0.166 0.158 0.169 ‐0.004 ‐0.005 0.015 0.019 0.000 0.000

MCC 0.131 0.212 0.229 0.253 ‐0.004 ‐0.006 0.046 0.062 0.000 0.000

Excerpt2 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 9881 6169 7954 9394 0 0 11045 12005 7006 10516

TN 320771 343386 339807 337600 344818 344917 268002 265126 340517 326124

FP 24754 2139 5718 7925 707 608 77523 80399 5008 19401

FN 4594 8306 6521 5081 14475 14475 3430 2470 7469 3959

Recall 0.683 0.426 0.549 0.649 0.000 0.000 0.763 0.829 0.484 0.726

Precision 0.285 0.743 0.582 0.542 0.000 0.000 0.125 0.130 0.583 0.352

F1 Score 0.402 0.542 0.565 0.591 0.000 0.000 0.214 0.225 0.529 0.474

SPC 0.928 0.994 0.983 0.977 0.998 0.998 0.776 0.767 0.986 0.944

NPV 0.986 0.976 0.981 0.985 0.960 0.960 0.987 0.991 0.979 0.988

Accuracy 0.918 0.971 0.966 0.964 0.958 0.958 0.775 0.770 0.965 0.935

Kappa 0.366 0.528 0.548 0.572 ‐0.004 ‐0.003 0.156 0.167 0.511 0.444

MCC 0.407 0.549 0.548 0.575 ‐0.009 ‐0.008 0.246 0.268 0.514 0.477

Excerpt4 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 3710 4181 3458 4254 0 112 7301 7783 0 0

TN 332639 334003 334975 333344 338439 337841 272161 274664 346380 346380

FP 13741 12377 11405 13036 7941 8539 74219 71716 0 0

FN 9910 9439 10162 9366 13620 13508 6319 5837 13620 13620

Recall 0.272 0.307 0.254 0.312 0.000 0.008 0.536 0.571 0.000 0.000

Precision 0.213 0.253 0.233 0.246 0.000 0.013 0.090 0.098 0.000 0.000

F1 Score 0.239 0.277 0.243 0.275 0.000 0.010 0.153 0.167 0.000 0.000

SPC 0.960 0.964 0.967 0.962 0.977 0.975 0.786 0.793 1.000 1.000

NPV 0.971 0.973 0.971 0.973 0.961 0.962 0.977 0.979 0.962 0.962

Accuracy 0.934 0.939 0.940 0.938 0.940 0.939 0.776 0.785 0.962 0.962

Kappa 0.205 0.246 0.212 0.243 ‐0.029 ‐0.020 0.095 0.110 0.000 0.000

MCC 0.207 0.247 0.212 0.245 ‐0.030 ‐0.020 0.147 0.168 0.000 0.000

Excerpt6 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 12810 13317 11724 13001 0 0 17988 17182 11928 12385

TN 327975 327928 332715 332462 336704 336333 288379 295169 331078 330729

FP 9588 9635 4848 5101 859 1230 49184 42394 6485 6834

FN 9627 9120 10713 9436 22437 22437 4449 5255 10509 10052

Recall 0.571 0.594 0.523 0.579 0.000 0.000 0.802 0.766 0.532 0.552

Precision 0.572 0.580 0.707 0.718 0.000 0.000 0.268 0.288 0.648 0.644

F1 Score 0.571 0.587 0.601 0.641 0.000 0.000 0.401 0.419 0.584 0.595

SPC 0.972 0.971 0.986 0.985 0.997 0.996 0.854 0.874 0.981 0.980

NPV 0.971 0.973 0.969 0.972 0.938 0.937 0.985 0.983 0.969 0.971

Accuracy 0.947 0.948 0.957 0.960 0.935 0.934 0.851 0.868 0.953 0.953

Kappa 0.543 0.559 0.579 0.620 ‐0.005 ‐0.007 0.340 0.361 0.559 0.570

MCC 0.543 0.559 0.586 0.624 ‐0.013 ‐0.015 0.407 0.416 0.562 0.572

Excerpt8 Wendt Processed Wendt Martin Processed Martin Wamsley Processed Wamsley Bodizs Processed Bodizs Molle Processed Moelle

TP 4840 3685 3008 3192 0 44 5207 5593 0 0

TN 316707 337180 340902 340431 174090 171641 281643 279229 175797 175797

FP 34935 14462 10740 11211 1707 4156 69999 72413 0 0

FN 3518 4673 5350 5166 4203 4159 3151 2765 4203 4203

Recall 0.579 0.441 0.360 0.382 0.000 0.010 0.623 0.669 0.000 0.000

Precision 0.122 0.203 0.219 0.222 0.000 0.010 0.069 0.072 0.000 0.000

F1 Score 0.201 0.278 0.272 0.280 0.000 0.010 0.125 0.130 0.000 0.000

SPC 0.901 0.959 0.969 0.968 0.990 0.976 0.801 0.794 1.000 1.000

NPV 0.989 0.986 0.985 0.985 0.976 0.976 0.989 0.990 0.977 0.977

Accuracy 0.893 0.947 0.955 0.955 0.967 0.954 0.797 0.791 0.977 0.977

Kappa 0.169 0.254 0.250 0.259 ‐0.014 ‐0.013 0.086 0.091 0.000 0.000

MCC 0.230 0.275 0.259 0.269 ‐0.015 ‐0.013 0.157 0.169 0.000 0.000
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