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Formulas for Orthogonal IIR Wavelet Filters

Ivan W. Selesnick

Abstract—Explicit solutions are given for the rational function P (z)
for two classes of IIR orthogonal two-band wavelet bases, for which
the scaling filter is maximally flat. P (z) denotes the rational transfer
function H(z)H(1=z), where H(z) is the (lowpass) scaling filter. The
first is the class of solutions that are intermediate between the Daubechies
and the Butterworth wavelets. It is found that the Daubechies, the
Butterworth, and the intermediate solutions are unified by a single
formula. The second is the class of scaling filters realizable as a parallel
sum of two allpass filters (a particular case of which yields the class of
symmetric IIR orthogonal wavelet bases). For this class, a closed-form
solution is provided by the solution to an older problem in group delay
approximation by digital allpole filters.

I. INTRODUCTION

The results of this paper supplement the paper by Herley and
Vetterli [8] in which orthogonal IIR wavelets are examined. (See also
[29, pp. 139–141, 276–278].) This correspondence describes formulas
for P (z) for the design of orthogonal two-band IIR wavelets, with and
without symmetry, for which the scaling filter is maximally flat.P (z)
denotes the rational transfer functionH(z)H(1=z), whereH(z) is
the (lowpass) scaling filter. Necessarily, the associated orthogonal
IIR filter banks are noncausal, which makes them substantially more
difficult to use for real-time applications. However, some of the appli-
cations for which wavelet analysis has been successful—compression
and denoising being two notable examples—are often performed in
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“batch mode” on finite length data. In such cases, noncausality is less
problematic. Several authors have discussed and/or advocated the use
of IIR filter banks for certain applications [1], [3], [10], [12], [15],
[23], [24].

II. PRELIMINARIES

Let H(z) denote the transfer function of the real-valued scaling
filter of an orthogonal two-band wavelet basis. As such,H(z) is also
the lowpass filter of a two-channel orthogonal filter bank [5]. The
central equation thatH(z) must satisfy is

H(z)H(1=z)+H(�z)H(�1=z) = 1: (1)

When H(z) is a polynomial solution to (1), the corresponding
wavelet and scaling functions are compactly supported, and the filter
bank is FIR. On the other hand, rational solutions to (1) produce
infinitely supported wavelets and describe IIR filter banks that are
necessarily noncausal.

It is convenient to define the functionP (z)

P (z) = H(z)H(1=z): (2)

The solutionsP (z) of

P (z) + P (�z) = 1 (3)

are sought, whereP (z) permits a factorization as in (2).
This correspondence considers maximally flat solutionsH(z):

Those are solutions for whichH(z) possesses the maximum number
of zeros atz = �1 possible, given the degrees of the numerator and
denominator ofH(z): RequiringH(z) to be maximally flat is an
attractive strategy for several reasons , which have been described
elsewhere [5]. It is only noted here that requiring maximal flatness
makes possible a straightforward design technique and produces
useful wavelet bases. From this requirement, it follows thatP (z)
has the form

P (z) =
(1 + z�1)N(1 + z)NFN (z)

FD(z)
(4)

whereFN (z) andFD(z) are “numerator” and “denominator” poly-
nomials, as noted in [8]. Two special cases are well known. Certainly,
the most important solution, which is described by Daubechies, has
FD(z) = 1: Another is the Butterworth solution [2], [6], [23]. [27]
with FN (z) = 1: The intermediate solutions described by Herley and
Vetterli have bothFN (z) andFD(z) of positive degree. However,
a formula for P (z) for these intermediate solutions has not been
provided.

Both the Daubechies and the Butterworth solutionsP (z) are
“halfband” instances of digital filters, which were known before the
elegant theory of wavelet analysis was developed. In Section III, we
introduce a formula for the intermediate solutionsP (z) by drawing
from previous work on generalized digital Butterworth filters. The
formula provided in Section III specializes to both the Daubechies
and the Butterworth solutions.

In Section IV, we consider another class of orthogonal scaling
filters: those realizable as a parallel sum of allpass filters (a special
case of which yields symmetric wavelets). Herley and Vetterli de-
scribed IIR orthogonal two-channel filter banks with symmetric filters
and give examples of maximally flat solutionsH(z), whereH(z) is
composed of allpass filters. This paper supplements the description
given in [8] by noting that an explicit formula forH(z) in this case
comes directly from the solution to an older problem in group delay
approximation for digital allpole filters.

1053–587X/98$10.00 1998 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998 1139

III. I NTERMEDIATE DAUBECHIES-BUTTERWORTH WAVELETS

In [8], Herley and Vetterli describe a class of rational solutions to
(1) that are intermediate—between the compactly supported orthog-
onal wavelets of Daubechies [5] and the orthogonal IIR Butterworth
wavelets, in the sense that each ofFN(x) andFD(x) are of positive
degree. These intermediate solutions can be obtained by solving a
linear system of equations, as described in [8]. It turns out, however,
that the generalized digital Butterworth filter provides a formula for
P (z):

The version of the generalized Butterworth filter used in this paper
is characterized by three parametersL;M; andN:

N number of zeros ofH(z) at z = �1;
L number of zeros that shape the passband;
M number of poles (away from the origin).

For example, in Fig. 1,L = 3;M = 2; N = 6: The cut-
off frequency and the roll-off rate are controlled by the triplet
(L;M;N): Generalized Butterworth filters are appealing because
sometimes, a filter having differing numerator and denominator
degrees can achieve an improved tradeoff between performance and
implementation complexity [11], [19].

Like Daubechies [5] and Herrmann [9], the generalization of the
digital Butterworth filter [21] uses the transformationx = 1

2
(1 �

cos!) with z = ej!: With this change of variables, the sought
rational functionP (x) has a lowpass behavior over the interval [0,
1]. The maximally flat behavior requires thatP (x) has a zero of
orderN at x = 1 (this corresponds to the stopband! = �). The flat
behavior atx = 0 requires thatP (x) � 1 has a high order zero at
x = 0: The maximal order of that zero isL +M + 1: From [21],
the functionP (x) uniquely defined by these conditions is given by

P (x) =
(1� x)NS(x)

TMf(1� x)NS(x)g
(5)

where

S(x) =

L

k=0

L+M � k

M

N �M + k � 1
k

x
k (6)

andTM denotes polynomial truncation (discarding all terms beyond
theM th power). It is assumed thatM is even, thatM � 0; L � 0,
and thatN > M: For negative values in the binomial coefficient, the
convention n+k�1

k
= (�1)k �n

k
for k � 0 is used [18]. The first

M + 1 coefficients of the numerator ofP (x) � 1 are zero because
those coefficients are common to both the numerator and denominator
of P (x): Further coefficients of the numerator ofP (x)�1 are simply
the coefficients of(1 � x)NS(x); L of which are zero by design.
Fig. 1 illustrates the maximally flat scaling filterH(z) obtained using
(5) with L = 3;M = 2; N = 6:

It should be noted thatP (x) is not halfband [it does not satisfy
(3)] unlessN = L+M + 1: Only then is the resulting generalized
Butterworth filter a valid scaling filter.

To obtainH(z) from P (z), it must be possible to spectrally factor
P (z), as in (2). This is indeed possible becauseP (x) is positive
over the interval (0, 1). However, the transfer functionH(z) is
most readily obtained by mapping the poles and zeros ofP (x) via
z = 1� 2x� (1� 2x)� 1: That is the standard mapping that is
used, for example, in [9].

Formula (5) specializes to the well-known formula for maximally
flat symmetric FIR filters that was first given in [9]. ForM = 0; N =
L+1, the halfband instance of that filter (the Daubechies polynomial)
is retrieved. ForL = 0; N = M+1, a classical halfband Butterworth
filter is retrieved.

Fig. 1. Intermediate Daubechies–Butterworth scaling filter.L = 3;

M = 2;N = 6:

Some unanswered questions remain. For the polynomial (FIR)
solution, the following has been shown [22].

i) The zeros ofH(z), other than those atz = �1, lie near
j1 + zj =

p
2:

ii) The slope ofjH(!)j2 is about N=� at ! = �=2:

iii) The transition from 1 to 0 has a width of about2 2=N:

What are the analogous results for the rational (IIR) solution?

IV. WAVELET FILTERS FROM ALLPASS SUMS

It is widely appreciated that the only polynomial solution to (1) that
produces a real-valued orthogonal basis ofsymmetricwavelets, is the
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Haar solution. To obtain a two-band wavelet basis of symmetric real-
valued functions with more regularity than the Haar solution without
giving up orthogonality requires the basis functions and filters have
infinite support. To this end, Herley and Vetterli gave the form for
H(z) as

H(z) = 1

2
[A(z2) + z

�1
A(z�2)] (7)

whereA(z) is an allpass filter of degreeN , with N even. This is
a parallel sum of allpass filters, which is a structure that has been
well studied. Such filters can be implemented with low complexity
structures that are robust to finite precision effects [17]. Noting that
A(z)=A(z�1) = A2(z), it is straightforward to verify thatH(z) in
(7) satisfies (1). Note thatH(z) has half-sample symmetry1. Because
the stable noncausal impulse response ofH(z) is symmetric,H(z)
produces symmetric wavelets. An example is provided in [8]. Some
properties of symmetric wavelet bases are also discussed in [4].

Given the form (7), an allpass filterA(z) is sought so thatH(z)
is maximally flat. An explicit solution exists and is supplied by
the solution to a group delay approximation problem. To introduce
this connection, note that the magnitude responsejH(ej!)j of (7)
is not affected by multiplication ofH(z) by an allpass function.
In particular,H(z) can be divided by the allpass functionA(z�2)
without affecting the number of zeros ofH(z) at z = �1: Therefore,
we can consider, instead of (7), the sum

1

2
[A2(z2) + z

�1]: (8)

It is clear that ifA2(z2) � �z�1 at z = �1, then the desired
lowpass behavior ofH(z) is obtained. It follows that the group delay
of the allpass functionA2(z2) should be 1 at! = �: In turn, it
follows that the group delay ofA(z2) should be one half at! = �;
therefore, the group delay ofA(z) should be one fourth at! = 0:
Writing the allpass functionA(z) as

A(z) =
z�ND(1=z)

D(z)
(9)

whereD(z) is of degreeN , we finally find that the group delay of
the digital allpole filter1=D(z) should approximate2 � = 1=8�N=2
at ! = 0: To obtain the maximally flatH(z), given the form (7),
the maximum number of derivatives of the group delay of1=D(z)
should be made to vanish at! = 0: The solution is given by the
digital allpole filter [7], [26], the group delay of which is maximally
flat at ! = 0

1

D(z)
=

1
N

n=0

anz�n

(10)

where

an = (�1)n
N

n

(2�)n
(2� +N + 1)n

: (11)

The value of the group delay at! = 0 is �: The pochhammer
symbol(x)n denotes the rising factorial(x)n = (x) � (x+ 1) � (x+
2) �s(x+n�1): Interestingly, (11) is also useful for the construction
of biorthogonalwavelet bases, where both the analysis and synthesis
IIR filters are stable causal [14].

The solution (11) is generalized in [20]. The group delay of the
solution (11) has a flat characteristic atz = 1 only. Achieving a flat
delay characteristic at bothz = 1 and z = �1, where the degrees

1Half-sample symmetry is symmetry of the formh(n) = h(no�n), where
no is an odd integer.

2Note that if the group delay of1=D(z) is � , then the group delay ofA(z)
is 2� +N: Therefore, if the group delay ofA(z) is to beX, then the group
delay of1=D(z) is to be(X �N)=2:

Fig. 2. Maximally flat scaling filter realizable as the sum of an allpass filter
and a pure delay.H(z) = 1

2
[A(z2) + z�5], where the degree ofA(z) is 3.

of flatness atz = 1 and z = �1 are not necessarily the same, is
considered in [20]. An explicit solution to that problem is given and
is used for the design of lowpass filters (not necessarily halfband)
realizable as a parallel sum of two allpass filters.

A. More General Allpass Sums

It is straightforward to show that, in fact, any sum

H(z) = 1

2
[A1(z

2) + z
�1
A2(z

2)] (12)

whereA1(z) andA2(z) are allpass filters, satisfies (1). Again, the
maximally flat delay filter1=D(z) described above (with appropriate
DC group delay� ) provides the solution. For example, in [30], the
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Fig. 3. Venn diagram illustrating relationships among maximally flat orthog-
onal IIR scaling filters (halfband filters).

linear system of equations that must be solved to obtain the maximally
flat solution, whenA2(z) is a pure delayz�d, is described, but no
explicit solution was given. In this case, whenH(z) = (A(z2) +
z�(2d+1))=2; the allpass filterA(z) is given by (9)–(11), but now
with � = d=2+ 1=4�N=2: ForN = 3; d = 2, Fig. 2 illustrates the
scaling filterH(z) and the scaling function. Interestingly, frequency
selective filters realizable as a parallel sum of an allpass filter and a
pure delay have approximately linear phase in the passband.

It should also be noted that the classical Butterworth filter can
be realized as a parallel sum of allpass filters. Indeed, the classical
lowpass (Butterworth, Chebyshev I and II, and elliptic) transfer
functions can each be realized as such [28]. In fact, orthogonal
IIR filter banks with elliptic filters, realized as allpass sums, have
been described in [13]. It should be emphasized that the allpass
sum scaling filters described in this paper are maximally flatwith
respect to their structure. The Daubechies and the intermediate
Daubechies–Butterworth filters of Section III are not realizable as
allpass sums.

V. CONCLUSION

The maximally flat FIR, IIR, and “allpass sum” orthogonal scaling
filters are obtained as instances of maximally flat digital filters. While
this was well known for the Daubechies FIR and Butterworth IIR
solutions, the recognition that it is also true for

i) the intermediate Daubechies-Butterworth of [8];
ii) the symmetric IIR solutions of [8];
iii) the approximately linear-phase IIR solution of [30];
iv) allpass sums of the form (12)

makes available explicit formulas forP (z): In case i), the generalized
digital Butterworth filter of [21] provides the solution. In cases
ii)–iv), the digital allpole filter [7], [26] for which the group delay
is maximally flat at DC, provides the solution. Fig. 3 clarifies the
relationships among these halfband filters. Further work includes
extending these results to theM -band case, as was done in [25]
for FIR scaling filters.

ACKNOWLEDGMENT

The author would like to thank Professor P. P. Vaidyanathan for
suggesting the application of the generalized digital Butterworth filter
to orthogonal filter banks and the reviewers for helpful comments on
the manuscript.

REFERENCES

[1] R. Ansari, “IIR filter banks and wavelets,” in A. N. Akansu and M. J. T.
Smith, Eds.,Subband and Wavelet Transforms: Design and Applications.
Boston, MA: Kluwer, 1996, pp. 113–148, ch. 4.

[2] R. Ansari and D. Le Gall, “Advanced television coding using exact
reconstruction filter banks,” in J. W. Woods, Ed.,Subband Image
Coding. Boston, MA: Kluwer, 1991, pp. 273–318.

[3] F. Argenti, G. Benelli, and A. Sciorpes. “IIR implementation of wavelet
decomposition for digital signal analysis,”Electron. Lett., vol. 28, no.
5, pp. 513–515, Feb. 27 1992.

[4] S. Basu and H.-M. Choi, “Linear phase IIR wavelets and perfect
reconstruction subband coding,” inProc. IEEE Int. Conf. Syst., Man
Cybern., Le Touquet, France, Oct. 17–20 1993, vol. 4, pp. 507–512.

[5] I. Daubechies,Ten Lectures On Wavelets. Philadephia, PA: SIAM,
1992.

[6] G. Evangelista, “Wavelet transforms and wave digital filters,” in Y.
Meyer, Ed.,Wavelets and Applications. Berlin, Germany: Springer-
Verlag, 1992, pp. 396–412.

[7] A. Fettweis, “A simple design of maximally flat delay digital filters,”
IEEE Trans. Audio Electroacoust., vol. AE-20, pp. 112–114, June 1971.

[8] C. Herley and M. Vetterli, “Wavelets and recursive filter banks,”IEEE
Trans. Signal Processing, vol. 41, pp. 2536–2556, Aug. 1993.

[9] O. Herrmann, “On the approximation problem in nonrecursive digital
filter design,” IEEE Trans. Circuit Theory, vol. CT-18, pp. 411–413,
May 1971.

[10] J. H. Husoy and R. A. Ramstad, “Applications of an efficient parallel
IIR filter bank to image subband coding,”Signal Process., vol. 20, pp.
279–292, Aug. 1990.

[11] L. B. Jackson, “An improved Martinez/Parks algorithm for IIR de-
sign with unequal numbers of poles and zeros,”IEEE Trans. Signal
Processing, vol. 42, pp. 1234–1238, May 1994.

[12] C. W. Kim, R. Ansari, and A. E. Cetin,“A class of linear-phase regular
biorthogonal wavelets,” inProc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), San Francisco, CA, Mar. 23–26, 1992, vol. 4, pp.
673–676.

[13] H. Ochi, U. Iyer, and M. Nayeri, “A design method of orthonormal
wavelet bases based on IIR filters,”IEICE Trans. Fundamentals, vol.
E77-A, no. 8, p. 1410, Aug. 1994. Abstract only; original in Japansese.

[14] S.-M. Phoong, C. W. Kim, P. P. Vaidyanathan, and R. Ansari, “A new
class of two-channel biorthogonal filter banks and wavelet bases,”IEEE
Trans. Signal Processing, vol. 43, pp. 649–665, Mar. 1995.

[15] L. L. Presti and G. Olmo, “A realizable paraunitary perfect reconstruc-
tion QMF bank based on IIR filters,”Signal Process., vol. 49, no. 2,
pp. 133–143, Mar. 1996.

[16] L. R. Rabiner and C. M. Rader, Eds.,Digital Signal Processing. New
York: IEEE, 1972.

[17] M. Renfors and T. Saram¨aki, “A class of approximately linear phase
digital filters composed of allpass subfilters,” inProc. IEEE Int. Symp.
Circuits Syst. (ISCAS), San Jose, CA, May 5–7, 1986, vol. 2, pp.
678–681.

[18] J. Riordan,Combinatorial Identities. New York: Wiley, 1968.
[19] T. Saram̈aki, “Design of optimum wideband recursive digital filters,” in

Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 1982, pp. 503–506.
[20] I. W. Selesnick, “Maximally flat lowpass filters realizable as allpass

sums,” submitted for publication.
[21] I. W. Selesnick and C. S. Burrus, “Generalized digital Butterworth

filter design,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Atlanta, GA, May 7–10, 1996, vol. 3, pp. 1367–1370.

[22] J. Shen and G. Strang, “The zeros of the Daubechies polynomials,” in
Proc. Amer. Math. Soc., 1996.

[23] M. J. T. Smith, “IIR analysis/synthesis systems,” in J. W. Woods, Ed.,
Subband Image Coding. Boston, MA: Kluwer, 1991, pp. 101–142.

[24] M. J. T. Smith and S. L. Eddins, “Analysis/synthesis techniques for
subband image coding,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. 38, pp. 1446–1456, Aug. 1990.

[25] P. Steffen, P. Heller, R. A. Gopinath, and C. S. Burrus, “Theory of
regularM -band wavelet bases,”IEEE Trans. Signal Processing, vol.
41, pp. 3497–3511, Dec. 1993.

[26] J. P. Thiran, “Recursive digital filters with maximally flat group delay,”
IEEE Trans. Circuit Theory, vol. CT-18, pp. 659–664, Nov. 1971.

[27] T. E. Tuncer and G. V. H. Sundri, “Orthonormal wavelet representation
using Butterworth filters,” inProc. SPIE, Adaptive Learning Syst.,
Orlando, FL, Apr. 20–21, 1992, pp. 122–128.

[28] P. P. Vaidyanathan, S. K. Mitra, and Y. Neuvo, “A new approach to the
realization of low-sensitivity IIR digital filters,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 350–361, Apr. 1986.
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