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Hilbert Transform Pairs of Wavelet Bases

Ivan W. SelesnickMember, IEEE

Abstract—This paper considers the design of pairs of wavelet and

bases where the wavelets form a Hilbert transform pair. The 1
derivation is based on the limit functions defined by the infinite Hi(z)==Hi(-1/z).
product formula. It is found that the scaling filters should be z

offs_et f_rom one another _by a half sample. This _gives an alternative We use the notatiofif*(z) for the Z-transform ofh(n). Then
derivation and explanation for the result by Kingsbury, that the he f f the fil — H*(%). Th
dual-tree DWT is (nearly) shift-invariant when the scaling filters t. e frequency response of the filter #(w) = ) ( ) e
satisfy the same offset. filters go(n), g1(n) represent another CQF pair. In this letter,
we assumé; (n), g;(n) are real-valued filters. The dilation and
I. INTRODUCTION wavelet equations give the scaling and wavelet functions
. . (t =2 ho(n)on(2t — n
EVERAL authors have proposed signal processing én(?) Z o(n)én )
ethods that call for two wavelet transforms, where one

wavelet is (approximately) the Hilbert transform of the other. ¥n(t) =V2 Z ha(n)¢n(2t —n).

For example, Abry and Flandrin suggested it for transieffhe scaling functiom, () and wavelet), (t) are defined simi-
detection [2] and turbulence analysis [1], Kingsbury suggestegiy but with filters go(n) andg: (n).
it for the complex dual-tree discrete wavelet transform (DWT)

[7], [8], and Ozturket al. suggested it for waveform encoding Il. HILBERT TRANSFORM PAIRS
[9]. In addition, Freeman and Adelson employ the Hilbert o ) ]
transform in the development of steerable filter banks [5]. Also Recall the definition of the Hilbert transforng,(¢) is the
of related interest is the paper by Beylkin and Torrésani [3]. Hilbert transform ofyy.(¢) if

The lowpass filtergig(n), go(n) fully determine the two or- U, (w) = —J‘I’ib(w)v w >0
thogonal wavelet bases. But how can we choasand g, so J_‘I’h(w)a w < 0. _
that the two wavelets they generate will form a Hilbert trans>UPPOS€ the two lowpass filters ariajg(al?ted as follows:
form pair? This is the question addressed in this paper. ) G(_J(w_) - HO(“_”)C

Kingsbury found that the dual-tree DWT is nearly Shift_inyvheree(w) is 2r-periodic. We will see how to choose the phase
variant when the lowpass filters of one DWT interpolate midwadg,w) so that the two wavelets generated layand g, form a
between the lowpass filters of the second DWT. This paper cdiilPert transform pair. We proceed by considering three ques-
siders the limit functions defined by the infinite-product forfons-
mula, rather than the (near) shift-invariance of a finitely iterate, :
filter bank as in [7], and arrives at the same condition. This Iett'gr' How isg,(t) Related to..(t)?
thereby gives an alternative explanation for why the scaling fil- By the infinite-product formula, we have

1)

ters should be designed to be offset from each other by a half g — Fld (D) = &, (0 3 {LH fdl }
sample delay. () (D) w0) ,};[1 V2 ’ (21‘)
Similarly for ¢,(w)
A. Preliminaries O, (w) =F{p,(t)}
Let the filtersho(n), h1(n) represent a conjugate quadrature i 1 w

filter (CQF) pair. That is =2,00) [ { 5% (¢)

k=1
= = 1 5 , Jok
zn:ho(n)ho(n + 2k) = 8(k) {0 k£0 =®,(0) H {—2H0 (;_k) —it(w/2 )}

k=1

andhi(n) = (—1)3=™ ho(1—n). Equivalently, in terms of the oy w
Z-transform, we have =2,0) [] {—Ho (27)}

Hi(2)Hg(1/z) + Hi(—2)H5(-1/z) = 2 T 7
k
exp |—j Z O(w/2%)
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Having®,(0) = ¢,,(0) = 1 for orthogonal wavelet bases gives - °(f”) -
oo : w2 |
-2 ;
B. How isG(w) Related toH; (w)? St 4n 3% -2x % 0 & 2t 3t 4n 5n
The CQF filter bank has 8(w/2-m)
Hi(2) = THi(=1/2) or Hy(w) = ¢ Holw = w2 | -
where the overbar denotes complex conjugation. Similarly -w2r ‘ ‘ . . ‘ . ‘ ‘ o]
. -10n -8n -6n -4n -2n 0 2n 4n én 8t  10r
Gi(w) =e 7“Go(w —7)
=¢ I Ho(w — m)e 3 0(w—m) ——— B(.m) ———
= Holl — el 7T ——
. [ 4
= Hj(w)e? 9=, o b ]
-10n —én —én —4.1t -én 6 2.1t 4‘n Gln 8‘1: 10n
i ?
C. How isy,(t) Related toyy, (t)* o(w/2o) + B(e)
The Fourier transform (FT) afy,(¢) is given by - - -
w2
1 w w
) =10 = S (3) () °
n(w) = F{yn(t)} AHg) o3 ol
and similarlyfor\Ifg(w) -10n -én —én —“:n —én 6 2‘1t 4.1t 6‘1t gn 10n
( ) .7:{1/) (t)} Fig. 1. Phase functions arising in the derivation of (5).
1 w w
=75G15) %5 We now show that if the 2-periodic functiorf(w) is defined as
V2 2 2
1 W jo(w/2—m w w
=5t (5)(31 (w/2-m) g (5) bw) =5, |wl <= (5)
1 w Ja(w/in) w . . . .
= EHl (5) e D, (5) as illustrated in Fig. 1, then condition (4) holds af{t), v, (¢)

cexp | —j i 9(w/2k+1)]

L k=1
= (5)m (5)
cexp |j0(w/2—7) —j f} 9<w/2’“+1>]
L k=1

=V, (w) exp {‘7 l (w/2—7) — i 6(w/2M ) ] }
k=1

Therefore, we can write

Uy(w) = Wy (w >exp{ [<w/2—7r

D. Phase Condition

Can we choos#(w) so thate,(t), ¢4(t) make a Hilbert
transform pair? From (3) and (1), we see thab) must sat-

isfy the following condition:

=

, w>0

>
&M8
Qb
€
~
(Y]
3

o

SN

, w <0

(4)

make a Hilbert transform pair. First, note that{tv) is given
by (5), thend(w/2 — ) is a 4r-periodic function given by

v w
—5 Z, 0 < w <27
Ow/2—m)=q & & or < 0 <0
—- — — 4T W
2 47

as illustrated in Fig. 1. Now if we call the second term in (4)

Alw)

i O(w/2%)
k=2

and if6(w) is given by (5), then we can show thatw) is given
by

w

1 lw| < 4m
Blw) = Plw—4r), 47 < w
Blw+4r), w < —4w

asillustrated in Fig. 1. Adding(w/2 —7) andf3(w), we get the
graph shown in Fig. 1. Evidently, one finds that condition (4) is
indeed satisfied by the choice (5).

1) Theorem:If Ho(w) andGy(w) are lowpass CQF filters
(scaling filters) with

Go(w) = Ho(w)e /2 for |w| < =
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Fig. 2. Example 1: Approximate Hilbert transform pair of orthonormal wavelet basesNvith10, K’ = 4, L = 5.

then the corresponding wavelets are a Hilbert transform pair

Pg(t) = H{vn(D)}-

TABLE |
FILTER COEFFICIENTS FOR THEEXAMPLES

Example 1: N=10,K =4,L =5

Equivalently, the digital filtergo(n) is a half-sampledelayed 0‘032;;21;)7407420 0.01133(17;2)664593
version ofho(n) 0.00820937853576  0.02038462747110
—0.06023981115681 —0.02941520794631

go(n) = ho(n —1/2). 0.29737132183851  0.05228807988494

. . . 0.79149943086392  0.56614863255854

As a half-sample delay can not be implemented with a finite 0.51279103306800  0.77383926442488
impulse response (FIR) filter (not even a rati.onall IIR filter can —0.05414137333876  0.21123282805692
be exact), it is necessary to make an approximation. _0.11999180398584 —0.16831623187690
—0.00222403925601 —0.05209126812854

lll. DESIGN PROBLEM 0.00872685173012  (0.01991104128252

The phase condition leads to following design problem: con-
struct the shortest FIR filtersy, g, such that they possess a

Example 2: N =10,K =3,L =7

T ho(n) go(n)
specified number of zero moments, and that 0.00419528584157  0.00051763584333
. —0.03976408134143 ~0.00016716564000
~ —i(w/2)

Go(w) & Ho(w)e : —0.08807084231507 —0.09187942035452
The error function is diven b 0.28789890325798  0.02408482114448
9 y 0.80280644768232  0.61837942541527
_ B itw/2) 0.50734324828341  0.75480699639212
Ei(w) = Go(w) = Ho(w)e ' —0.04438514804476  0.17400853530401
, . ~0.05179712664076 —0.09044673462008

If we define a new functio b
2(w) by 0.03247103802248  0.00608060497845
0.00342583762736  0.01882886391002

Esr(w) :i= B1(2w) = Go(2w) — HO(Zw)e_j“"

where L represents the degree of approximation to the half-
sample delay. I is the number of zero wavelet moments, and
L is the parameter for controlling the half-sample delay approx-
imation, then we have the following design equations, which we
Let us choose = 1 as the point of approximation. To makewish to solve for the filterg,, andgo of minimal length:

L% (2) close to zero at = 1, we can ask that 1) 3, ho(n)ho(n + 2k) = 5(k);

2) X, go(n)go(n + 2k) = 6(k);

3) Hi(z) = Qu(2)(1 + 271",

then theZ-transformE3 (=) is a polynomial

E3(2) = Go(2%) — Hy (%)=

Go(2?) = H5 ()™ = Qe(2)(1 = 271"
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Fig. 3. Example 2. Approximate Hilbert transform pair of orthonormal wavelet basesMvith10, K’ = 3,L = 7.

4) Gi(z) = Qqu(2)(1 + 271X, IV. CONCLUSION
z( 52 —1ryz(.2y _ _ ,—1\L
5) G§(#%) — 2 HG(2%) = Qe(2)(1 — 27 Using the infinite product formula, it was shown that for two
We illustrate two examples obtained using this desigp{thogonal wavelets to form a Hilbert transform pair, the scaling
problem. The design equations are nonlinear. However, sofiiters should be offset by a half sample. An example was pre-

tions can be obtained using Grobner bases [4] We used geited to illustrate the trade-off between the number of zero
software Singular [6] to obtain the Grobner needed for thevavelet moments and the degree of half-sample delay approxi-

following examples. mations.
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