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Abstract—This paper considers the design of wavelet tight frames based on
iterated oversampled filter banks. The greater design freedom available makes
possible the construction of wavelets with a high degree of smoothness, in
comparison with orthonormal wavelet bases. In particular, this paper takes up the
design of systems that are analogous to Daubechies orthonormal wavelets—that is,
the design of minimal length wavelet filters satisfying certain polynomial properties,
but now in the oversampled case. Grébner bases are used to obtain the solutions
to the nonlinear design equations. Following the dual-tree DWT of Kingsbury, one
goal is to achieve near shift invariance while keeping the redundancy factor bounded
by 2, instead of allowing it to grow as it does for the undecimated DWT (which is
exactly shift invariant). Like the dual tree, the overcomplete DWT described in this
paper is less shift-sensitive than an orthonormal wavelet basis. Like the examples
of Chui and He, and Ron and Shen, the wavelets are much smoother than what is
possible in the orthonormal case .o 2001 Academic Press
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1. INTRODUCTION

Frames, or overcomplete expansions, have a variety of attractive features. With frames,
better time-frequency localization can be achieved than is possible with bases. Some
wavelet frames can be shift invariant, while wavelet bases cannot be. Frames provide more
degrees of freedom to carry out design. Several applications have benefited from the use
of frames, for example, denoising [3, 9, 23, 39] and signal coding [15, 25]. There are a
number of methods of generating practical frames.

1. The undecimated DWTUDWT) generates a wavelet frame from an existing
wavelet basis by removing the subsampling from an existing critically sampled filter bank,
see [9, 18, 26, 29, 36].

2. A wavelet frame can be obtained by taking the union of two (or more) bases. This
can be implemented with two independent filter banks operating in parallel. Kingsbury has
shown the advantages dfial-tree DWTsn [19, 20].

1 Research supported by NSF under CAREER Grant CCR-987452.
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3. Awavelet frame can also be obtained by iterating a suitably designed oversampled
filter bank as developed in [7, 30, 31], for example. This is the type of frame to be
considered in this paper.

Of these three methods, only the undecimated DWT generates a truly time-invariant
discrete transform. However, the UDWT has an expansion factor @f lagexpands an
N-sample data vector ty log N samples. For very large data sets, like images, this data
expansion can make it difficult to use in practice. On the other hand, the dual-tree DWT,
and the oversampled DWT to be described below, expandg-aample data vector to
2N samples—independent of the number of scales over which the signal decomposition is
performed. While it does not yield exactly shift-invariant discrete transforms, Kingsbury
has shown that, nevertheless, the dual-tree DWT can be made very nearly time invariant by
suitably designing two filter banks to work togettfer.

This paper describes new wavelet tight frames based on iterated oversampled FIR filter
banks, first introduced in [35]. The setting is the same as [7, 30]; however, the design
problem under consideration and the approach are different. In particular, this paper takes
up the design of systems that are analogous to Daubechies orthonormal wavelets [12]—that
is, the design of minimal length wavelet filters satisfying certain polynomial properties, but
now in the oversampled case. It should be noted that in the oversampled case, if a wavelet
is very smooth it does not mean that its momghméw(t) dt are zero (or small) fok > 0,
in sharp contrast to the orthonormal case. The smoothness and zero moments properties
are less related than in the critically sampled case. Like the examples by Chui and He [7]
and Ron and Shen [30], the wavelets presented below are much smoother than what can be
achieved in the critically sampled case; however, in this paper the zero moments properties
of the wavelets are also taken into account. For a given number of wavelet moments and a
given number of zeros at= —1 of the scaling filtetHp(z), the wavelets presented below
are of minimal length.

In [7, 30] methods are given to generate a tight wavelet frame corresponding to a
specified refinable function (scaling function). The approach taken in this paper is to treat
the scaling and wavelet functions together as unknown. The nonlinear design equations
that arise are then solved using Grobner bases. As Grobner bases are used in this paper to
carry out the design, we are able to obtain zero wavelet moments for wavelets of minimal
length, in contrast to earlier work on wavelet tight frames of this type. Although the high
computational and memory cost of Grébner bases limits their utility, we are able to obtain
solutions of practical interest. In addition, software for Grobner bases is improving with
time.

In addition, like Kingsbury’s dual-tree DWT, the frames presented in this paper are less
shift-sensitive than orthonormal wavelet bases, even though the redundancy rate is only 2,
independent of the number of scales over which the signal expansionis performed. Because
the frames described in this paper are based on iterated FIR filter banks, a fast discrete
frame transform is simple to implement. This paper considers exclugigélyframes.

2 Kingsbury’s dual-tree DWT is designed to act as a complex wavelet transform; however, that interpretation
does not apply to the frames to be presented here.
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2. WAVELET TIGHT FRAMES AND ITERATED OVERSAMPLED FILTER BANKS

2.1. Preliminaries

For in-depth analysis of oversampled filter banks and frames, see for example [1, 4, 8,
11,12, 30, 31]. Here the notation and basic framework is given. We follow a framework that
closely resembles the standard multiresolution framework leading to orthonormal dyadic
wavelet bases. Each of the wavelet tight frames to be developed in this paper will be based
on a single-scaling functiog(z) and two distinct waveletg1(r) andy»(t). (We label the
wavelets ag/1, ¥ instead ofyo, ¥1 as it will simplify notation.) Following the theory of
dyadic wavelet bases, the scaling sp&gand the wavelet spacés; ; are defined as

V; = Spari¢(2/t —n)}

nez

W, =Spariy; (2t —n)},  i=12

nez

(Of course, dyadic waveldiasesare based on a single-scaling functigrand a single
wavelety. The extra wavelet here makes this system an overcomplete one.) Following
the multiresolution framework, one asks that these signal spaces be nggtedy,

Wi.0 C V1, Wa o C V1. It follows thate, ¥1, ¥ satisfy the dilation and wavelet equations

$(t)=+2) ho(m)p(2t —n)

Vi) =v2) himp2 —n), i=12

Corresponding t@, v1, ¥2, we have the scaling filtérg(n), the two wavelet filterd 1 (n)
andha(n), and the oversampled filter bank illustrated in Fig. 1. The transfer funéfjoy)
is given by) ", h;(n)z7". Note that throughout the papeg R, i, j, k,[,m,n € Z.

Let g (1) = ¢ (t — k) andyy; j (1) = ; (2/t — k) fori = 1, 2. In this paper we consider
¢, y; for which any square integrable signglr) is given by

o0

fO= )" cld®+) D dil, v ja®) +do(j, b)Yz @), (1)

k=—00 j=0k=—o00

where

C(k)=/f(t)¢k(t)dt, di(jvk):/f(f)Wi,j,k(t)df, i=12

(-G — B
®

FIG. 1. Anoversampled analysis and synthesis filter bank.
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That is, the functiongey (t), v jx(t):j. k € Z, j = 0,i € {0,1}} form a tight frame

for Lo(R). Note that an orthonormal dyadic wavelet basis can be written in this form—
with ¥»(r) = 0 andh2(n) = 0 one retrieves the multiresolution framework that leads to
orthonormal bases.

From (1), it can be shown that both frame bourdand B are equal to 1. It should be
emphasized that even though= B = 1, the frames to be considered in the paper are not
an orthonormal basis because the functipng, andy, do nothave norml1lA =B =1
means the frame is an orthonormal basis only wien|| = ||v2]| = 1, which will not be
the case for the tight frames to be described in this paper.

The frame conditions require thdty; (1) dt = 0. Therefore, setting/(r) = 1 in (1)
we get 1= Y, ([ ¢x(r)dr)¢k(r) (ignoring that f(r) = 1 is not square integrable),
or 1= ([/¢@)dn)(>_; ¢x(1)). Using the identityd ", ¢x(t) = [¢(1)dr (provided is
continuous), one gets= ([ ¢ (1) dr)?. We will use the normalization [ o) dt.

2.2. Zerosatw=0,w=m

The degrees of freedom in the design of oversampled filter banks can be used in a variety
of ways. We emphasize that, in contrast to critically sampled filter banks, there are some
important differences with respect to zero wavelet moments and the smoothness properties.
It is noted that this can be used to improve the smoothness of the wavelets as in [7, 30].
Let Ko denote the number of zer@#(e/?) has atw = . Fori =1, 2, let K; denote the
number of zerog; (e’®) has atw = 0:

Ho(z) = Qo) (z +DX°,  Hi(2) = 01(2)(z — DXL, Ha(z) = 02(2)(z — DF2.

For orthonormal baseg/b(r) = 0), it is necessary thakg = K1, so no distinction need

be made betweekp and K1. However, for tight wavelet frames of the form (1), it is not
necessary thako = K1 = K». Ko denotes the degree of polynomials representable by
shifts of ¢ (r) and is related to the smoothness¢af). K1 and Ko denote the number of
zero moments of the wavelet filtekg (n) andhz(n), providedKg > K1, and Kg > K>.
Thatis, as long a&g > K1 andKg > K2, one has

Pke-1CVo  and /tkwi(t)dtzo fork=0,...,K; -1, i=12,

resembling the case for orthonormal wavelet baseésdenotes the space of polynomials
of degreek and less.)

The value ofKg influences the degree of smoothnesg ¢and therefore of/;). On the
other hand, the valuels; and K> indicate what polynomials are annihilated (compressed)
by the given signal expansion. In contrast to orthonormal wavelet bases, with a tight frame
one has the possibility of controling these parameters more freely. If it is desired for a given
class of signals that the wavelets have two zero moments (for example), then the remaining
degrees of freedom can be used to achieve a higher degree of smoothness byKaking
greater thark1 and K.

Although the valuek; need not all be equal, there is still the constraint

lengthho > Ko + min(K1, K2).
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This is obtained from
| Ho(e’®)|? + [Hi(e!®)|? + | Ho(e!®)|? = 2, )

which is a consequence of the tight frame conditions (3). So the minimum lengthief
Ko+min(K1, K2). Inthe orthonormal cas€p = K1 andK> = oo (ash, = 0), which gives
the minimum length ohg to be 2K, which is consistent with Daubechies’ orthonormal
filters.

2.3. Spline-Based Tight Frames

Ron and Shen present a very interesting example in [30, 31] of a family of wavelet
tight frames based on spline functions. In that example, ther&Kareavelets, and the
scaling functionyp is a spline obtained by convolving the square pyiég with itself Ko
times:p () = p(r) *--- % p(t) (a B spline).Ko can be any integer, sp can be extremely
smooth and symmetric, and approaches the Gaussi&fh &sincreased. In addition, all
the wavelets are also symmetric or anti-symmetric. The filigese given by

B Ko\ /147 1\ Komi rq— -1N!
no=v2)(7)(55-) " (55)

fori =0, ..., Ko. In this construction the number of wavelets increases with the increase
of the smoothness, and thé wavelet hag zeros at = 1. That is, increasingo increases
the redundancy and does not raise the mininkymin particulary/1 haskq =1 only.

More recently, Chui and He [7] also introduced wavelet tight frames for the ggmge
but with only two wavelets (three if they are to be symmetric and anti-symmetric). This
reduces the redundancy; however, in this case at least one of the wavelets does not have
more than a single zero moment. Also introduced in [7] are wavelet tight frames based on
symmetric interpolating scaling functions, for whighy = K1 = 2K>.

In Section 3, examples of minimal length are given for which the redundancy is limited
to 2, and for whichK1 = K2 > 1. However, the filtersi; are not given by a simple
formula.

2.4. Norms

It should be emphasized that for a tight frame of this kind, it is not necessanytfzatd
Y7 have the same normg&.£ norms). While many examples of tight frames given in the
literature are based on functions having equal norms, that is not a requirement in general.
In particular, for the examples presented below, we hakg| # ||v2]. It is important
to know the value of the normgy; || in applications where the wavelet coefficients
(f, ¥;) are processed, for example, by quantization in compression, or thresholding in
denoising. The quantization and threshold levels must be adjusted according to the norm
of ¥;.

Because closed form expressions ¢ar) and; (1) are not available in general, their
norms cannot be calculated directly. However, given the filigrthe normg| ¢ ||, ||¢|l can
be conveniently calculated by defining the autocorrelation functicnsandw; (¢) and by
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then evaluating them at= 0. Let
s(1):=¢@) xp(—1) =/¢(f)¢(f+t)df,

w; (1) IZI//i(Z)*l/fi(—t)z/wi(t)wi(t—f-t)dt, i=1,2.

Then s(0) = ||¢(1)||2 and w; (0) = ||yi (1)||2. It can be shown that the autocorrelation
functionss () andw; (¢) satisfy dilation and wavelet equations, asgdo) andv; (7),

s(t) = ﬁzro(n)S(t —n),
wi(t)zx/éZri(n)s(t—n), =12,

wherer; are the discrete-time autocorrelation sequences of the filters

ri(n) = %Zhi (n) * hi(—n),

1
= 72Zhi(k)m(lurn), i=0,1,2
k

Therefore, samples of(r) andw; () can be computed using the same methods used to
compute samples af(r) and(¢), described in [5, 37] for example. In particularQ)
andw; (0) can be obtained.

As [¢(t)dr =1, we also havef s(r)dt = 1. (The integral of a convolution is the
product of the integrals.) This normalization condition is needed so that the samp{es of
w; (t) can be obtained correctly.

2.5. Filter Banks

Just as Mallat's algorithm for computing a wavelet expansion of a signal from its
fine-scale scaling coefficientgk) can be implemented by iterating a critically sampled
two-channel filter bank, a wavelet frame of the type described above corresponds to the
oversampled filter bank illustrated in Fig. 1. It also gives an overcomplete discrete-time
signal expansion (a frame féy(Z)).

Wavelet frames, having the form described above, have twice as many wavelets than is
necessary. Yet note that the corresponding filter bank illustrated in Fig. 1 is oversampled
by 3/2, not by 2. However, if the filter bank is iterated a single time on its lowpass branch
(ho), the total oversampling rate will be/Z. For a three-stage filter bank, illustrated in
Fig. 2, the oversampling rate will be 18. When this filter bank is iterated on its lowpass

— o) (2 T Ho) () —— ) [+
() [—~(12) Bl ® 1) (12
Bl ® 72 (1) B ®

FIG. 2. Aniterated oversampled filter bank.
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branch indefinitely, the total oversampling rate increases toward 2, which is consistent with
the redundancy of the frame fén (R).

The “algorithme a trous” or undecimated DWT, is based on the iteration of an
undecimated two-channel filter bank. Note that/estage filter bank of this type gives
[ + 1 output samples for each input sample—it is redundant by a factdr+efL.
Therefore, although this overcomplete expansion system is exactly shift invariant, it has an
oversampling rate that increases without bound as the filter bank is iterated indefinitely, and
although only a finite number of levels can be implemented in practice, the high degree of
redundancy can make the undecimated DWT impractical for very large multidimensional
data sets.

Even though both the filter bank illustrated in Fig. 2 and the iterated undecimated filter
bank (on which the UDWT is based) are oversampled, they lead to overcomplete signal
expansions having very different rates of redundancy. In the first case, the redundancy is
bounded by 2, while in the second case, the redundancy grows with the number of scales
over which the signal is analyzed.

2.6. Frame Conditions

For the oversampled filter bank of Fig. 1 we have by standard multirate identities the
relation,

1
Y(z) = E[Ho(z)Ho(l/z) + H1(2)H1(1/z) + H2(z) H2(1/2)1X (2)

1
+ E[Ho(—Z)Ho(l/Z) + H1(—2) H1(1/2) + H2(—2) H2(1/2)1X (—2).

Therefore, forho, h1, ho to generate a tight frame, it is necessary that they satisfy the
perfect reconstruction equations

Ho(z)Ho(1/2) + H1(z)H1(1/2) + H2(2) H2(1/2) = 2 3

and

Ho(—z)Ho(1/z) + Hi(—z)H1(1/z) + H2(—2z)H2(1/z) = 0. 4)

For detailed descriptions of oversampled PR filter banks, see for example [4, 11, 22].

2.7. Discrete-Time Wavelet Tight Frame Expansions

The iterated oversampled filter bank provides an overcomplete discrete-time ex-
pansion (a frame fol2(Z)). Following the exposition and notation of, for example,
[38, Section 3.3.1], we denote the iterated filters that form the discrete-time frahjé? by
In a tight frame filter bank witly stages, the iterated filters are given by

J-1

k
Hy" (@) =[] Ho(z'®")
k=0

j-2
i (=1 k . .
HY (z) = Hi(z%" ) [[Ho®)),  i=12 j=1...J
k=0
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Then any sequencgn) € I2(Z) can be written as a linear combinationid}")(n —27k),
hfj)(n - 2/k), i =12, j =0,...,J, k € Z, where the weights are given by
(hS" 27k —n), x(n)), (b 27k — n), x(n)).

An important difference between discrete-time orthonormal expansions and tight frame
expansion of this type is the following: Not only are the norms,ofinequal, the norms of
the iterated filtershf” for different values ofj are also unequal. In the orthonormal case
||h§j)|| =1 for all j, but in the case of tight framqphfj)n + ||h§j+1)||. Quantization and
threshold levels must be adjusted accordinmﬁ) II. However, ag increases, their norms
converge to the norms of the continuous-time functigis, ¥; (¢), as will be illustrated
in the examples below.

3. NEW EXAMPLES

We seek to design FIR filters, h;, ho that generate tight frames of the form described
in (1). The filters also generate discrete-time tight frames via the iteration of oversampled
filter banks. We seek the shortest filtérshaving a prescribed number of zerogat —1
andz = 1 (specified by the valuek;) that satisfy the tight frame conditions (3), (4). In
the examples, we ask thay = K». If they are unequal, then one wavelet annihilates more
polynomials than the other, or one wavelet is doing “more work” than the other.

Note that the conditions (3), (4) are nonlinear equations in the filter coeffidigats.
For the design problems considered below, these nonlinear design equations will be
handled using Grobner bases, a powerful but computationally expensive tool from
computational algebraic geometry [10]. In a loose sense, Grobner bases extend the
Gaussian elimination of variables to polynomial systems of equations. The Grébner bases
are too big to include in the paper, but they are available on the author's Webpage.
For previous applications of Grobner bases to the design of wavelets and filters, see for
example [13, 24, 27, 32-34].

3.1. Example 1—Ko, K1, K2) = (3,1,1)

For the first example, we ask th&h = 3, K1 = K2 = 1. It was found that the shortest
filters ho, h1, ho satisfying (3), (4) are of length 4, 4, and 2, respectively. The filters are
given by

Ho(z) = %2 (1+:7H°
Hi(z) = %2 (1-zYH(1+471+279

6
Ha(z) = % (1-2z7%).

This system was found independently in [7] by a different approach. The filters and the
wavelet functions are illustrated in Fig. (¢) is symmetric,y; () are anti-symmetric.
Note that¢ (¢) is especially smooth given its support. On the other hand, it is important
to note that the wavelets have only one zero momgmt(r) dr = 0, but [ tv; (1) dt # 0.

The analysis filter bank annihilates constant sign&ts = ¢, but does not annihilate ramp
signalsx(n) =c - n.
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FIG.3. The generators of a wavelet tight frame with paramekgs= 3, K1 = Ko = 1.

Due to the simple form ohg, the scaling functiony(¢) is a B spline, obtained by
convolving a square pulse(z) with itself: ¢ (r) = p(¢) = p(t) * p(¢t). Therefore, closed
form expressions fop, ¥; can be obtained for this example. Note that the normys, af;
are unequal

lo )| =+/0.55~0.7416
lv1()|| = +/0.30~ 0.5477
l¥2(1)|| = +/0.25~ 0.5,

but note also thaft¢ (1) |12 = |[w1() |12 + [lv2()1; i.e., the energy of the scaling function
equals the total energy of the wavelets.

As mentioned above, the iterated filtézrlg) have different norms at different scalgs
The norms of these iterated filters, shown in Table 1, are needed, so that quantization
and thresholding levels can be properly chosen in applications. The norms of the iterated
filters converge to the norms of the scaling and wavelet functions, as evident in Table 1.
Ik 1l = 161, 187 — Il . Therefore, it is important to keep track of the norms only
for the first few stages.

Note that the centers of symmetry @fi and iy are offset by a single sample.
Accordingly, the centers of symmetry ¢f andy, are offset by exactly one-hali; (n) is
centered halfway betweén (n) andha(n — 1). ¥1(¢) is likewise centered betweefp(r)
andy(r —1). In particularg (t) ~ y2(t — %). Having more wavelets than necessary gives
a closer spacing between adjacent wavelets within the same scale. It is this property that
makes this system less shift-sensitive than a nonredundant system.

Also, note thatKg + K1 = 4, the length ofhg. While K; are more free than in the
orthonormal case, there is still the constraint that the minimum length of theAter
Ko+ min{K1, K>}.
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TABLE 1
Norms of the Iterated Filters in Example 1

j 1R 1R RS

1 0.7906 0.7906 0.8660
2 0.7526 0.5962 0.5728
3 0.7443 0.5588 0.5163
4 0.7423 0.5504 0.5040
5 0.7418 0.5484 0.5010
6 0.7417 0.5479 0.5002
7 0.7416 0.5478 0.5001
8 0.7416 0.5477 0.5000
9 0.7416 0.5477 0.5000

3.2. Example 2—Ko, K1, K2) = (5,2,2)

For the second example, we ask tRat= 5, K1 = K> = 2. It was found that the shortest
filters ho, h1, ho satisfying (3), (4) are of length 7, 7, and 5, respectively.

This example does not appear to admit simple expressions for the coefficjémnts
as the nonlinear design equations are much more complex. In particular, each of the
transfer functionsH;(z) has zeros away from = —1 andz = 1, making the system
of equations more complicated. However, by utilizing Grobner basis methods [10] it is
possible to solve the equations algebraical§infular [16] was used for the Grébner
basis calculations.) The original design equations have only rational coefficients, and we
were able to obtain explicit expressions fgrn) in terms of radicals. The expressions
obtained for; (n) are too long to include here, but are available from the author. However,
the expressions for the autocorrelation sequeng@3, from which z; can be obtained
via spectral factorization, are short enough to give in Table 2. The coefficients of the
autocorrelation sequences are not rational, but require a 4oof the fourth degree
polynomial:

p(A) = 193790354134538781720546— 391574453567833132498947%
+296647402984779246206946— 99861551659146071783424
+ 12603835548400234105441 (5)

As in the orthonormal case, there are multiple solutions to this problem. However,
in contrast to the orthonormal case, (i) the distinct solutions do not all share the same
autocorrelation, and (ii) not all of the spectral factors-offor a particular rootd) are
solutions.

In this example, there are four distinct solutions, not counting their time reversals
(hi(—n)) and negations$—#h;(n)). For none of them are the filtefs symmetric or anti-
symmetric. One solution, obtained with the roét~ 0.5068, is shown in Fig. 4. The
numerical values for this solution are given in Table 2. For this solutipand i, are
the minimum- and maximum-phase spectral factors)pf,, respectively.

Because this solution is not symmetric, we cannot say exactlyth@j lies halfway
betweeny»(r) andy2(r — 1) , but it is roughly correct. In addition to visual inspection,
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TABLE 2

Coefficientsr; for Example 2, where A Must Be a Root of the Polynomialp(A) in (5)
n V2ro(n) V2ri(n) V2ra(n)
0 357/512 A —A+667/512
1 135256 —294A/95+-2219/1520 2944 /95—-4832924320
2 405/2048 2821/95—325571/194560 —2824 /95 + 35887/24320
3 —5/512 2A /5—-589/2560 —2A/5+307/1280
4 —45/1024 —147A/190+10301/24320 14A/190-3692997280
5 —9/512 9512 0
6 —5/2048 52048 0
n ho(n) hy(n) ha(n)
0 0.07622367464861 —0.02054794025163 —0.02716023598942
1 0.34908887241859 —0.09410537245854 —0.12438833734897
2 0.60208924236383 —0.12289782090121 —0.13016597007712
3 0.44194173824159 .06135335608384 .04213789615884
4 0.06082336499856 .60633280881675 —0.46042335274333
5 —0.08392382947363 —0.31131989847772 0
6 —0.03202950082445 —0.11881513281150 0

Note Coefficientsh; corresponding tol ~ 0.5068.

one way to illustrate thaky(n) is approximately offset fronko(n) by one sample is to

plot the group delay functio6; (w) of 21 andhz, which reveals thai 1 (w) ~ G2(w) + 1.

As in the first example, this system is less sensitive to shifts than a similar nonredundant
basis.

h
osf { I 0 | o5k ¢
of * I * . . 0
-05 . L -0.5
) 1 2 3 4 5 ) () 1 2 3 4 5 8
1 1
05 I h, 05 ¥y
.
or e . : l . ol
-0.5}+ -0.5
-1 -1
0 1 2 3 4 5 6 [} 1 2 3 4 5 [
1 1 -+~
0.5] I hg
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FIG. 4. The generators of a wavelet tight frame with paramef&js=5, K1 = K> = 2. The coefficients:;
are given in Table 2.
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TABLE 3
Coefficientsh; for Example 3

n ho(n) hy(n) ha(n)

0 0.03199264772465 .00293054941766 .00431490224412
1 0.19632717543243 .01798370971314 .02647897658069
2 0.48517334610839 .03894655182791 .04889472840408
3 0.58643491952102 .01999291879950 —0.02241516250771
4 0.29321745976051 —0.07153466971605 —0.20001902951146
5 —0.06119804718367 —0.19870485906190 —0.24219681629703
6 —0.12239609436734 —0.14562293679897 .04055955394590
7 —0.02113452095472 .01762964054644 —0.35561715285859
8 0.01911942196034 —0.20872568392457 0

9 0.00667725437149 —0.07289522080316 0

For this example, the scaling functignis not a spline as it was for the first example.
However, the norms of the, ; can be found as described in Section 2.4 above. Again,
their norms are unequal,

lg(2)]| =0.8221390 l¥1(2)] = 0.5589626 l¥2(2)]| = 0.6028876

and agair|¢ (1) |12 = |ly1 ()12 + ||¥2(r)]|2. The norms of the iterated filteféj) converge
to the norms of, ¥; to within four decimal places by = 5.

3.3. Example 3—Ko, K1, K2) = (7,3,3)

For the third example, we ask th&y = 7, K1 = K2 = 3, for which the shortest
filters ho, h1, ho forming a tight frame are of length 10, 10, and 8, respectively.

Again, we used Grobner bases to solve the nonlinear design equations and we obtained
explicit solutions fork; in terms of radicals. There are exactly eight distinct solutions,
not counting their time reversal&,; (—n)) and negationg—#;(n)). One of those eight
solutions, the coefficients of which are given in Table 3, is shown in Fig. 5. The other seven
solutions are tabulated on the author’s Webpage. The norms of the scaling and wavelet
functions are

(1)l =0.8462926  |y1(r)|| =0.5567725  |[¥2(1)|| = 0.6373504

which satisfy [|¢(1)[12 = [[¥1(1)[12 + l¥2()]2. The norms of the iterated filters,”’
converge to the norms @f, ¥; to within four decimal places by = 4.

4. MAXIMALLY FLAT FILTERS

Due to the constraint (2), iff1(z) and H>(z) have at leasM zeros at; = 1, then the
first M — 1 derivatives of Hy(e/®)| atw = 0 must be zero. Therefore, the minimal length
lowpass filterhg can be obtained by spectral factorization of a maximally flat symmetric
FIR filter, a family of filters originally described by Herrmann [17]. Specifically, letting
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FIG.5. The generators of a wavelet tight frame with paramef&ss= 7, K1 = Ko = 3. The coefficients:;
are given in Table 3.

M =min(K1, K»), one has

M-1

. Ko—1+k

| Ho(e/*)[> = 2(1— y)*0 ) j( 0 A * )y", (6)
k=0

wherey = %(1 — cosw). When M = Kj, this formula specializes to the Daubechies
polynomial, that is, the polynomial that is used in Daubechies’ construction of short
orthonormal wavelets [12]. The Daubechies polynomial is the halfband instance of the
maximally flat filter. The filter here is of the same maximally flat family, but rather than
being halfband, it has instead a higher degree of flatnegs=atr than atw = 0. That
makes the passband more narrow than the stopband and increases the smoothigss of

While formula (6) yields directly a formula fo(n) from whichig(n) can be obtained
through spectral factorization, it does not yield the filtetg1), h2(n).

5. NEAR SHIFT-INVARIANCE

For the type of tight frame presented above, the (idealized) time-frequency localization
of the wavelets are indicated in Fig. 6. Each scale is represented by twice as many wavelets
as in the critically sampled case. In this way, the tight frame DWT approximates the
continuous wavelet transform more closely than does the critically sampled DWT, and
consequently it is more robust to shifts than the critically sampled DWT.

Kingsbury demonstrated the near shift-invariance of the dual-tree DWT in [19, 21]
by reconstructing a shifted discrete-time step functigm — ng) from only its wavelet
coefficients at a single scale Varying the shiftzg in increments of 1, the results reveal
the shift-varying properties of the system. Following the same procedurg=#dr, 2, 3, 4,
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CRITICALLY SAMPLED CASE
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FIG.6. Idealized time-frequency localization diagrams. The tight frame gives a denser sampling of the time-
frequency plane.

the left-hand side of Fig. 7 illustrates the near shift invariance of the oversampled filter bank
of Example 3 tabulated in Table 3. For comparison, the right-hand side uses Daubechies’
orthonormal basisDs (length 2g = 10) [12]. The top panels show the reconstruction

40 : 40 45

FIG. 7. Reconstruction ofi(n — ng) from coefficients at levelj only. (Left) The decomposition uses the
wavelet tight frame illustrated in Fig. 5. (Right) The decomposition uses Daubechies’ orthonormabDiasis
(ho = 10). The tight frame is less shift-sensitive than the orthonormal basis.
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from only the scaling coefficients at levg¢l= 4. Although the overcomplete expansion
of Example 3 is not as shift-insensitive as the dual-tree DWT presented in [21], it is much
less shift-sensitive than the orthonormal basis, as illustrated in Fig. 7.

It should be noted that other orthonormal bases may be less shift-sensitive than
Daubechies’ bases, for example, those designed in [2]; however, the shift-sensitivity
properties of orthonormal wavelet bases are naturally limited in comparison with tight
wavelet frames due to their nonredundancy.

6. 2D EXTENSION

Separable 2D wavelet frames can be obtained by alternating between rows and columns,
as is usually done for 2D separable DWTs. The corresponding filter bank, illustrated in
Fig. 8, is iterated on the lowpass branch (the first branch). While the 1D frames based
on the oversampled filter banks described above (iterated indefinitely) are redundant by a
factor of 2, the corresponding 2D version is redundant by a factoy®fi®t by 2 or 4 as
one might initially expect.

In the oversampled filter bank for the 2D case, the 1D oversampled filter bank is iterated
on the rows and then on the columns. This gives rise to nine 2D branches. One of the
branches is a 2D lowpass scaling filter, while the other eight make up the eight 2D wavelet
filters. Note that for a critically sampled 2D filter bank, there are three wavelet filters; hence
the rate of oversampling, when the structure is iterated indefinitely3sI@ general, the
redundancy rate i$3? — 1)/(2¢ — 1) for the extension tai/-dimensional signals. Note
that asd increases, this ratio approach@g2)¢, the oversampling rate of the filter bank
building block. This is higher than the redundancy of a 2D Laplacian pyramid [6], but lower
than the 2D dual tree. The 2D extension of the dual-tree DWT has a redundancy rate of 4.
In general, thel-dimensional dual-tree has a redundancy 6f21]. It should be noted
that the steerable pyramid [14] is another example of a system that gives an overcomplete
signal decomposition. They are especially designed to yield orientation information of
image components.
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FIG. 8. An oversampled filter bank for 2D signals.
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6.1. Rectangular Artifacts

Following Kingsbury’s illustration, the improved behavior of the redundant 2D wavelet
frame transform in 2D can be indicated by projecting the image of a disk onto the wavelet
spaces and the scaling space. In Fig. 9 the image of a disk is reconstructed from different

WAVELET DECOMPOSITION OF A DISK

TIGHT FRAME ORTHO-BASIS

FIG. 9. Reconstruction of the image of a disk from coefficients at levehly. (Left) The decomposition
uses the tight wavelet frame illustrated in Fig. 4. (Right) The decomposition uses the most symmetric form of
Daubechies’ orthonormal wavelet bagig (length/g = 8).
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levels of a 4-scale decomposition. The image is 64 by 64 pixels. On the left side of the
figure, the decomposition is performed using the wavelet tight frame illustrated in Fig. 4.
On the right side of the figure, the decomposition is performed using the most symmetric
case of Daubechies’ orthonormal waveli filters (lengthg = 8). In each column, the
top-most panel is obtained by reconstructing the image from the coarse scaling coefficients,
while the following panels are obtained by reconstructing from the wavelet coefficients
in scalesj =1, 2,3,4. It is clear that the decomposition using the tight frame suffers
from fewer of the rectangular artifacts than the decomposition using the orthonormal basis.
Similar figures are obtained if the other tight frame examples given above are used, or if
other orthonormal bases are used.

7. CONCLUSION

Kingsbury showed that the shift sensitivity of the DWT can be dramatically improved
by using a dual tree, an overcomplete expansion that is redundant by a factor of 2 only.
So motivated, this paper considered the design of wavelet tight frames based on iterated
oversampled filter banks as in [7, 30, 31]. In particular, we consider the design of wavelet
tight frames that are analogous to Daubechies orthonormal wavelets bases. As the number
of zerosHp(z) has atw = 7= need not equal the number of zerds(z) and H»>(z) have at
w = 0, there is more design freedom than in the orthonormal case. Although the resulting
design equations are nonlinear, Grobner bases can be used to obtain the solutions. By
asking thatkp > K1, K2, wavelets are obtained that are very smooth in comparison with
orthonormal wavelet bases. Like the dual-tree DWT of Kingsbury, the overcomplete DWT
described above is less shift-sensitive than an orthonormal wavelet basis (and in the 2D
case has fewer rectangular artifacts).

The complete solutions to the examples examined in this paper and other examples are
available on the author's Webpagaco.poly.edu/selesi . Also available are the
Singularprograms for obtaining the Grobner bases from which the solutions are obtained.
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