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Balanced GHM-Like Multiscaling Functions

Ivan W. Selesnick Member, IEEE

Abstract—The Geronimo-Hardin-Massopust (GHM) multi- 1) both¢o(t) and ¢ (¢) are symmetric;
wavelet basis exhibits symmetry, orthogonality, short support, 2) bothhg(n) and hy(n) are symmetric, odd length (type
and approximation order K= 2, which is not possible for wavelet 1) finite impulse respoonse (FIR) filters:

bases based on a single scaling-wavelet function pair. However,
the filterbank associated with this basis does not inherit the zero
moment properties of the basis. This work describes a version
of the GHM multiscaling functions (constructed with Grodbner Il. PRELIMINARIES

bases) for which the zero moment properties do carry over to . . .
the associated filterbank. That is, the basis is balanced up to its  1NhiS paper considers multiwvavelet bases based on two

approximation order K=2. scaling functions¢o(t), ¢1(t) and two wavelet functions
(t), ¥1(t). Accordingly, there are two scaling filtefg(n),

3) ho(n), hi(n) differ in length by four.

Index Terms—Filterbank, FIR, Gr dbner bases, orthogonal Yo

multiwavelet. hi(n) and two wavelet filtersia(n), hs(n).
The functions ¢o(t), ¢1(¢) are orthogonal multiscaling
functionsif
[. INTRODUCTION

1) ¢o(t), ¢1(t) satisfy amatrix dilation equation
T IS OFTEN desired, in image processing for example,
that the scaling function of a wavelet basis be symmetric =2 ZC (2t — )
and of compact support. However, as is well known, except for
the Haar basis, the scaling functigf¢) of an orthogonal real-
valued wavelet basis can not have both symmetry and compact Wwhere ¢(t) = (¢o(t), ¢1())", and C(n) are 2 x 2
support. For this reason, the orthogonal multiwavelet basis (a matrices

wavelet basis based on more than one scaling function) con2) ¢o(t), ¢1(t) are orthogonal to their integer shifts:
structed by Geronimet al. (GHM) in [3] is most interesting.
It is based on two symmetric scaling functions(t), ¢ (t), / Gi(t)p;(t —n)dt = 6(i — j) - 6(n).

both of compact support. A symmetric/antisymmetric pair of _
waveletsyo(t), 11 () were developed in [2] and [9]. The basisI e notation forC(n) used in this paper isC(n)};,; =
also has approximation order two [2 zero wavelet momentg:(2n + j). For example

S thi(t)dt =0,k =0,1,4 =0, 1].

Unfortunately, the flIterbank assouated with a multiwavelet ¢(g) = <h0(0) ho(1) )7 c(1) = <h0(2) h0(3)>
basis does not inherit the zero moment properties of the hi(0) (1) hi(2) 1a(3)
basis, unless the basis satisfies additional properties [6], [7
In other words, for multiwavelet bases, zero moments 8; whereho andh, are the two scaling filters. .
the continuous-time wavelets, (t), defined onIR, do not For h_o,_hl to generate orthogonal multiscaling functlons_
imply zero moments of the discrete-time wavelet filtey&:), d)oz ¢1, itis necessary that they must be orthogonal to their
defined onz. Multiwavelet bases for which the zero momen?'its by four:
propertiesdo carry over to the discrete-time filterbank are Z hi(n) hj(n + 4k) = §(i — 5) - 5(k). (1)
called balanced after Lebrun and Vetterli [5]. Specifically,
multiwavelet bases for which the associated filter bank pr
serves/annihilates the s&,_; of polynomials of degree
k < K are said to beorderK balanced.

The GHM basis has approximation order two, but unfortu—
nately is order zero balanced. The filterbank associated with (»72 + 272 4 27 + 1) divides Ho(z) + Hi(2). (2)

the GHM basis does not preserve/annihilate constant signals.
This letter describes orthogonal GHM-like multiscaling funcOrder-two balanced multifilterbanks preserve and annihilate

tions balanced up to their approximation ordér= 2. Like ramp and constant signals. The condition for order-two bal-
the GHM basis: ancing is

Brder-one balanced mulifilterbanks preserve/annihilate con-
stant signals. From [7] the condition for order one balancing

(2—3 + 2—2 +Z_1 + 1)2
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Fig. 1. Symmetric order one balanced orthogonal multiscaling functionsig. 2. Symmetric order-two balanced orthogonal multiscaling functions,
supported on [0, 1] and [0, 2]. supported on [0, 3] and [0, 4].
I1l. BALANCED GHM-LIKE MULTISCALING FUNCTIONS TABLE |
) . . ORDER-TWO BALANCED ORTHOGONAL SYMMETRIC MULTISCALING
Our problem is to find symmetriky andh; such that they FiLTERS. h;(n) ARE NORMALIZED TO SUM TO ONE

satlsf_y_ the orthog_on_allty conditions (1)_ and the k_JaIancmg A=8/1713v2/34
conditions (3). This is a system of nonlinear equations—the g _ _4/y 4 12 4 /10404A% — 108124 + 2907/204
balancing conditions (3) are linear, but the _orthogopahty 1o (0) = ho(6) = B + 24/3 — 2/3
conqruons (1) are quqdratm. We use a.IeX|caI0531er ho(1) = ho(5) = —2B — 7TA/6+ 7/6
baS|_s to_ solve the n_onllnear equatlons: Given a system of 4, (2) = ho(4) = B
multivariate polynomials, a ®bner basis (GB) is a new ho(3
set of multivariate polynomial equations, having the same "5 (o
set of solutions [1]. When the lexical ordering of monomials  »
is used, and there are a finite number of solutions, the
“last” equation of the GB will be a polynomial in a single h
variable—so its roots can be computed. These roots can &
be substituted into the remaining equations, etc.—like back _*
substitution in Gaussian elimination for linear equations.
Unfortunately, GB solutions are only practical for smalthogonal and of compact support. In addition, the associated
problems, because computing a GB is highly compute afilerbank also has the zero moments properties, important for
memory intensive. However, for certain problemsdirer compression and denoising. Programs for reproducing these
bases are very useful. See, for example, [8] for a descriptitgsults will be available at http:/taco.poly.edu/selesi.
of a previous application of ®bner bases to filter design.
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