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The Design of Approximate Hilbert Transform
Pairs of Wavelet Bases

Ivan W. SelesnickMember, IEEE

~ Abstract—Several authors have demonstrated that significant the scaling filters should be offset by a half sample. In [18], a
improvements can be obtained in wavelet-based signal processingdesign problem was formulated for the minimal length scaling
by utilizing a pair of wavelet transforms where the wavelets form  f1ars such that 1) the wavelets each have a specified number of

a Hilbert transform pair. This paper describes design procedures, L
based on spectral factorization, for the design of pairs of dyadic Yanishing momentg/’), and 2) the half-sample delay approx-

wavelet bases where the two wavelets form an approximate Hilbert imation is flat atw = 0 with specified degre€L). However,
transform pair. Both orthogonal and biorthogonal FIR solutions  this formulation leads to nonlinear design equations, and the ex-
are presented, as well as IR solutions. In each case, the solution de-amples in [18] had to be obtained using Grébner bases. In this
pends on an allpass filter having a flat delay response. The design 556 e describe a design procedure based on spectral factor-
procedure allows for an arbitrary number of vanishing waveletmo- .~ ", g L .

ments to be specified. A Matlab program for the procedure is given, |zat|_on. It res_ults in filters S|_m|Iar to those of [18],_ however, the
and examples are also given to illustrate the results. design algorithm is much simpler and more flexible.

Index Terms—Dual-tree complex wavelet transform, Hilbert

transform, wavelet transforms. A. Preliminaries

Let the filtersho(n), hy(n) represent a CQF pair [22]. That is

. INTRODUCTION 1, k=0

HIS paper describes design procedures, based on spectral zn: fo(n)ho(n +2k) = 6(k) = { 0, k#0
factorization, for the design of pairs of dyadic wavelet ’
bases where the two wavelets form an approximate Hilb@ndh,(n) = (—1)"ho(M — n), whereM is an odd integer.
transform pair. Several authors have advocated the simBRuivalently, in terms of theZ-transform, we have
taneous use of two wavelet transforms where the wavelets

are so related. For example, Abry and Flandrin suggested Ho(2)Ho(1/2) + Ho(—2)Ho(—1/2) = 2
using a Hilbert pair of wavelets for transient detection [2] angnd
turbulence analysis [1]. Oztuek al. suggested it for waveform Hi(2) = (—2) M Hy(~1/2).

encoding [14]. They are also useful for implementing complex

and directiongl wavelet tran_sforms. Freeman and Adelspgt the filtersgy(n), g (n) represent a second CQF pair. In this
employ the Hilbert transform in the development of steerabjgyper, we assunig(n), g;(n) are real-valued filters. Itis conve-

filters [5], [20]. Kingsbury’s complex dual-tree DWT [8], [9] is pient to write the CQF condition in terms of the autocorrelation
based on (approximate) Hilbert pairs of wavelets. The steerafl@ctions defined as

pyramid and the dual-tree DWT have numerous benefits,
including improved denoising capability and the fact thatthey  p;, (n) := Z ho(k)ho(k — n) = ho(n) * ho(—n)
are both directional and nearly shift-invariant. The paper by 2
Beylkin and Torrésani [3] is also of related interest. — o) = \ _
One could start with a known wavelet and then take its Hilbert py(n) = zk: go(k)go(k = n) = go(n) * go{=n)
transform to obtain the second wavelet; however, in that case,
the second wavelet would not be of finite support. One couff equivalently as
design a finitely supported wavelet to approximate the infinitely
supported Hilbert transform, but in this paper, we design both Py(z) := Ho(z)Ho(1/2)
wavelets together to better utilize the degrees of freedom. Py(z) := Go(2)Go(1/z).
Using the infinite product formula, it was shown in [18] that
for two orthogonal wavelets to form a Hilbert transform pairThen,ho(n) andgo(n) satisfy the CQF conditions if and only
if pr.(n) andpy(n) are halfband filters:
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The dilation and wavelet equations give the scaling and wavetetequivalently

functions .
A(w) = ™77 aroundw = 0.
dult) \/_Z fro(n) 1. (2¢ = n) 2) The coefficientsi(n) in (5) can be computed very efficiently
using the following ratio.
wh \/_Z hl ¢h 2t - 7’L) (3) g g
)
The scaling functio, (t) and wavelet),(t) are defined simi- din+1) =_ <” t1) oL (T4 D
larly but with filters go(n) andgy (n). d(n) <L> (T=L)n (T+Dns1
Notation: The Z-transform ofh(n) is denoted byH(z). n

The discrete-time Fourier transform afn) will be denoted _L=n)(L—n—1)
by H(w), although it is an abuse of notation. The Fourier C (n+Dn+1+47)"

transform ofy;(¢) is denoted byl (w) = F{v (1)} From this ratio, it follows that the filted(n) can be generated

B. Hilbert Transform Pairs as follows:
In [18], it was shown that ifHy(w) andGo(w) are lowpass d(0)=1
CQF filters with (L—n)(L—-n—1)

din+1)=d(n)- , 0<n<L-1

(n+D(n+1+7)

This can be implemented in Matlab with the commands
then the corresponding wavelets form a Hilbert transform pair

Go(w) = Ho(w)e5) for lw| <7 (4)

n=0:L-1;
Pg(t) = H{n(t)}. r=[1,(L—-n).*x(L—n—tou)./(n+1)./(n+1+tau)];
That is d = cumprod(r) .
—jU(w), w>0 In our problem, we will usei(n) in (5) with 7 = 1/2. For
o(w) = {j\lfh(w), w < 0. example, withL = 2, we have

din)=1{1,2,1/5}, forn=0,1,2.
C. Flat-Delay Allpass Filter )
With L = 3, we have

The design procedure presented in this paper depends on the
design of an allpass filter with approximately constant fractional d(n) ={1,5,3,1/7}, forn=0,1,2,3.
delay. Several authors have addressed the design of allpass sys-
tems that approximate a fractional delay [11], [12], [16]. The
following formula for the maximally flat delay allpass filter
is adapted from Thiran’s formula for the maximally flat delay In this section, we look for pairs of orthonormal wavelets
allpole filter [23]. The maximally flat approximation to a delaywhere the lowpass scaling filters have the form

of 7 samples is given by ho(n) = F(n) « d(n)
oln) = f(n n

Il. ORTHOGONAL SOLUTIONS

Z~LD(1/7)

/) = go(n) = f(n) * d(L —n)
A(z) )
where the filtekl(n) will be chosen to achieve the (approximate)
where half-sample delay. The first step of the design procedure will be
L to determine the appropriate filtel{) to achieve the desired
2)=1+ Z d(n)z~" relationship betweehg(n) andge(n). In terms of the transfer
functions, we have
with Ho(z) = F(2)D(z)
nf L\ (T—1L), Go(z) = F(2)2 ¥ D(1/%).
sy — (1) < )(<T+1>) - o(2) = F(x)=~"D(1/2)
" Hy(z) andGy(z) have the common divisdr(z), which will be
where(z),, represents the rising factorial determined later. We can write
> LD(1/
()n = Sa:)(a:—i—l)...(a:—i—n— 1). Go(z) :Ho(z);vTi)/;v)

n terms

where we can recognize that the transfer function

27 I'D(1/z)
D(z)

With this D(z), we have the approximation

A(z) =~ z~" aroundz =1 Alz) ==
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is an allpass systefpi(w)| = 1. Therefore TABLE |
MATLAB PROGRAM

[Go(w)] = [Ho(w)], |Gr(w)] = [Hi(w)]|
d function [h,g] = hwlet(K,L)
an % Approximate Hilbert pair of orthogonal wavelets
|ﬂ¥g(a0| ::|93h(u))L % h, g - scaling filters of length 2%(K+L)
% K - number of zeros at z=-1

If the allpass syster(z) is an approximate half-sample delay % L - degree of fractional delay

A(w) ~ e™7%/?  aroundw = 0 n = 0:L-y;

tau = 1/2;

d = cumprod([1, (L-n).*(L-n-tau)./(n+1)./(n+i+taw)]);

s1 = binom(2*K,0:2xK) ;

s2 = conv(d,d(end:~1:1));
s = conv(si,s2);
M = K+L;

Y 2%M=-1):

This is achieved by taking the allpass filtin) in (S)with = ¢ = conrmnay 1ar "

1/2. (The pointz = 1 is chosen for the point of approximation b = zeros(2#M-1,1);

for the lowpass filter because that is the center of the passband. b = 1;
r
q
£
h
g

or equivalently,A(z) ~ z~'/? aroundz = 1, then the sought-
after approximation (4) is achieved

Go(w) = Ho(w)e™%  aroundw = 0.

To obtain wavelet bases witl§ vanishing moments, we let (C\b) ;3)
= sfact(r);

17(2) ::CQ(Z)(1-+-Z_1)I(. = conv(q,binom(K,0:K});

= conv(f,d);
Then = conv(f,d(end:-1:1));
Ho(2) = Q(z)(1+ 21" D() (6)
Go(2) = Q(x)(1 + 2 )Xz FD(1/2). (") The second step assum@é:) permits spectral factorization,

. . . which we have found to be true in all our examples. \Witfx)
We now have the following design problem. Givb(z) andX, obtained in this way, the filter&y(~) andGy (=) defined in (6)

find Q(z) of minimal degree such thap(n) andgg () satisfy : ) . _
the CQF conditions (1). Note that with (6) and (j(n) and and (7) satisfy the CQF condltlons gnd have the desired half
sample delay. Note th&(z) is not unique.

go(n) have the same autocorrelation function This design procedure yields filterso(n) and go(n) of

P(2) := Pu(z) = P,(2) (minimal) length2(L + K). A Matlab program to imple-
. LK ment this design procedure is given Table I. The commands
= Q)QA/2)(z +2+27)" D(x)D(1/2). binom andsfact for computing binomial coefficients and

Similar to the way Daubechies wavelet filters are obtained, vi@erforming spectral factorization are not currently standard

can obtainQ(z) using a spectral factorization approach as il¥latlab commands. They are available from the author.

1) Findr(n) of minimal length such that go(n) are of length 12. Fig. 1 illustrates the solution obtained
a) r(n) (—n), and from a mid-phase spectral factorization. The plot of the function
rem) =ri—m . . .
N . [V, (w)+5¥,(w)| shows that it approximates zero for< 0, as
b) R(z)(x +2 + g ) D(Z)D(_l/z) is halfband. expected ifiyy;, and, form a Hilbert transform pair. The coef-
Note that-(r) of minimal length will be supported on theicients are given in Table II. The Sobolev exponent (reflecting

range(l — K — L) <n < (K +L—1). the smoothness of the wavelets) was foutmbe 1.983. Note
2) SetQ(z) to be a spectral factor df(z) that the Sobolev exponent is the samesfgtt) ands), ().
Example 1B:We setK = 4 and L = 2 again, but this
R(z) = Q(2)Q(1/%). 8) .. -
(%) = Q(=)Q/2) ® time, we take a minimum-phase spectral factor rather than a

To carry out the first step, we need only solve a system of ling&id-phase one. The wavelets obtained in this case are illustrated
equations. Defining in Fig. 2. The function ¥, (w) + j¥,(w)| is exactly the same

as in Example 1A; using a different spectral factor in (8) does

S(z) == (z+24+ 2" D(z)D(1/2) not change it. We will see below that the mid-phase and min-
) N imum-phase solutions can lead to different results when they are
we can write the halfband condition as used to implement two-dimensional (2-D) directional wavelet
transforms. (The Sobolev exponent is the same as for Example
8(n) = [1 2)(s ) (m) o P P
=" s(2n — k)r(k). Example 2: With K = 3 and L = 3, the filtersho(n) and
k go(n) are again of length 12. Fig. 3 illustrates a solution using a

When written in matrix form, this calls for a square matrix ofid-phase spectral factor. It can be seen ffa(w) +jV,4(w)|

dimen_sionz(K.—k L.) — 1, which has the form of a convolution  11¢ gonolev exponents were computed using the Matlab progaexp
(Toeplitz) matrix with every second row deleted. by Ojanen (http://www.math.rutgers.edu/~ojanen/).
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Fig. 1. Example 1A. Approximate Hilbert transform pair of orthonormal
wavelet bases withV' = 12, K = 4,L = 2, and mid-phase spectral

factorization.

is closer to zero for negative frequencies. At the same time,

0
8 -6 -4 -2

TABLE 1l

COEFFICIENTS FOREXAMPLE 1A AND EXAMPLE 2

Example 1IA: N=12,K =4,L =2

ho(n) go(n)
—0.00178533012604 —0.00035706602521
0.01335887348208 —0.00018475350525
0.03609074349777  0.03259148575321
—0.03472219035063  0.01344990160212
0.04152506151211 —0.05846672525596
0.56035836869365  0.27464307660380
0.77458616704024  0.77956622415105
0.22752075128211  0.54097378940769
—0.16040926912642 —0.04031500786642
—0.06169425120853 —0.13320137936114
0.01709940838890 —0.00591212957013
0.00228522928787  0.01142614643933
Example 2: N=12,K=3,L=3
ho(n) go(n)
—0.01558262447444 —0.00222608921063
—0.04943224834056 -—-0.04267917713309
0.21675411650608 0.02482915969003
0.74585008428240 0.49827824107483
0.61333711629573 0.79972651593977
—0.01550639700556  0.28678636149680
-0.12705042512607 —0.15642754715911
0.03236969097201 --0.03318989637197
0.01970114139115  0.04342764217365
—0.00619091208250 —0.00220469140539
—0.00005254340590 —0.00222290024716
0.00001656336077  0.00011594352537

15E v, v

-15 -
0

Fig. 2. Example 1B. Approximate Hilbert transform pair of orthonormal
wavelet bases witl' = 12, ' = 4, L = 2, and minimum-phase spectral
factorization.
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Fig. 3. Example 2. Approximate Hilbert transform pair of orthonormal
wavelet bases withV' = 12, K = 3,L = 3,, and mid-phase spectral
factorization.

A. Directional 2-D Wavelets

One of the important applications of a Hilbert pair of wavelet
bases is the implementation of directional 2-D (overcomplete)
wavelet transforms, as illustrated in [7]. The directional
wavelets are obtained by first defining a 2-D separable wavelet
basis via

1/)h,1(9?7y) = (/)h(x)z/}h(y)
Vr2(2,y) = ¥n(z)dn(y)
z/}h,3($7y) = "(/)}L(.’IZ')T/)}L(y).

dnaddition, definej, ; similarly. Then, the six wavelets defined

Sobolev exponent decreases to 1.736. This is to be expec@ﬁ,
as we have reduced the number of vanishing moments and at

the same time increased the degree of approximation for the
half-sample delay. The coefficients are given in Table II.

z/}i(xa y) = z/}h,i(x’ y) + z/}(]:i(x’ y) (9)
Yiys3(2,y) = Yni(2,y) — Pg,i(z,y) (10)
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or equivalently
Go(w) = e 7N =D H ().
Combining with (4), we get the condition
Ho(w) = Ho(w)e #((N=D-1)

or

Therefore

N

Ho(w) = |Ho(w)e (55 =4), (12)

In this case Ho(w) has linear phase, and the delay is offset by
one quarter of a sample from the center of symmetry of a length
N filter ho(n). As a CQF filter can not have exact linear phase,
the filters given in [9] approximately satisfy (11). The design of
orthonormal wavelets with approximate linear phase with non-
integer delay has also been described in [13], [19], and [25]. An
alternative, simple, way to obtain an approximate Hilbert trans-
form pair of (biorthogonal) wavelets with approximate linear

Fig. 4. Two-dimensional wavelets generated by an approximate Hilbdase is to modify the spectral factorization approach, as de-
transform pair of 1-D wavelets, using a mid-phase spectral factor (Exam@eribed in the next section.
1A) and a minimum-phase spectral factor (Example 1B), respectively.

I1l. BIORTHOGONAL SOLUTIONS
for1 < ¢ < 3 are directional, as illustrated in Fig. 4. A wavelet

transform based on these six wavelets can be implemented bThe quality of the directional 2-D wavelets derived from a
taking the sum and difference of two separable 2-D DWTSs. TRE" of .1'D wavglets appears to depgnd on the_wavelets haV|'ng
resulting directional wavelet transform is two-times redundarﬁpprox'_mately linear pha_se, n addition to forming an approxi-
The inverse requires taking the sum and difference, dividing b ,ate Hilbert transform pair. If biorthogonal wavelets are accept-

andthe separable inverse DWTs. The four-times redundant D\R’ IZ’ then Ithebproce(fjure E.ivﬁ r:)irthection (Ijl \If an bi modified to
presented by Kingsbury is both directional and complex [8]. yield wavelet bases for which both,(w) and W, (w) have ap-

We note that the type of spectral factorization performed m’oxmately linear phase. They can then be used to generate 2-D

the design procedure described above influences the quality)Nﬁvelet bases with improved directional selectivity. To generate

the directionality of the 2-D wavelets. For example, the wavelef{fvelets with approximate linear phase, we can follow the ap-

of example 1A, which were constructed with a mid-phase Sper%r_oach of [4] for the design of symmetric biorthogonal wavelets,

tral factor, lead to the six 2-D wavelets shown in the top pan|,51|which the spectral factorization of a halfband filter is replaced

of Fig. 4. On the other hand, the wavelets of example 1B, Whi%geits_factorization into two linear-phase, butdiffgrent, filtgrs. In
were constructed with a minimum-phase spectral factor, Ieadt biorthogonal case, we denote the dual scaling funct|_ons and
the six 2-D wavelets shown in the lower panel of Fig. 4. In thi@'_aveIetS bYor(1), 9n (), (%), andz/;g(t)._As we hav_e apar of
case, the directionality is not as clean as in the first case. Inste |8,rth_ogonal wavelet b_ases, we have e|ght_f|lters mclgdm_g the
some curvature is present. The figure shows that the mid-ph é@l filters, corresponding to the filterbanks illustrated in Fig. 5.

spectral factor can be preferable to the minimum-phase one for he dual scaling f I d let) .

the implementation of directional wavelet transforms. The dua scaiing unctiop, (t) and wavelety (t) are given
Evidently, better directional selectivity is obtained when thBy the equations

two wavelets have approximate (or exact) linear phase in ad- 7 _ i 7 _

dition to forming an approximate Hilbert transform pair. The on() = \/527; ho(n)fn(2¢ = n)

procedure described above imposes a condition on the phase of ~ = -

of Uy, (w)/¥,(w), but it does not impose any condition of the Di(t) = V2 ha(n)dn(2t — n).

phases ofl';,(w) and ¥ ,(w) individually. To ensure a high di- "

rectional selectivity, one could impose directly th&§(w) and The dual scaling functio, and wavelet), are similarly de-

Go(w) have approximately linear phase rather than relying dimed.

the near linear-phase of a mid-phase spectral factor. For exThe goal will be to design the filters so that both the pri-

ample, consider the system described in [9]. In [9], the filteraary (synthesis) and dual (analysis) wavelets form approximate

ho(n) andgo(n) are related through a reversal Hilbert transform pairs

go(n) = ho(N — 1 —n) Po(t) = H{pn(t)} and v,(t) = H{yn(t)}.
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whereK + K is odd.K denotes the number of vanishing mo-
ments of the primary (synthesis) wavelets, didienotes the
number of vanishing moments of the dual (analysis) wavelets.
The product filtergy, andp, are then given by

Pz) = Pu(s) = Byls) (14)
= QQ)( + =Y HED(2)D(1/z)2E. (15)

To obtain the required halfband property, we find a symmetric

. : , odd-length sequencgn) so that
Fig. 5. Filterbank structures for the biorthogonal case.

R(z) 1+ 271 K+K D(\D(1/2)2~ -
If we define the product filters as (=) ) (2)D(1/2)

s ; is halfband. The symmetric sequende) can be obtained by
p(n) := ho(n) * ho(n) solving a linear system of equations as in Section Il. We can

py(n) i= go(n) * go(n) then obtainQ(z) andQ(z) by factoringR(z)
then the biorthogonality conditions can be written as R(z) = Q(z)Q(z) (16)
pr(2n +n,) = 8(n) (12)

where bothg(n) and g(n) are symmetric. Asy(n) and g(n)
Pg(2n + no) = 6(n). (13)  are symmetric, so arf(n) and f(n). It follows thatho(n) and

are related by a reversal
That is to sayps, p, must both be halfband. With out loss ofgo(n) y

generality, we can assume thatis an odd integer. In that case,

the highpass filters are given by the following expressions [4], 9o(n) = ho(N =1 —n) (7
[24]: and similarly
ha(n) := (=1)"ho(n) Go(n) = ho(N —1—n). (18)
hi(n) = =(=1)"ho(n)
g1(n) == (=1)"go(n) Therefore,ho, ho, go and go have approximately linear phase
g1(n) == —(=1)"go(n). (because(n) does) in addition to satisfying (4) approximately.
Note that the symmetric factorization (16) is not unique—many
We will look for solutions of the form solutions are available. In addition, note that the sequefige)s
andf(n) do not need to have the same length.
ho(n) = f(n) *d(n) Example 3: With K = K = 4 andL = 2, we can take the
ho(n) = f(n) = d(L — n) synthesis filtersio(n) andgo(n) to be of lengthV = 13. The
_ analysis filtersho (n) andgo(n) will then be of length 11. Fig. 6
go(n) = f(n) xd(L —n) : - - : - gy
i’ i illustrates this solution obtained from a symmetric factorization.
go(n) = f(n) *d(n). The plots off U, (w)+j ¥ . (w)| and likewise ¥y, (w) + j 4 (w)]
. i = show that they approximate zero for< 0, as expected. The
:—hheefglrlg\?vli?]rg Is to fingf(n) and f(n) such that we have havecoefficientsho(n) andho(n) are given in Table Ill. The coef-

. ) - . ficients go(n) and go(n) are given by their reversed versions,
1) The biorthogonality conditions (12) and (13) are satisfiedg i, (17) and (18). The Sobolev exponenﬁ/}a(t) andz/lg(t)

2) The wavelets hav& vanishing momentsi vanishing s 1 731 whereas the Sobolev exponentpft) andq,(t) is
moments for the dual wavelets). 2932

3) The.wavelets form an approximate Hilbert transform pair. gig 7 jllustrates the analysis and synthesis directional 2-D
To obtain the half sample delay needed to ensure the appr@gvelets derived from the 1-D wavelets using (9) and (10).
imate Hilbert property, we choos#n) to come from the flat
delay allpass filter, as before:
2T"D(1/2) i

Alz) = D) z aroundz = 1.

IV. IR SOLUTIONS

The spectral factorization approach can also be used to con-
struct orthogonal wavelet bases based on recursive infinite im-
puilse response (lIR) digital filters, wheté,(z) is a rational
To ensure the vanishing moments properties, we fékg and  function of z. Wavelets based on rational scaling filters have
F'(z) to be of the form been discussed, for example, in [6], [15], [17], and [21]. IIR

K filters often require lower computational complexity than finite
]T(Z) =Q()(1+27) _ impulse response (FIR) filters. Analogous to the approach given

F(z) =Q(z)(1+ 271K in [6], but with the flat delay filter included, approximate Hilbert
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TABLE I
COEFFICIENTS FOREXAMPLE 3

Example 3: N=13, K=K =4,L =2

ho(n) ho(n)

0 -—0.00030453648331

0.01339704408541 —0.00015432782903
—0.00678912656592 0.02776733337848
—0.15762026783144 0.01114383888330
—0.04891448800028 —0.04715783038404
0.64995392445932 0.23730846518842
0.93376892975667 0.65840893759976
0.27109270647926 0.47625050860818
—0.19103597922739 0.03941149716348
—0.07239603482308 —0.02885152385159
0.02007744522348 0.03050406232874
0.00267940881708 0.01140982018728
0 —0.00152268241655

APNAL SIS WAVELETS (EXAMPLE 3}

BYMTHEEIE WANELETE [EXANPLE T)

t
25
ol [¥p(@) +i ¥ (o)
15
1
05 Fig. 7. Two-dimensional wavelets generated by an approximate Hilbert
0 transform pair of biorthogonal 1-D wavelets (Example 3).

8 6 -4 2 0 2 4 6 8
w/n

Fig. 6. Example 3: Approximate Hilbert transform pair of biorthogonall N€ product filter is given by
wavelet bases withh = 13, K = K = 4,L = 2.

P(z):= Ho(2)Ho(1/2) = Go(2)Go(1/2)

transform pairs of IIR wavelets can be obtained with the fol- (z+ 2+ 2"HED(2)D(1/%)
lowing form: - C(22) C(1/22) :

Hy(z) = %)I;’M Defining

Hy( = L2 : ‘< §> Mt V(z):= (z+2+2 HD(2)D(1/2)

(1+ 2 HED(1/2)z the orthogonality conditiodP(z) + P(—z) = 2 can be written
Go(z) = ( 2) as
Gi(m) = L= DE) VR +V(=2) _ oi2y001):2), (19)

C’(zQ) 2
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spectral-factorization does not always provide a solution with

a nearly linear phase response). However, the biorthogonal
solutions given in this paper have approximately linear phase.
As a result, the orthogonal solutions by Kingsbury are more

nearly linear phase than the orthogonal solutions given here;
likewise, the linear-phase biorthogonal solutions by Kingsbury

are more nearly orthogonal than the approximately linear-phase
biorthogonal solutions given here.

In addition, the design procedure developed in this paper
and the ones described by Kingsbury are quite different.
Kingsbury’s design procedures are based on minimizing the
aliasing of a filterbank after it is iterated a fixed number stages.
The minimization is performed over a parameterized space of
perfect reconstruction filterbanks using iterative optimization
algorithms. On the other hand, the approach taken in this paper
is based on the limit functions [defined by (2) and (3)] and on
vanishing moments. As a result, the limit functiong(¢) and
14(t) are closer to forming a Hilbert pair for the filters given
in this paper than those presented by Kingsbury, whereas the
solutions by Kingsbury do this better for the first several stages.

VI. CONCLUSION

Fig. 8. Example 4. Approximate Hilbert transform pair of orthonormal 1IR

wavelet bases witlik’ = 2, L = 2.

C(z) can be found by spectral factorization; note that th

left-hand side of (19) is a function of?>. A stable filter is

obtained using the minimum-phase spectral factor in (19).
Example 4: With two vanishing moment&K = 2) andL =

2, we obtain the following stable causal transfer functions

14427 452272424272 40227
T 6.6495 + 2.37142~2 4+ 0.0301 2%
_ 02424271 +52:72 44,34 74
T 6.6495 4+ 2.3714272 4+ 0.03012—4

Fig. 8 illustrates the two waveleis,(¢), 1,(¢) and the magni-

tude of ¥, (w) + j¥,4(w).

V. COMPARISON TOKINGSBURY'S FILTERS

It is interesting to compare the filters obtained here w
those presented by Kingsbury in [7]-[10], where the co
plex dual-tree DWT is introduced. In [7] and [8], Kingsbury,
presents linear-phase biorthogonal solutions where one sca
function is symmetric about an integer, whereas the otht%r
scaling function is symmetric about an integer plus 0.5.

this case, the (approximate) half-sample delay [see (4)]

be achieved by making the frequency responses magnitudes

(approximately) equalHop(w)| =~ |Go(w)|. The family of

This paper presents simple procedures for the design of pairs
of wavelet bases where the two wavelets form an approximate
Iélilbert transform pair. The approach proposed here is analo-
gous to the Daubechies construction of compactly supported

wavelets with vanishing moments but where the approximate
Hilbert transform relation is added by way of incorporating a
flat delay filter.

The approach is based on a characterization of Hilbert trans-
form pairs of wavelets bases given in [18]. The formulation of
the problem, using a flat delay allpass filter, makes it possible to
employ the spectral factorization design method as introduced
in [22] for the design of CQF filters. Note that even though an
allpass filter arises in the problem formulation, the filters we
obtain are FIR (lIR solutions are also available, as described in
Section 1V).

Given an allpass filter, the proposed design method produces
short filters with a specified number of vanishing wavelet mo-

.Mments. Although a flat delay filter was used here, any other all-
:Eass filters that approximate a delay of a half sample could be
used instead. The degree of the allpass filter controls the degree
0 which the half-sample offset property is satisfied. A Matlab
ggram for the procedure is given, and examples are also given
illustrate the results. Programs are available on the Web at

. . .
C}g]trt]p.//taco.poly.edu/seIeSL
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