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Abstract

Complex discrete wavelet transforms (DWT) have signi#cant advantages over real wavelet transforms for certain signal
processing problems. Two approaches to the implementation of complex wavelet transforms have been proposed earlier.
Both approaches require discrete-time allpass systems having approximately linear-phase and (fractional) delay. This paper
compares the results when di8erent allpass systems are used. In the earlier work, maximally 9at delay allpass systems were
used. In this paper, it is shown that an allpass system designed according to the minimax criterion yields improvements for
the complex DWT.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although the discrete wavelet transform (DWT) is a
powerful signal-processing tool, it has three disadvan-
tages that undermine its usage in many applications.
First, it is shift sensitive because input-signal shifts
generate unpredictable changes in DWT coe?cients.
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Second, the DWT su8ers from poor directionality
because DWT coe?cients reveal only three spatial
orientations. Third, DWT analysis of real signals
lacks the phase information that accurately describes
non-stationary signal behavior. To overcome these
problems, Kingsbury [19,20] created the dual-tree
wavelet transform (DTWT), a redundant, complex
wavelet transform with excellent directionality, re-
duced shift sensitivity and explicit phase information.
Because of these advantages, the DTWT yields ex-
cellent results in applications where redundancy is
acceptable [6,32]. The DTWT is redundant because
it consists of a pair of #lter banks that simultane-
ously operate on the input signal and provide two
wavelet decompositions. The wavelets associated
with the #lter banks are a Hilbert pair. This prop-
erty is critical since it provides the advantages of
reduced shift sensitivity, improved directionality and
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explicit phase information: However, the design of
Kingsbury’s DTWT #lters is complicated because it
requires an iterative optimization over the space of
perfect-reconstruction #lter banks.
To simplify and generalize the DTWT design pro-

cedure, Selesnick [40,41] proposed a new method to
obtain #lters that may be used in a DTWT. He demon-
strated that arbitrary-length DTWT #lters with speci-
#ed number of vanishing moments may be generated
from the spectral factorization of a certain halfband #l-
ter. In addition, he proved that the wavelets associated
with the DTWT are a Hilbert pair if the halfband #lter
has a fractional-delay allpass factor. Selesnick’s tech-
nique applies to the design of orthogonal, biorthogo-
nal and IIR DTWTs.
A limitation of the DTWT approach to complex

wavelet transform (CWT) implementation is that the
DTWT is redundant because transform coe?cients re-
quire more storage space than the input signal. This
disadvantages the DTWT since redundant transforms
cannot be used in applications such as image/video
compression where parsimonious signal representa-
tions are crucial. To overcome this disadvantage Fer-
nandes et al. [8] subsequently de#ned projection-based
CWTs, a new framework for the implementation of
complex wavelet transforms. In this framework, the
input signal is projected onto a signal-space so that
its real and imaginary parts form a Hilbert pair. The
CWT is then implemented by computing the DWT
of the projected signal. Because the redundancy of
the projection may be controlled explicitly, both re-
dundant as well as non-redundant CWTs are obtain-
able. The projection #lters that implement orthogonal,
non-redundant CWTs must be generated by the mod-
ulation of a lowpass #lter that is the sum of allpass
polyphase components with fractional delay.
In this paper, we shall #rst brie9y explain the theory

behind fractional-delay allpass #lters. Then we shall
describe the projection-based and DTWT approaches
to the implementation of CWTs. In each case, we shall
show that minimax allpass #lters provide better per-
formance than maximally 9at allpass #lters.

2. Fractional-delay allpass systems

The procedures presented in this paper for the de-
sign and implementation of complex DWT depend

on the design of allpass systems. Speci#cally, the
projection-based complex DWT described in Section
3 requires the design of a (modulated) lowpass #lter
realized as the sum of two allpass systems,

H (z) = A0(z2) + z−1A1(z2): (1)

Section 4 requires the design of an allpass system that
approximates a delay of 0.5 samples.
The design of a lowpass #lters realizable as a sum

of allpass systems has been described in several pa-
pers [1,2,15,25,31,33–35,37]. It turns out, that the
design of the lowpass #lter in (1) requires again an
allpass system that approximates a fractional delay.
Therefore, the design of such an allpass system is
common to both types of complex DWTs described
below.
The allpass system A(z) has the frequency re-

sponse ej�(!) and it is desired that the phase response
�(!) approximates the linear function of frequency:
�(!) ≈ −�!. There are several methods to de-
sign allpass systems with general phase responses
[4,10,17,18,24,26–29,36,48] but the earlier imple-
mentations of complex DWT of [8,41] employ allpass
systems designed according to the maximally-9at
criterion [9,14,21,43,46]. However, as will be illus-
trated in Sections 3 and 4, the complex DWTs can be
improved by using allpass systems designed accord-
ing to the minimax (or Chebyshev) design criterion.
In this case, an allpass system A(z) is sought so as
to minimize the maximum of the (weighted) error
function,

max
|!|60:5	

|�(!) + �!|:

For this approximation problem, several authors
has presented iterative Remez-like exchange al-
gorithms for the design of allpass #lters and all-
pass sums according to the Chebyshev criterion
[11,16,22,23,38,36]. In the examples presented be-
low, we used Matlab programs by Lang and SchNuO-
ler that are available on the web at http://www-nt.
e-technik.uni-erlangen.de/∼hws/programs/
halfbandfilters/ and at http://www.dsp.rice.
edu/software/allpass.shtml. Fig. 1 illustrates
the error functions of allpass systems designed ac-
cording to the maximally-9at and minimax criteria.

http://www-nt.e-technik.uni-erlangen.de/~hws/programs/halfbandfilters/
http://www-nt.e-technik.uni-erlangen.de/~hws/programs/halfbandfilters/
http://www-nt.e-technik.uni-erlangen.de/~hws/programs/halfbandfilters/
http://www.dsp.rice.edu/software/allpass.shtml
http://www.dsp.rice.edu/software/allpass.shtml
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Fig. 1. Allpass system.

3. Projection-based CWT

In 1999, Kingsbury [20] developed the DTWT, a
CWT that has improved directionality and reduced
shift sensitivity when compared to the real wavelet
transform (RWT 4 ) [3]. One explanation for the
DTWT advantages is that the DTWT coe?cients
may be related to an analysis obtained from the DWT
associated with an analytic 5 wavelet [7]. In 2000,
Fernandes et al. [8] devised a di8erent method to
obtain complex wavelet coe?cients that may also be
related to DWT analysis with an analytic wavelet.
They argued that such an analysis may be performed
on L2(R → R) 6 signals by #rst projecting the input
signal onto the Hardy space 7 and then computing
its wavelet transform using the DWT associated
with a real wavelet. Fernandes [7] proved that these

4 The acronym RWT refers speci#cally to the DWT of a
real-valued function. Since we consider only DWTs implemented
with real #lters, RWT coe?cients are always real.

5 Analytic functions have frequency responses that vanish over
negative frequencies.

6 Usually, the notation L2(R) represents the space of
square-integrable, complex-valued functions on the real line. To
di8erentiate between complex-valued and real-valued functions,
we shall denote this functional space by L2(R → C) and we
shall use the notation L2(R → R) to represent the subspace of
L2(R→ C) that is comprised of real-valued functions.

7 The classical Hardy space H 2(R→ C) is de#ned by

H 2(R→ C), {f∈ L2(R→ C):F(!) = 0 for a:e: !¡ 0;
where F is the Fourier transform of f}:

projection-based CWTs also improve directionality
and have reduced shift sensitivity when compared to
the RWT. One advantage of the projection-based ap-
proach over the DTWT approach is that transform
redundancy may be controlled explicitly by selecting
between redundant and non-redundant projection
methods. In particular, the projection-based frame-
work allows for the creation of directional,
non-redundant CWTs with potential bene#ts for
video/image coding systems.
In this section, we shall #rst explain the redundant,

projection-based CWT. Next we shall show how the
projection can be made non-redundant to implement
a non-redundant CWT. This non-redundant CWT is
orthogonal if and only if allpass #lters are used in
the projection stage. We compare the performance of
maximally 9at allpass #lters and minimax allpass #l-
ters in the projection stage and we shall demonstrate
that the minimax allpass #lters provide better direc-
tionality than the maximally 9at allpass #lters.

3.1. The redundant CWT

In [7], Fernandes explained why the DWT of the
Hardy-space projection of an L2(R→ R) function has
more directionality, phase information and shift in-
sensitivity than the DWT of the function itself.
However, since it is impossible to compute such a
projection, he de#ned the Softy space, a new function
space that approximates the Hardy space. The redun-
dant CWT of an L2(R → R) function is de#ned to
be the DWT of its Softy-space projection, as depicted
in Fig. 2. The projection #lter h+ is used to project

Fig. 2. f+ is the Softy-space projection of f, and f+
d is the CWT

of f.
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Fig. 3. Filter-bank implementation of the redundant CWT and its inverse.

an L2(R→ R) function f onto the Softy space. This
#lter has a passband over [0; 	] and a stopband over
(−	; 0) so that it retains positive frequencies and sup-
presses negative frequencies. The #ltering implements
a projection onto an approximation to Hardy space
because Hardy-space functions vanish over negative
frequencies. Next, we compute f+

d , the DWT of the
Softy-space projection f+. We de#ne f+

d to be the
projection-based, redundant CWT. This function will
then undergo application-speci#c processing followed
by an inverse DWT (IDWT). An inverse-projection
#lter g+ returns the L2(R→ R) processed function f̂.
As shown in Fig. 3, the #lter bank that computes

the CWT is easily implemented by passing c, the scal-
ing coe?cient sequence associated with f, through
the projection #lter h+ before feeding it to a DWT
#lter bank. After application-speci#c processing, the
inverse CWT is implemented with the inverse DWT
followed by an inverse projection #lter g+, where
H+(z)G+(z) is a halfband #lter satisfying certain con-
ditions [7, p. 23].

3.2. The non-redundant CWT

In the preceding section, we introduced the CWT
as the DWT of f+, the Softy-space projection of an
L2(R → R) function f. Since f+ approximates fH ,
the Hardy-space projection of f, the CWT exhibits
explicit phase information, reduced shift sensitivity
and improved directionality. The reduced shift sensi-
tivity is obtained at the expense of a small amount
of data redundancy introduced by the projection #l-
ter. The redundancy is incurred because the projec-
tion of a real-valued signal will be complex valued
in general. However, redundancy is unacceptable in
applications such as data compression. Therefore, to

obtain a directional, non-redundant CWT, we shall
now develop the non-redundant projection: a projec-
tion that incurs no data redundancy while projecting
an L2(R→ R) function onto a function space that ap-
proximates Softy space. We shall refer to the DWT of
the non-redundant projection of an L2(R→ R) func-
tion as “the non-redundant CWT”. This transform has
improved directionality and o8ers explicit phase infor-
mation. It does not however have reduced shift sensi-
tivity. Therefore, the non-redundant CWT is targeted
at applications such as data compression in which a
non-redundant transform is more important than re-
duced shift sensitivity.
Apart from creating the non-redundant CWT,

the non-redundant projection has another signi#-
cant application. In [7], we demonstrate that the
non-redundant projection may be used to improve
transforms such as the undecimated DWT and the
Double-Density DWT [42]. We achieve the improve-
ment by enhancing directionality and providing useful
phase information without increasing redundancy and
while preserving shift-invariance properties.

3.2.1. De:ning the non-redundant projection
In Section 3.1 we used the projection #lter h+ to

de#ne the Softy-space projection of an L2(R → R)
function. However, the complex coe?cients of h+ in-
troduce data redundancy into the CWT. To eliminate
this data redundancy which is unacceptable in certain
applications, we now propose the non-redundant pro-
jection scheme shown in Fig. 4. As depicted in the #g-
ure, we de#ne the non-redundant projection to be the
concatenation of a projection #lter and a downsam-
pler (elimination of odd-indexed scaling coe?cients).
The downsampler eliminates the redundancy created
by the projection #lter that generates complex scaling
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Fig. 4. The non-redundant projection consists of a projection #lter
followed by a downsampler. This projection is non-redundant be-
cause c̃+ has the same storage requirement as c (N real numbers).

coe?cients from real scaling coe?cients. Observe that
the scaling-coe?cient sequences c and c̃+ can both be
represented by N real numbers within a digital com-
puter; therefore, there is no data redundancy in the
scaling-coe?cient sequence c̃+.

In [7], we prove that the non-redundant projection of
an L2(R→ R) function with a lowpass characteristic
is approximately equal to the Softy-space projection
of a low resolution version of the function. This result
is signi#cant because it empowers the non-redundant
projection with the directionality and phase informa-
tion associated with the Softy-space projection.

3.2.2. The non-redundant CWT and its inverse
Now that we have de#ned the non-redundant pro-

jection and examined its properties, we are ready to in-
troduce the non-redundant CWT. We refer the reader
to Fig. 5. The scaling coe?cient sequence c under-
goes a non-redundant projection that outputs c̃+. The
DWT of c̃+ is c̃+d the non-redundant CWT of c. In
[7], we demonstrate that the non-redundant CWT is
an orthogonal transform if it uses an orthogonal DWT

along with a projection #lter h+ that is created by
modulating a lowpass #lter having allpass polyphase
components. Speci#cally, H+(z) = H 0(−jz) where
H 0(z) = He(z2) + z−1Ho(z2), and He(z); Ho(z) are
allpass #lters selected to create the lowpass #lter h0.
Thus orthogonality places a design constraint on the
projection #lter h+.
To invert the non-redundant CWT, we #rst computễc+, the inverse DWT of c̃+d . Finally, we must invert

the non-redundant projection. In [7], we prove that the
block labeled “inverse non-redundant projection” in
Fig. 5 operates on ̂̃c+ to invert the non-redundant pro-
jection. This block separates the real and imaginary
components of ̂̃c+ and passes them through #lters
1=He(−z) and 1=Ho(−z), respectively. Note that these
are allpass #lters because He(z) and Ho(z) are the
allpass polyphase components of H 0(z). The outputs
of 1=He(−z) and 1=Ho(−z) are the polyphase com-
ponents of the reconstructed scaling coe?cient
sequence ĉ.

3.2.3. Designing the projection :lter
As seen above, orthogonality places a design con-

straint on h0 the lowpass #lter that is modulated
to generate h+. Another design constraint that be-
comes evident in Section 3.4 is that H 0(z) must
be a root-halfband #lter so that H 0(z)H 0(z−1) +
H 0(−z)H 0(−z−1) = 1. The design of lowpass #lters
satisfying these two constraints has been reported
previously [30,34,39]. In this paper, we shall use
these reported techniques to generate two di8erent
projection #lters and then compare the non-redundant
CWTs that use these #lters. The #rst projection

Fig. 5. Filter-bank implementation of the non-redundant CWT and its inverse. The symbols 1=he, 1=ho represent the #lters 1=He(−z),
1=Ho(−z), respectively.
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#lter h+max 9at is created by modulating a maximally 9at,
allpass-sum, lowpass #lter designed by Selesnick [39].
The second projection #lter h+minimax is generated by
modulating the minimax, allpass-sum, lowpass #lter
described in Schuessler and Ste8en’s article [34],
The #rst maximally 9at projection #lter is given

by

H+
max 9at(z) = H 0

max 9at(−jz); (2)

where

H 0
max 9at(z) = He

max 9at(z
2) + z−1Ho

max 9at(z
2);

and He
max 9at(z), H

o
max 9at(z) are allpass polyphase com-

ponents of H 0
max 9at(z) given by

He
max 9at(z) =

0:1056 + z−1

1 + 0:1056z−1 ;

Ho
max 9at(z) =

0:5279 + z−1

1 + 0:5279z−1 :

Similarly, for the minimax projection #lter, we have

H+
minimax(z) = H 0

minimax(−jz); (3)

where

H 0
minimax(z) = He

minimax(z
2) + z−1Ho

minimax(z
2);

and He
minimax(z), Ho

minimax(z) are allpass polyphase
components of Ho

minimax(z) given by

He
minimax(z) =

0:1874 + z−1

1 + 0:1874z−1 ;

Ho
minimax(z) =

0:6562 + z−1

1 + 0:6562z−1 :

Fig. 6 compares the magnitude responses of the
minimax andmaximally 9at projection #lters. Observe
that the transition band of the minimax projection #l-
ter is sharper than that of the maximally 9at projection
#lter, although both #lters have equal computational
complexity. In Section 3.5, we shall demonstrate that a
two-dimensional non-redundant CWT using the min-
imax projection #lter has better directionality than a
comparable non-redundant CWTwith a maximally 9at
projection #lter. In the next section, we motivate the
two-dimensional (2D) extension of the non-redundant

Fig. 6. Magnitude responses of minimax and maximally 9at projection #lters.
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Fig. 7. (a) Disc image, (b) RWT HL subband: vertical edges, (c) RWT LH subband: horizontal edges and (d) RWT HH subband: diagonal
edges.

CWT by discussing the poor directionality of the 2D
RWT.

3.3. Poor directionality in the RWT

The separable two-dimensional (2D) RWT is a
powerful image-processing tool, but in some applica-
tions its poor directionality is a serious disadvantage
because the 2D RWT can distinguish between only
three di8erent orientations of spatial features: hori-
zontal, vertical and diagonal. In Fig. 7, we illustrate
the poor directionality of the RWT. Fig. 7(a) shows
an image of a disc to which we apply a level-one
RWT and obtain the HL, LH, HH subbands shown
in Figs. 7(b)–(d). Observe that the RWT subbands
di8erentiate between only three feature-orientations:
horizontal, vertical and diagonal features. In this sec-
tion, we explain the poor directionality of the 2D
RWT based on the Fourier-plane tiling associated
with its subbands. In the next section, we introduce
the two-dimensional extension of the non-redundant
CWT. The Fourier-plane partitioning of this trans-
form is responsible for the improvement in direc-
tionality: it enables distinctions between six spatial
feature-orientations at +15◦, +45◦, +75◦, −75◦,
−45◦, −15◦.
Fig. 8 shows the Fourier-plane partitioning obtained

from a separable, two-level 2D RWT. The HH2 sub-
band is associated with diagonally-oriented spatial fea-
tures at scale 2 and concentrates its energy in the four
blocks labeled HH2. High energy at the output of the
#lter in the HH2 subband indicates the presence of this
class of features. The HH2 blocks in the upper-left and
lower-right corners indicate features whose gradients
are oriented at −45◦, while those in the upper- right
and lower-left corners indicate feature-gradient orien-
tations of +45◦ [13]. Since all four blocks are asso-

Fig. 8. Fourier-plane partitioning obtained from a separable
two-level 2D RWT.

ciated with the output of a single #lter in the RWT,
we cannot di8erentiate between these two orientations.
Similarly, feature-gradient orientations at +15◦ and
−15◦ are indistinguishable from their wavelet coe?-
cients since they are both associated with energy in
the HL2 subband. Features with gradients oriented at
+75◦ and −75◦ su8er a similar fate. It is evident that
the poor directionality of the RWT is due to positively-
and negatively-oriented blocks both being associated
with the same subband. In the following section, we
introduce the two-dimensional non-redundant projec-
tion that will decouple these blocks, thereby improv-
ing directionality.
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3.4. Improving directionality with the 2D
non-redundant CWT

In Section 3.2 we de#ned the non-redundant CWT,
a wavelet transform that o8ers phase information with-
out incurring any data redundancy. We shall now ex-
tend this transform to two dimensions so that it may
be applied to images. This will provide improved di-
rectionality without any additional redundancy.
Fig. 9 illustrates the two-dimensional extension

of the non-redundant CWT. In [7, p. 73], we argue
that for signals with a lowpass frequency-domain
characteristic, the frequency-domain action of the
non-redundant projection is similar to that of the re-
dundant projection. Therefore, while discussing the
directionality of the non-redundant CWT we shall
ignore the downsamplers in Fig. 9. To explain the
2D non-redundant CWT, we shall #rst extend the
non-redundant projection to two dimensions. Next,
we shall describe how 2D DWTs are applied to the
projection to obtain the 2D non-redundant CWT.

3.4.1. The 2D non-redundant projection
A one-dimensional L2(R → R) function is fully

described by its positive frequencies in the Fourier do-
main. Since the negative frequencies carry redundant
information they may be zeroed out thereby yielding
the Hardy-space image of the function. Similarly,
for real-valued two-dimensional images, the lower
half-plane of the Fourier transform carries redundant
information. We may eliminate this redundant infor-
mation to obtain a complex-valued spatial image with
phase information by #ltering the columns of the im-
age with a projection #lter h+y as shown in Fig. 9. The
subscript “y” indicates that the projection #lter h+ is
applied along the image columns.

To eliminate the redundant information contained
in the negative vertical frequencies, we use the pro-
jection #lter h+y to project the image columns onto an
approximation to the Hardy space. In one dimension,
elimination of redundant information along the nega-
tive half-line of the Fourier plane provides phase in-
formation. However, eliminating the negative vertical
half-plane in the two-dimensional Fourier plane and
then performing the DWT does not improve DWT di-
rectionality. To do so, we must decouple the positive,
horizontal frequencies from the negative, horizontal
frequencies.
We show how this may be done in Fig. 9. The h+y

projection #lter retains the positive vertical frequen-
cies. The h+x #lter is a projection #lter that operates
along the rows of the h+y #lter’s output and retains
the positive horizontal frequencies. Therefore, the out-
put from the h+x #lter is associated with the block la-
beled “h+x output” in Fig. 10. This block contains the
positive-vertical, positive-horizontal frequencies.
Recall that the h+x projection #lter retains positive

frequencies and suppresses negative frequencies. The
h−x projection #lter performs a similar operation: it re-
tains negative horizontal frequencies and suppresses
positive horizontal frequencies. The output from this
#lter is associated with the block labeled “h−x output”
in Fig. 10. This block contains the positive-vertical,
negative-horizontal frequencies. Therefore, the “pro-
jection” module in Fig. 9 eliminates the redundant
negative-vertical frequencies and decouples the posi-
tive horizontal frequencies from the negative horizon-
tal frequencies, as is evident in Fig. 10.

3.4.2. The 2D non-redundant CWT and its inverse
Having de#ned the 2D extension of the Softy-space

projection, we are ready to de#ne the 2D non-redundant

Fig. 9. The non-redundant 2D CWT.
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Fig. 10. Fourier-plane partitioning after 2D Softy-space projection.

CWT. This is easily done by performing 2D DWTs on
the images output by the “projection” module in Fig.
9. Applying a 2D two-level DWT to the output of the
h+x #lter partitions the “h+x output” block of Fig. 10 into
the subbands with the “+” superscripts in Fig. 11. Sim-
ilarly the 2D two-level DWT applied to the h−x #lter
output yields the subbands with the “−” superscripts
in Fig. 11. The decoupled HL+, HH+, LH+, LH−,
HH−, HL− subbands provide the 2D non-redundant
CWT with better directionality than the RWT. We
shall examine the directionality of these subbands in
Section 3.5. Now we shall describe the inverse 2D
non-redundant CWT.
To invert the non-redundant 2D CWT, we pro-

pose the structure shown in Fig. 12. The blocks la-
beled “2D IDWT” invert the 2D DWTs that were
applied to the decoupled images. Next we must in-
vert the non-redundant projections applied along the
image rows. Recall that the projection #lter h+ is a
root-halfband #lter. This design constraint allows h+x
and h−x to constitute the analysis bank of a 2-band dec-
imated #lter bank [45,47]. Therefore the correspond-
ing synthesis #lter bank comprised of #lters g+ and
g− will invert this analysis #lter bank and output ŝ.
As explained in Section 3.2.2 the #lters 1=He(−z),
1=Ho(−z) operate on the real and imaginary parts of
rows in ŝ to invert the non-redundant projection op-

Fig. 11. Fourier-plane partitioning of the 2D two-level CWT.

eration performed by h+x followed by a downsampler.
Finally, we recombine the polyphase outputs of the
#lters 1=He(−z), 1=Ho(−z) and obtain x̂, the recon-
structed image. In the next section, we explain the im-
proved directionality of the non-redundant 2D CWT.

3.5. Directionality of the 2D non-redundant CWT

The 2D non-redundant CWT has improved direc-
tionality because, at each scale, it provides the six
directional subbands HL+, HH+, LH+, LH−, HH−,
HL− shown in Fig. 11. As explained in Section 3.4,
these decoupled subbands describe feature-gradients
oriented at +15◦, +45◦, +75◦, −75◦, −45◦, −15◦,
respectively. We illustrate this improved directional-
ity in Fig. 13(a)–(f) where we show the directional,
level-one subbands of the 2D non-redundant CWT ap-
plied to the disc image in Fig. 7(a). On comparing to
the RWT disc-decomposition in Figs. 13(b)–(d), it is
clear that the directionality of the 2D CWT is signi#-
cantly better than that of the 2D RWT which has only
three directional subbands: horizontal, vertical and
diagonal.
We created the 2D non-redundant CWT decom-

position in Figs. 13(a)–(f) by using the maximally
9at projection #lter h+max 9at described in Eq. (2).
However, the directionality of the decomposition is
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Fig. 12. The non-redundant 2D ICWT. The symbols 1=hey , 1=h
o
y represent the #lters 1=He(−z), 1=Ho(−z) operating along the image columns.

Fig. 13. (a) HL+
max 9at subband: +15◦ feature-gradients, (b) HH+

max 9at subband: +45◦ feature-gradients, (c) LH+
max 9at subband: +75◦

feature-gradients, (d) LH−
max 9at subband: −75◦ feature-gradients, (e) HH−

max 9at subband: −45◦ feature-gradients, (f) HL−
max 9at subband:

−15◦ feature-gradients, (g) HL+
minimax subband: +15◦ feature-gradients, (h) HH+

minimax subband: +45◦ feature-gradients, (i) LH+
minimax

subband: +75◦ feature-gradients, (j) LH−
minimax subband: −75◦ feature-gradients, (k) HH−

minimax subband: −45◦ feature-gradients and
(l) HL−

minimax subband: −15◦ feature-gradients.

improved slightly if the minimax projection #lter of
Eq. (3) is used instead. The directional subbands
obtained from the decomposition with this #lter are
shown in Figs. 13(g)–(1). The improvement in di-
rectional selectivity is evident from a comparison of
corresponding subbands in the two decompositions.
For example, Figs. 13(e) and (k) show the HH−

subbands from the non-redundant CWT using maxi-
mally 9at and minimax projection #lters respectively.
Recall that the HH− subband reveals feature-gradient
orientations at −45◦. Therefore, the upper-right and
lower-left quadrants of the HH− subbands should
be dark because the input disc image has +45◦

feature-gradient orientations in these locations. Care-
ful examination of Figs. 13(e) and (k) shows that
these quadrants are indeed darker in Fig. 13(k) than
in Fig. 13(e). To make the comparison easier, we

placed the upper-right quadrant of Fig. 13(e) in the
upper half of Fig. 14. and the upper-right quadrant
of Fig. 13(k) in the lower half of Fig 14. Clearly,
the upper-right quadrant of Fig. 13(k) is suppressed
to a greater extent than the upper-right quadrant of
Fig. 13(e). Therefore, we conclude that the minimax
projection #lter provides a 2D non-redundant CWT
decomposition with better directional selectivity than
that obtained using a maximally 9at projection #lter
with the same computational complexity.

4. Dual-tree complex wavelet transform

Let the real #lters h0(n), h1(n) (Fig. 15) represent
a conjugate quadrature #lter (CQF) pair [44]. That
is, the autocorrelation of the lowpass #lter h0(n) is
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Fig. 14. The upper half of the #gure shows the upper-right quadrant
of the HH− subband from the 2D non-redundant CWT using a
maximally 9at projection #lter. The lower half of the #gure shows
the corresponding quadrant from a 2D non-redundant CWT with
a minimax projection #lter.

Fig. 15. The 1-D DTWT is implemented using a pair of #lter banks
operating on the same data simultaneously. The upper iterated
#lter bank represents the real part of a CWT, the lower one
represents the imaginary part. The transform is an expansive (or
oversampled) transform (or frame).

halfband:

ph(2n) = �(n) =

{
1; n= 0;

0; n �= 0;
(4)

where

ph(n) := h0(n) ∗ h0(−n)

and the highpass #lter is given by h1(n)=(−1)nh0(M−
n) whereM is an odd integer. Let the real #lters g0(n),
g1(n) represent a second CQF pair. The real-valued
scaling function �h(t) and the real-valued wavelet
 h(t) associated with the pair (h0(n); h1(n)) are de-
#ned implicitly by the following pair of equations:

�h(t) =
√
2
∑
n

h0(n)�h(2t − n); (5)

 h(t) =
√
2
∑
n

h1(n)�h(2t − n): (6)

The real-valued scaling function �g(t) and wavelet
 g(t) associated with the pair (g0(n); g1(n)) are de#ned
similarly.
Notation: The Z-transform of h(n) is denoted by

H (z). The discrete-time Fourier transform of h(n) will
be denoted by H (ej!),

H (ej!) =
∑
n

h(n)e−jnw:

The Fourier transform of  (t) is denoted by #(!) =
F{ (t)}.

4.1. Hilbert pairs

To implement a CWT, Kingsbury suggested using
two independent wavelet transforms operating in par-
allel on the same data. Then a complex-valued wavelet
 (t) can be obtained as

 (t) =  h(t) + j g(t)

where  h(t) and  g(t) are both real-valued wavelets.
Note that a complex transform implemented in this
way is not critically-sampled because two independent
wavelet transforms are required.
The bene#ts of complex wavelet transforms depend

on the spectrum of the complex-valued wavelet  (t)
being single sided (#(!)=0 for !6 0). To have this
property, it is required that the wavelet  g(t) be the
Hilbert transform of the wavelet  h(t). Speci#cally,

#g(!) =

{−j#h(!); !¿ 0;

j#h(!); !¡ 0;

which we denote as

 g(t) =H{ h(t)}: (7)

One question which arises is, how should the two
lowpass #lters h0(n) and g0(n) satisfying the CQF
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properties above be designed so that the corresponding
wavelets form a Hilbert pair? The wavelets are de#ned
only implicitly through Eqs. (5) and (6), but using
the in#nite product formula it was shown in [40] how
the two lowpass #lters can be chosen. Namely, it was
shown that if H0(!) and G0(!) are lowpass #lters
with

G0(!) = H0(!)e−j0:5! for |!|¡	; (8)

then the wavelets corresponding to these #lters
form a Hilbert transform pair. Informally, if in the
time-domain we have g0(n) = h0(n − 0:5), then
 g(t) = H{ h(t)}. If it is desired that both lowpass
#lters h0(n) and g0(n) be FIR, then it is impossible
to satisfy (8) exactly and an approximation must be
made.
The widely used wavelets constructed byDaubechies

are based on CQF #lters the transfer functions of
which have a speci#ed number of zeros at z=−1. The
delay condition (8) is an additional constraint which
must be included into the design of #lters h0(n) and
g0(n). In [41], the Daubechies construction is modi-
#ed so that the delay condition (8) can be included.
With this modi#cation, pairs of compactly supported
wavelets with vanishing moments can be obtained
that approximately satisfy the Hilbert property (7).
The construction described in [41] requires an all-

pass system A(z) which approximates a half sample
delay, and it is suggested that a maximally 9at delay
allpass system be used. However, any allpass system
with an approximately constant delay of a half sample
can be used. The better the allpass system approxi-
mates the constant delay of a half sample, the closer
the resulting pair of wavelets will be to a Hilbert trans-
form pair. In particular, an allpass system designed ac-
cording to the minimax (Chebyshev) criterion can be
used. The examples presented here will show that us-
ing allpass systems of this type yields pairs of wavelets
which more closely satisfy the condition (7). Conse-
quently, the spectrum #(!) of the complex-valued
wavelet  (t) will more accurately approximate zero
for !¡ 0.

4.2. Orthogonal solutions

To obtain a pair of lowpass #lters h0(n), g0(n) sat-
isfying the CQF condition (4) and the delay condition

(8), it was proposed in [41] that they have the follow-
ing form

H0(z) = F(z)D(z); (9)

G0(z) = F(z)z−LD(1=z): (10)

By appropriately designing the transfer function D(z)
of degree L, the delay condition (8) can be approxi-
mately satis#ed. H0(z) and G0(z) have F(z) in com-
mon, which will be determined below.
From (9) and (10) we have

G0(z) = H0(z)
z−LD(1=z)

D(z)
;

where we can recognize the transfer function

A(z) : =
z−LD(1=z)

D(z)

is an allpass system, |A(ej!)| = 1. Therefore
|G0(ej!)| = |H0(ej!)|, |G1(ej!)| = |H1(ej!)|, and by
the in#nite-product formula |#g(!)|= |#h(!)|. If the
allpass system A(z) is an approximate half-sample
delay, A(ej!) ≈ e−j0:5!, then the delay condition (8)
is approximately satis#ed: G0(ej!) ≈ H0(ej!)e−j0:5!.
Note that because it is not practical to ask that
A(ej!) ≈ e−j0:5! for all |!|¡	, it is necessary to
specify some band over which the this approximation
is accurate. Since G0(ej!) and H0(ej!) are lowpass
#lters, we will ask of the allpass system that A(ej!) ≈
e−j0:5! for |!|¡ 0:5	.
We therefore propose designing D(z) by designing

an allpass system A(z) according to the minimax crite-
rion. The desired phase of A(z) is −0:5!. The design
of A(z) so as to minimize

max
|!|60:5	

|phase ofA(z) + 0:5!|

can be performed using the allpass approximation al-
gorithms referenced in Section 2.
We will ask of H0(Z) and G0(Z) that they have K

zeros at z = 1 and in addition zeros at z = e±j!o . This
additional null in the stop-band of the lowpass #lter
can improve the 9exibility of the design procedure.
The two lowpass #lters then have the following form

H0(z) =Q(z)(1 + z−1)K

×(1 + 2 cos(!o)z−1 + z−2)D(z); (11)

G0(z) =Q(z)(1 + z−1)K

×(1 + 2 cos(!o)z−1 + z−2)z−LD(1=z): (12)
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The problem now is to #nd Q(z) so that h0(n) and
g0(n) satisfy the CQF conditions (4). Because h0(n)
and g0(n) have the same autocorrelation function:

P(z) := Ph(z) = Pg(z) (13)

=Q(z)Q(1=z)(z + 2 + z−1)K

×(z + 2 cos(!o) + z−1)2D(z)D(1=z) (14)

we can follow Daubechies construction to obtain Q(z)
using a spectral factorization approach as in [44]:
1. Find a symmetric sequence r(n) of minimal

length [r(n) = r(−n)] such that

V (z) = R(z)(z + 2 + z−1)K (z + 2 cos(!o)

+ z−1)2D(z)D(1=z)

is the transfer function of a halfband #lter. That is,
v(2n) = �(n).
The sequence r(n) can be obtained by solving a

square system of linear equations. Setting

S(z) : = (z + 2 + z−1)K (z + 2 cos(!o)

+ z−1)2D(z)D(1=z)

we can write the halfband condition as

�(n) = [ ↓ 2](s ∗ r)(n) (15)

=
∑
k

s(2n− k)r(k): (16)

In matrix form, we have a square matrix which has
the form of a convolution (Toeplitz) matrix with every
second row deleted.
2. Set Q(z) to be a spectral factor of R(z),

R(z) = Q(z)Q(1=z): (17)

Because Q(z) is given by spectral factorization, it is
not unique. Like Daubechies construction, there are
di8erent solutions with varying degree of symmetry.
We have assumed here that spectral factorization is
possible. In [12] Gopinath has proven that when D(z)
is a maximally-9at delay polynomial (and the stop-
band null !o is absent) then spectral factorization is
always possible. We have found that when the mini-
max criterion is used to design D(z) then in our ex-
amples the spectral factorization of R(z) has also been
possible.

Example. With K=2, L=2, and !o=0:8	 the #lters
h0(n) and g0(n) are of length 12. The magnitude of the

Fig. 16. Frequency response of h0(n).

frequency response |H0(ej!)| and the zeros of H0(z)
are shown in Fig. 16. We used in (17) a mid-phase
spectral factorization to make the wavelets more sym-
metric than they would be otherwise. The wavelets
 h(t) and  g(t) are shown in Fig. 17. The #gure also
shows the magnitude of the complex wavelet | (t)|
where  (t)=  h(t)+ j g(t). The envelope, shown as a
dashed line, does not have the oscillatory behavior the
wavelets themselves have. In the second panel of the
#gure, the magnitude of the spectrum of the complex
wavelet, |#(!)|, is also shown. Note that #(!) ≈ 0
for !¡ 0 which veri#es that the two wavelets form
an approximate Hilbert pair. The third panel of the #g-
ure shows a magni#cation of |#(!)|. The dashed line
shows |#(!)| when a maximally-9at delay polyno-
mial D(z) of degree 2 is used in the design procedure.
It can be seen that when the maximally-9at polyno-
mial is used, instead of one designed according to the
minimax criterion, the approximation su8ers. With the
minimax type, |#(!)| approximates zero for negative
frequencies with substantial improvement—the error
is reduced by over a factor of two.
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Fig. 17. A pair of wavelets which form an approximate Hilbert
pair. The complex wavelet  (t) =  h(t) + j g(t) has a spectrum
#(!) which is approximately single sided. The dashed curve in
the lower panel illustrates the solution corresponding to a design
based on the maximally-9at delay allpass system. The solution
obtained with a minimax delay allpass system approximates more
accurately the Hilbert pair property.

4.3. Biorthogonal dual-tree

In the biorthogonal case, we have the dual scal-
ing functions and wavelets by �̃h(t),  ̃ h(t), �̃g(t), and
 ̃ g(t). With the biorthogonal solution, the complex
wavelet  (t) =  h(t) + j g(t) will have a symmetric

magnitude: | (−t)|= | (t)|, as will the dual complex
wavelet  ̃ (t) =  ̃ h(t) + j ̃ g(t).

The dual scaling function �̃h(t) and wavelet  ̃ h(t)
are given by the equations

�̃h(t) =
√
2
∑
n

h̃0(n)�̃h(2t − n); (18)

 ̃ h(t) =
√
2
∑
n

h̃1(n)�̃h(2t − n): (19)

The dual scaling function �̃g and wavelet  ̃ g are
similarly de#ned.
The goal will be to design the #lters so that both

the primary (synthesis) and dual (analysis) wavelets
form approximate Hilbert transform pairs

 g(t) =H{ h(t)} and  ̃ g(t) =H{ ̃ h(t)}:
If we de#ne the product #lters as

ph(n) := h̃0(n) ∗ h0(n); (20)

pg(n) := g̃0(n) ∗ g0(n); (21)

then the biorthogonality conditions can be written as

ph(2n+ no) = �(n); (22)

pg(2n+ no) = �(n): (23)

That is to say, ph, pg must both be halfband. Without
loss of generality, we can assume that no is an odd
integer. In that case, the highpass #lters are given by
the following expressions [5,47]:

h1(n) := (−1)nh̃0(n); (24)

h̃1(n) := −(−1)nh0(n); (25)

g1(n) := (−1)ng̃0(n); (26)

g̃1(n) := −(−1)ng0(n): (27)

We will look for solutions of the form

h0(n) = f(n) ∗ d(n); (28)

h̃0(n) = f̃(n) ∗ d(L− n); (29)

g0(n) = f(n) ∗ d(L− n); (30)

g̃0(n) = f̃(n) ∗ d(n): (31)
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The problem is to #nd f(n) and f̃(n) such that
(i) the biorthogonality conditions (22) and (23) are
satis#ed, (ii) the wavelets have K vanishing moments
(K̃ vanishing moments for the dual wavelets), and in
addition zeros at z=e±j!o and (iii) the wavelets form
an approximate Hilbert transform pair.
To obtain the half sample delay, needed to ensure

the approximate Hilbert property, we choose d(n) to
come from an allpass #lter as before,

A(z) =
z−LD(1=z)

D(z)
≈ z−1=2 around = 1:

To ensure the vanishing moments properties, we take
F(z) and F̃(z) to be of the form

F(z) =Q(z)(1 + z−1)K

×(1 + 2 cos(!o)z−1 + z−2); (32)

F̃(z) = Q̃(z)(1 + z−1)K̃

×(1 + 2 cos(!o)z−1 + z−2); (33)

whereK+K̃ is odd.K denotes the number of vanishing
moments of the primary (synthesis) wavelets, and K̃
denotes the number of vanishing moments of the dual
(analysis) wavelets. The product #lters ph and pg are
then given by

P(z) := Ph(z) = Pg(z) (34)

=Q(z)Q̃(z)(1 + z−1)K+K̃ (z + 2 cos(!o)

+ z−1)2D(z)D(1=z)z−L: (35)

To obtain the required halfband property, we #nd a
symmetric odd-length sequence r(n) so that

R(z)(1 + z−1)K+K̃ (z + 2 cos(!o) + z−1)2

×D(z)D(1=z)z−L

is halfband. The symmetric sequence r(n) can be ob-
tained by solving a linear system of equations as in
Section 4.2. We can then obtain Q(z) and Q̃(z) by
factoring R(z),

R(z) = Q(z)Q̃(z); (36)

where both q(n) and q̃(n) are symmetric. As q(n) and
q̃(n) are symmetric, so are f(n) and f̃(n). It follows
that h0(n) and g0(n) are related by a reversal, g0(n)=
h0(N − 1− n), and similarly, g̃0(n) = h̃0(N − 1− n).

Therefore, h0, h̃0, g0 and g̃0 have approximately linear
phase (because d(n) does) in addition to satisfying the
condition (8) approximately. Note that the symmetric
factorization (36) is not unique—many solutions are
available. Also note that the sequences f(n) and f̃(n)
do not need to have the same length.

Example. With K = K̃ = 2, L = 2, and !o = 0:8	
we can take the synthesis #lters h0(n) and g0(n) to
be of length N = 13. The analysis #lters h̃0(n) and
g̃0(n) will then be of length 11. Figs. 18 and 19 il-
lustrate the analysis and synthesis wavelets, respec-
tively, obtained from a symmetric factorization. The
#rst panel of each #gure also shows the magnitude of
the complex wavelet | (t)|where  (t)= h(t)+j g(t).
In the second panel of each #gure, the magnitude of
the spectrum of the complex wavelet, |#(!)|, is also
shown, These plots of |#h(!)+j#g(!)| and likewise
|#̃h(!) + j#̃g(!)| show that they approximate zero
for !¡ 0, which veri#es that the two wavelets form
an approximate Hilbert pair. The third panel of the #g-
ures show a magni#cation of |#(!)| and |#̃(!)|. The
dashed line shows |#(!)| when a maximally-9at de-
lay polynomial D(z) of degree 2 is used in the design
procedure. It can be seen that when the polynomial de-
signed according to the minimax criterion is used, in-
stead of the maximally-9at type, the approximation is
substantially improved. For both the analysis and syn-
thesis complex wavelets, the minimax type, |#(!)|
approximates zero for negative frequencies with sub-
stantial improvement—the error is reduced by over a
factor of two.

5. Conclusion

Complex discrete wavelet transforms (DWTs)
provide three signi#cant advantages for signal
processing applications: they have reduced shift
sensitivity with low redundancy, improved direction-
ality and explicit phase information. To implement
a low-redundancy complex DWT, Selesnick [40,41]
proposed a #lter design technique for Kingsbury’s
dual-tree complex wavelet transform [20,19]. Se-
lesnick’s method creates a Hilbert wavelet pair with
speci#ed vanishing-moments by spectral factoriza-
tion of a halfband #lter containing a fractional-delay
allpass factor. In Section 4, we demonstrate that both
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Fig. 18. An approximate Hilbert pair of analysis wavelets. The
dashed curve in the lower panel illustrates the solution correspond-
ing to a design based on the maximally-9at delay allpass system.
The solution obtained with a minimax delay allpass system ap-
proximates more accurately the Hilbert pair property.

orthogonal and biorthogonal wavelet-pairs approxi-
mate a Hilbert pair with less than half the error when
a minimax fractional-delay allpass factor is used in-
stead of the maximally-9at allpass factor proposed
earlier by Selesnick. Because the advantages of com-
plex DWTs arise from the Hilbert-pair relationship,
the improvement in approximation implies that the
advantages of the low-redundancy dual-tree complex

Fig. 19. An approximate Hilbert pair of synthesis wavelets. The
solution obtained using a maximally-9at allpass illustrated with a
dashed line, does not provide as accurate an approximation to the
Hilbert pair property as the solution obtained using the minimax
allpass system.

DWT will be more pronounced when minimax allpass
systems are incorporated into the design procedure.
In Section 3, we discuss the projection-based ap-

proach to complex DWTs. This method allows the
implementation of low-redundancy complex DWTs
as well as non-redundant complex DWTs. The
low-redundancy complex DWT provides the same
advantages as the DTWT. On the other hand, the
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non-redundant complex DWT is a parsimonious sig-
nal representation with improved directionality and
explicit phase information. In particular, it is use-
ful in applications such as image/video compression,
where parsimonious signal representations are cru-
cial. In earlier research, Fernandes [7] showed that
the non-redundant complex DWT is orthogonal if the
associated projection #lter is generated by the mod-
ulation of a lowpass #lter that is the sum of allpass
polyphase components with fractional delay. In Sec-
tion 3.2, we demonstrate that the directionality of the
non-redundant complex DWT is visibly improved by
using minimax allpass #lters instead of maximally 9at
allpass #lters in the projection-#lter design.
To conclude, we emphasize that both low-redun-

dancy complex DWTs and non-redundant complex
DWTs may be designed with fractional-delay all-
pass systems. These complex DWTs o8er several
signi#cant advantages to signal processing appli-
cations. In both transforms, these advantages are
more pronounced when minimax fractional-delay
allpass systems are used instead of maximally 9at
fractional-delay allpass systems.
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