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Abstract—Explicit solutions are given for the rational function P(z) elsewhere [5]. It is only noted here that requiring maximal flatness

for two classes of IIR orthogonal two-band wavelet bases, for which Makes possible a straightforward design technique and produces
the scaling filter is maximally flat. P(z) denotes the rational transfer useful wavelet bases. From this requirement, it follows tRét)
function H(z)H(1/z), where H(z) is the (lowpass) scaling filter. The has the form

first is the class of solutions that are intermediate between the Daubechies CI\N AN N

and the Butterworth wavelets. It is found that the Daubechies, the P(z) = (1+=7) (1+‘4) Py () (4
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formula. The second is the class of scaling filters realizable as a parallel here Fu (= dF, (- " tor” and “d inator” pol
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approximation by digital allpole filters. Fp(z) = 1. Another is the Butterworth solution [2], [6], [23]. [27]
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Ill. | NTERMEDIATE DAUBECHIES-BUTTERWORTH WAVELETS Pole—zero plot

In [8], Herley and Vetterli describe a class of rational solutions to 1t
(1) that are intermediate—between the compactly supported orthog-
onal wavelets of Daubechies [5] and the orthogonal IR Butterworth x
wavelets, in the sense that eachfof(z) and Fp () are of positive o5t
degree. These intermediate solutions can be obtained by solving a E
linear system of equations, as described in [8]. It turns out, however, o
that the generalized digital Butterworth filter provides a formula for ot 6 o
P(z). °

The version of the generalized Butterworth filter used in this paper
is characterized by three parametérsi/, and V. -0.5} )

N number of zeros off (z) at z = —1; x

L number of zeros that shape the passband;

M number of poles (away from the origin). -1t . L , ]
For example, in Fig.1,L = 3,M = 2,N = 6. The cut-
off frequency and the roll-off rate are controlled by the triplet Freq. response magnitude
(L,M,N). Generalized Butterworth filters are appealing because " T "
sometimes, a filter having differing numerator and denominator
degrees can achieve an improved tradeoff between performance and
implementation complexity [11], [19].

Like Daubechies [5] and Herrmann [9], the generalization of the
digital Butterworth filter [21] uses the transformation= %(1 —
cosw) with z = ¢’“. With this change of variables, the sought
rational functionP(x) has a lowpass behavior over the interval [0,

1]. The maximally flat behavior requires th#&(x) has a zero of
order N atx = 1 (this corresponds to the stopband= «). The flat
behavior atr = 0 requires thatP(x) — 1 has a high order zero at
2« = 0. The maximal order of that zero i + M + 1. From [21],
the functionP(x) uniquely defined by these conditions is given by

0 02 0.4 0.6 08 1

Nt )V S(x) olr
Px) = Tu{(1 = 2)NS(z)} ®) Scaling function
where 1k
L
L+M-—-k N-M+Ek-1
S@y=3 < Y ) <z N ) )
k=0 0.51

and7,, denotes polynomial truncation (discarding all terms beyond
the Mth power). It is assumed that/ is even, that\/ > 0, L > 0,

and thatV > M. For negative values in the binomial coefficient, the 0
convention("; 1) = (=1)* (") for k > 0 is used [18]. The first

M + 1 coefficients of the numerator dP(x) — 1 are zero because

those coefficients are common to both the numerator and denominator  _g g}
of P(x). Further coefficients of the numerator Bf ) — 1 are simply

0 5 10 15 20

the coefficients of 1 — #)VS(x); L of which are zero by design. X

Fig. 1 Hlustrates the maximally flat scaling filtéf () obtained using Fig. 1. Intermediate Daubechies—Butterworth scaling filtér. = 3,

(5) with L = 3, M =2,N =6. M =2,N =6.
It should be noted thaP(x) is not halfband [it does not satisfy

(3)] unlessN = L + M + 1. Only then is the resulting generalized

Butterworth filter a valid scaling filter. Some unanswered questions remain. For the polynomial (FIR)
To obtainH (=) from P(z), it must be possible to spectrally factorsolution, the following has been shown [22].

P(z), as in (2). This is indeed possible becauser) is positive i) The zeros ofH(z), other than those at = -1, lie near

over the interval (0, 1). However, the transfer functiéf(z) is 1+ 2| = V2.

most readily obtained by mapping the poles and zero® (@f) via ii) The slope of|H(w)|? is about\/N/x atw = /2.
z=1=2z=+ /(1 -2z)-1 Thatis the standard mapping that is i) The transition from 1 to 0 has a width of abo2t/2/N.

used, for example, in [9]. ~ What are the analogous results for the rational (IIR) solution?
Formula (5) specializes to the well-known formula for maximally

flat symmetric FIR filters that was first given in [9]. F&f = 0, N =

L+1, the halfband instance of that filter (the Daubechies polynomial) IV. WAVELET FILTERS FROM ALLPASS SUMS

is retrieved. Foi. = 0, N = M +1, a classical halfband Butterworth It is widely appreciated that the only polynomial solution to (1) that
filter is retrieved. produces a real-valued orthogonal basisyhmetriovavelets, is the
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Haar solution. To obtain a two-band wavelet basis of symmetric real- Polezero plot
valued functions with more regularity than the Haar solution without T v
giving up orthogonality requires the basis functions and filters have 15k °
infinite support. To this end, Herley and Vetterli gave the form for ’
H(z) as 1t .
H(z)= 1 [AG?) + 2 A7) @ 05t
where A(z) is an allpass filter of degred’, with N even. This is of &7 -
a parallel sum of allpass filters, which is a structure that has been : "
well studied. Such filters can be implemented with low complexity -0.5¢
structures that are robust to finite precision effects [17]. Noting that b *
A(2)/A(z71) = A%(2), it is straightforward to verify thaff (z) in
(7) satisfies (1). Note tha{ (z) has half-sample symmefryBecause -1.5}
the stable noncausal impulse responseddt:) is symmetric,H(z) o
produces symmetric wavelets. An example is provided in [8]. Some 3 0 1 2 3

properties of symmetric wavelet bases are also discussed in [4].
Given the form (7), an allpass filtet(z) is sought so thaf (z)

is maximally flat. An explicit solution exists and is supplied by

the solution to a group delay approximation problem. To introduce

this connection, note that the magnitude respodé:’~)| of (7)

is not affected by multiplication off (=) by an allpass function.

In particular, H(z) can be divided by the allpass functioh(>~%)

without affecting the number of zeros #f(z) atz = —1. Therefore,

we can consider, instead of (7), the sum

LA 47, ®)

It is clear that if A%(z?) =~ —z~! at z = —1, then the desired
lowpass behavior off (=) is obtained. It follows that the group delay
2

of the allpass functiomd®(2?) should be 1 atv = . In turn, it
follows that the group delay afi(z?) should be one half at = =;

Freq. response magnitude

0 0.2 04 0.6 08 1

therefore, the group delay of(z) should be one fourth at = 0. win
Writing the allpass functiomi(z) as Scaling function
2ND(1/z) T
A(z) = =—12 9
()= 505 ©

where D(z) is of degreeN, we finally find that the group delay of
the digital allpole filterl / D(z) should approximater = 1/8 — N/2
at w = 0. To obtain the maximally flafZ(z), given the form (7),
the maximum number of derivatives of the group delayl pD(z)
should be made to vanish at = 0. The solution is given by the
digital allpole filter [7], [26], the group delay of which is maximally
flat atw = 0

1 1

= 10
D(z) N (10)
Z Apn 2z~ ™ —-05}
=0 o] 5 10 15 - 20
where X
ap = (=1)" N (27)n (11) Fig. 2. Maximally flat scaling ﬁlter realizable as the sum of an allpass filter
" n) 2r+N+1), and a pure delayH (=) = 2[A(z?) 4+ = 5], where the degree o4(z) is 3.

The value of the group delay at = 0 is 7. The pochhammer ) .
symbol (x),, denotes the rising factoridl), = («)- (x + 1)+ (z + of flgtness ar = 1 andz ‘:.—1 are not necessarily the same, is
2)-s(x+n—1). Interestingly, (11) is also useful for the constructiorfons'dered in [20]. An explicit solution to that problem is given and

of biorthogonalwavelet bases, where both the analysis and synthelisuSed for the design of lowpass filters (not necessarily halfband)
IR filters are stable causal [14]. realizable as a parallel sum of two allpass filters.
The solution (11) is generalized in [20]. The group delay of the
solution (11) has a flat characteristic-at= 1 only. Achieving a flat A. More General Allpass Sums
delay characteristic at both = 1 andz = —1, where the degrees It is straightforward to show that, in fact, any sum

1Half-sample symmetry is symmetry of the fofn) = h(n,—n), where H(z)= 3 [41(2%) 4+ 27 Ax(27)] (12)
no is an odd integer. o ' e .
2Note that if the group delay df/ D(z) is , then the group delay of (=) where A:(z) and 4,(z) are allpass filters, satisfies (1). Again, the
is 27 + N. Therefore, if the group delay (=) is to be X, then the group Maximally flat delay filterl /D (=) described above (with appropriate
delay of1/D(z) is to be(X — N)/2. DC group delayr) provides the solution. For example, in [30], the
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(2]

Figure 1

Symmetric

Figure 2

(3]

(4]

Daubechies Classical Butterworth Allpass + Delay

(5]

Intermediate Daubechies-Butterworth Alipass Sum

6]

Maximally flat digital halfband filters
Fig. 3. Venn diagram illustrating relationships among maximally flat orthog—m
onal IIR scaling filters (halfband filters). [8]
[9

linear system of equations that must be solved to obtain the maximally
flat solution, whend.(z) is a pure delay:—¢, is described, but no
explicit solution was given. In this case, whéh(z) = (A(z?) +
=~y /9. the allpass filterd(z) is given by (9)—(11), but now
with - =d/2+1/4 — N/2. For N = 3,d = 2, Fig. 2 illustrates the [11]
scaling filter H(z) and the scaling function. Interestingly, frequency
selective filters realizable as a parallel sum of an allpass filter and a
pure delay have approximately linear phase in the passband. (12]

It should also be noted that the classical Butterworth filter can
be realized as a parallel sum of allpass filters. Indeed, the classical
lowpass (Butterworth, Chebyshev | and Il, and elliptic) transfe3]
functions can each be realized as such [28]. In fact, orthogonal
IIR filter banks with elliptic filters, realized as allpass sums, have
been described in [13]. It should be emphasized that the allpa{%é]
sum scaling filters described in this paper are maximally wih
respect totheir structure. The Daubechies and the intermediaes]
Daubechies—Butterworth filters of Section Il are not realizable as
allpass sums.

(20]

[16]

V. CONCLUSION [17]

The maximally flat FIR, IR, and “allpass sum” orthogonal scaling

filters are obtained as instances of maximally flat digital filters. While
this was well known for the Daubechies FIR and Butterworth 1IR18]

solutions, the recognition that it is also true for [19]
i) the intermediate Daubechies-Butterworth of [8]; [20]
i) the symmetric IIR solutions of [8];

ii) the approximately linear-phase IIR solution of [30]; [21]

iv) allpass sums of the form (12)

makes available explicit formulas f@t(z). In case i), the generalized [22]
digital Butterworth filter of [21] provides the solution. In cases
ii)—iv), the digital allpole filter [7], [26] for which the group delay [23]
is maximally flat at DC, provides the solution. Fig. 3 clarifies the

relationships among these halfband filters. Further work includ&
extending these results to the-band case, as was done in [25]
for FIR scaling filters. [25]
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