14 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 1, JANUARY 1996

Automatic Generation of
Prime Length FFT Programs

Ivan W. Selesnick and C. Sidney Burrus, Fellow, IEEE

Abstract—We describe a set of programs for circular convo-
lution and prime length fast Fourier transforms (FFT’s) that
are relatively short, possess great structure, share many com-
putational procedures, and cover a large variety of lengths.
The programs make clear the structure of the algorithms and
clearly enumerate independent computational branches that can
be performed in parallel. Moreover, each of these independent
operations is made up of a sequence of suboperations that can
be implemented as vector/parallel operations. This is in contrast
with previously existing programs for prime length FFT’s: They
consist of straight line code, no code is shared between them, and
they cannot be easily adapted for vector/parallel implementations.

We have also developed a program that automatically generates
these programs for prime length FFT’s. This code-generating
program requires information cnly about a set of modules for
computing cyclotomic convolutions.

1. INTRODUCTION

HE development of algorithms for the fast computation

of the discrete Fourier transform (DFT) in the last 30
years originated with the radix 2 Cooley-Tukey FFT, and
the theory and variety of fast Fourier transforms (FFT’s) has
grown significantly since then. Most of the work has focused
on FFT’s whose sizes are composite because the algorithms
depend on the ability to factor the length of the data sequence
so that the transform can be found by taking the transform of
smaller lengths. For this reason, algorithms for prime length
transforms are building blocks for many composite length
FFT’s—the maximum length and the variety of lengths of
a PFA or WFTA algorithm depend on the availability of
prime length FFT modules. As such, prime length FFI’s are
a special, important, and difficult case.

Fast algorithms designed for specific short prime lengths
have been developed and have been written as straight line
code [7], [9], [20]. These dedicated programs rely on an
observation made in Rader’s paper [15], in which he shows
that a prime p length DFT can be found by performing a p—1
length circular convolution. Since the publication of that paper,
Winograd had developed a theory of multiplicative complexity
for transforms and designed algorithms for convolution that
attain the minimum number of multiplications [20]. Although
Winograd’s algorithms are very efficient for small prime
lengths, for longer lengths, they require a large number of
additions, and the algorithms become very cumbersome to
design. This has prevented the design of useful prime length

Manuscript received September 21, 1994; revised June 23, 1995. This work
was supported by DARPA under an NDSEG fellowship.

The authors are with the Department of Electrical and Computer Engineer-

ing, Rice University, Houston, TX 77251-1892 USA (email: selesi @rice.edu).
Publisher Item Identifier S 1053-587X(96)00720-7.

FFT programs for lengths greater than 31. Although we have
previously reported the design of programs for prime lengths
greater than 31 [16], those programs required more additions
than necessary and were long. Like the previously existing
ones, they simply consisted of a long list of instructions and
did not take advantage of the attainable common structures.

In this paper, we describe a set of programs for circular
convolution and prime length FFT’s that are are short, possess
great structure, share many computational procedures, and
cover a large variety of lengths. Because the underlying
convolution is decomposed into a set of disjoint operations,
they can be performed in parallel, and this parallelism is made
clear in the programs. Moreover, each of these independent
operations is made up of a sequence of suboperations of the
form I® A® I, where ® denotes the Kronecker product. These
operations can be implemented as vector/parallel operations
[5], [19]. Previous programs for prime length FFT’s in [9]' do
not have these features: They consist of straight line code and
are not amenable to vector/parallel implementations.

‘We have also developed a program that automatically gen-
erates these programs for circular convolution and prime
length DFT’s. This code-generating program requires infor-
mation only about a set of modules for computing cyclotomic
convolutions. We compute these noncircular convolutions by
computing a linear convolution and reducing the result. Fur-
thermore, because these linear convolution algorithms can be
built from smaller ones, the only modules needed are ones for
the linear convolution of prime length sequences. It turns out
that with linear convolution algorithms for only the lengths 2
and 3, we can generate a wide variety of prime length FFT
algorithms. In addition, the code we generate is made up of
calls to a relatively small set of functions. Accordingly, the
subroutines can be designed and optimized to specifically suit
a given architecture.

The programs we describe use Rader’s conversion of a
prime point DFT into a circular convolution, but we compute
this convolution using the split nesting algorithm [14]. As
Stasinski notes [17], this yields algorithms possessing greater
structure and simpler programs and does not generally require
more computation. We wish to note in addition that Jones [10]
has advocated the use of the Agarwal-Cooley algorithm for
prime length FFT’s.

A. Preliminaries

Because we compute prime length DFT’s by converting
them in to circular convolutions, most of this and the next
section is devoted to an explanation of the split nesting

1053-587X/96$05.00 © 1996 IEEE

SELESNICK AND BURRUS: AUTOMATIC GENERATION OF PRIME LENGTH FFT PROGRAMS 15

convolution algorithm. In this section, we introduce the various
operations needed to carry out the split nesting algorithm. In
particular, we describe the prime factor permutation that is
used to convert a 1-D circular convolution into a multidimen-
sional one. We also discuss the reduction operations needed
when the Chinese remainder theorem for polynomials is used
in the computation of convolution. The reduction operations
needed for the split nesting algorithm are particularly well
organized. We give an explicit matrix description of the
reduction operations and give a program that implements the
action of these reduction operations.

The presentation relies on the notions of similarity transfor-
mations, companion matrices, and Kronecker products. With
them, we describe the split nesting algorithm in a manner that
brings out its structure. We find that when companion matrices
are used to describe convolution, the reduction operations
block diagonalize the circular shift matrix.

The companion matrix of a monic polynomial M(s) =
mo +mis + -+ m,_18"" L 4 s™ is given by

—my

1 —my
Cu=| . o 1

1 —Mp-1

Its usefulness in the following discussion comes from the
following relation, which permits a matrix formulation of
convolution:

n—1

Y(s) = (HOX (e < y= (z hkoa)m @

k=0

where z, h, and y are the coefficients, and Cj, is the
companion matrix of M(s). In (2), we say y is the convolution
of £ and h with respect to M(s). In the case of circular
convolution, M(s) = s™ — 1 and Cyn_1 is the circular shift
matrix denoted by S,

Notice that any circulant matrix can be written as Y, hxS*
[19], [21].

Similarity transformations can be used to interpret the
action of some convolution algorithms. If Cps = T~ AT for
some matrix T (Cas and A are similar, denoted as Cp; ~ A),
then (2) becomes

n—1
y=T""1 (Z hkAk) Tz. 3)

k=0

That is, by employing the similarity transformation given by T’
in this way, the action of S¥ is replaced by that of A*. Many
circular convolution algorithms can be understood, in part, by
understanding the manipulations made to S,, and the resulting
new matrix A. If the transformation 7" is to be useful, it must
satisfy two requirements: 1) Tx must be simple to compute,
and 2) A must have some advantageous structure. For example,

by the convolution property of the DFT, the DFT matrix F'
diagonalizes S,,, and therefore, it diagonalizes every circulant
matrix. In this case, Tz can be computed by an FFT, and the
structure of A is the simplest possible: a diagonal.

The Winograd structure can be described in this manner as
well. Suppose M (s) can be factored as M(s) = My(s)Ma(s),
where M; and M, have no common roots. Then, Cps ~
(Cur1, ® Op,), where @ denotes the matrix direct sum. Using
this similarity and recalling (2), the original convolution can
be decomposed into disjoint convolutions. This is, in fact, a
statement of the Chinese remainder theorem for polynomials
expressed in matrix notation. In the case of circular convolu-
tion, " — 1 = J[,,, ®a(s) so that S, can be transformed to
a block diagonal matrix

Cs,

c
Sp ~ "

= PCe| @

d|n
Cy

n

where ®4(s) is the d** cyclotomic polynomial. Here, Cyp, is
the companion matrix of the dth cyclotomic polynomial. In
this case, each block represents a convolution with respect to
a cyclotomic polynomial or a “cyclotomic convolution.”

The Agarwal-Cooley algorithm utilizes the fact that

where n = ning, and (n1,n2) = 1 [1]. This converts the 1-
D circular convolution of length n to a 2-D one of length
n; along one dimension and length no along the second.
Then, an n; point and an ny point circular convolution
algorithm can be combined to obtain an n point algorithm.
The Agarwal-Cooley convolution algorithm is described using
tensor product formalism in [19, chap. 7].

The Split-Nesting algorithm [14] combines the structures
of the Winograd and Agarwal-Cooley methods so that S, is
transformed to a block diagonal matrix as in (4)

Sn ~ P (). (6)

d|n

Here, ¥(d) = Qpjaper C¢Hd(?), where Hd(g) is the highest
power of p dividing d, and P is the set of primes.
Example 1:

1
Co,
C
Syz ~ ®o Co.
5
Cyp, ® Cg,
Cgy ® Cy,
7

In this structure, a multidimensional cyclotomic convolution
represented by W(d) replaces each cyclotomic convolution in
Winograd’s algorithm (represented by Cs, in (4)). Indeed, if
the product of by,. .., b is d and they are pairwise relatively
prime, then Cp, ~ Cp, ®---® Co,, . The split nesting algo-
rithm therefore combines cyclotomic convolutions to compute
a longer circular convolution. It is like the Agarwal-Cooley
method but requires fewer additions [14].

16 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 1, JANUARY 1996

B. Prime Factor Permutations

The permutation of the prime factor FFT [1], [13] can be
used to obtain S,,, ® Sy, from Snm; when (n1,ns) = 1. The
permutation is described by Zalcstein [21], among others. Let
ex denote the kth standard basis vector.

Lemma 1: If n = np---ng and ng,...,n are pairwise
relatively prime; then S, = P¥(S,, ® - ® S,,)P,
where P is the permutation matrix given by Pep =
E(k)ny +n1(kyny+oAnrnp_1(k)n, -

This useful permutation will be denoted here as
Pppoomg- T n = pi'ps?---pfk, then this permutation
yields the matrix Spil ® - ® szk- This product

can be written simply as ®f=15’p§i so that one has
t k
Sn = Pnl,..,nk (®i:15p:i)Pn17”'7n’C.

C. Reduction Operations

The Chinese remainder theorem for polynomials can be used
to decompose a convolution of two sequences (the polynomial
product of two polynomials evaluated modulo a third polyno-
mial) into smaller convolutions (smaller polynomial products}

[20]. The Winograd n-point circular convolution algorithm

requires that polynomials are reduced modulo the cyclotomic
polynomial factors of s™ — 1, ®4(s) for each d dividing n.

‘When n has several prime divisors, the reduction operations
become quite complicated, and writing a single program to
implement them is difficult. However, when n is a prime
power, the reduction operations are very structured and can be
done in a straightforward manner. Therefore, by converting
a 1-D convolution to a multidimensional one in which the
length along each dimension is a prime power, the split
nesting algorithm avoids the need for complicated reductions
operations. This is one advantage the split nesting algorithm
has over the Winograd algorithm.

By applying the reduction operations appropriately to the
circular shift matrix, we are able to obtain a block diagonal
form, just as in the Winograd convolution algorithm. However,
in the split nesting algorithm, each diagonal block represents
a multidimensional cyclotomic convolution rather than a 1-
D one. By forming multidimensional convolutions out of
1-D ones, it is possible to combine algorithms for smaller
convolutions (see the next section). This is a second advantage
split nesting algorithm has over the Winograd algorithm. The
split nesting algorithm, however, generally uses more than the
minimum number of multiplications.

Next, we give an explicit matrix description of the required
reduction operations, give a program that implements them,
and give a formula for the number of additions required. (No
multiplications are needed.)

To obtain the block diagonal form of (6) and (7), let 1, be
a column vector of p 1’s, and let G, be the (p— 1) X p matrix:

1 -1
1 -1
: ; ®)

1 -1

Then
R(S0 @ ®8,:)R = e ©)
din
where 2 = Rper e is given by
1 .
Ryer,poe = || Q(mi,pf i) (10)
i=k
with m; = H;;ll p;j, n; = Hle 41 p;j and
e—1 Ia ® l; ® Icpj
Qa,p%0) =[] |1a ® Gp @ Iys (11)

3=0 Tac(pe—pitr)

The number of additions incurred by R is given by
2n<k -3k 1%) where n = p§'...p¢t.

3

Example 2:
R(Sy ® S5)R™*
1
Cs,
= O(Pg
Ca,
O@3®(j¢5
Csy ® C@s

(12) |

where R = Rg 5 and can be implemented with 152 additions.
Each block in (9) and (12) represents a multidimensional
cyclotomic convolution. '
A Matlab program that
Rpil,‘_.,pzk in (9) is KRED().

carries out the operation

function x = KRED(P,E,K,x)

P : P = [P(1l),...,P(K)]
$ E : E = [E(K),...,E(K)]
% x : length(x) == prod(P."E)
for i = 1:K

a = prod(P(1l:i-1)."E(1:1i-1));
¢ = prod(P(i+1:K)."E(1+1:K));
p = P(i);

e = E(i);

for j = e-1:-1:0

x(l:a*c*(p™ (j+1)))=
RED(p,a,c*(p"]),
x{l:a*c*(p™ (3+1))));
end
end
It calls the Matlab program RED ().

function y = RED(p,a,c,Xx)
% x : length(x) == a*c*p
y = zeros(a*c*p,1l);
for i = O:C:(a—l)*c
for j = 0:c-1
v(i+j+1) = x(i*p+j+1);
for k = O:c:c*(p-2)
)

yv{i1+3+1) = yv(i+3+1) + x(i*p+Jj+k+c+l);

SELESNICK AND BURRUS: AUTOMATIC GENERATION OF PRIME LENGTH FFT PROGRAMS » 17

y(i*(p-1)+j+k+a*c+l) =
x(i*p+j+k+1) - x(i*p+j+c*(p-1)+1);

end '

end
end

These two Matlab programs are not written to execute
as fast as they could be. They are a “naive” coding of
Rpil’.“’ka and are meant to serve as a basis for more
efficient programs. In particular, the indexing and the loop
counters can be modified to improve the efficiency. However,
the modifications that minimize the overhead incurred by
indexing operations depends on the programming language,
the compiler, and the computer used. These two programs are
written with simple loop counters and complicated indexing
operations so that appropriate modifications can be easily
made. ’

It will also be important to have a program that carries
out the transpose of these reduction operations. A Matlab
program that carries out the operation Rze, oo is tKRED ().

1 Py
function x = tKRED(P,E,K,x)

% x = tKRED(P,E,K,x);

% (transpose)

$P: P = [P(1),...,P(R)];
$E:E = [E(K),...,E(K)];

for i = K:-1:1

a = prod(P(1l:i-1)."E(1:i-1));
¢ = prod(P(i+1:K)."E(i+1:K));
p = P(i);

e = E(1);

for j = 0:e-1

x(l:a*c*(p™(j+1))) =
tRED(p,a,c* (p™]),x(l:a*c*(p™(3+1))));
end
end
It calls the Matlab program tRED().
function y = tRED(p,a,c,x)
% (transpose)
y = zeros(a*c*p,l);
for i = 0:c:(a-1)*c
for j = 0:c-1
y(i*p+j+c* (p-1)+1) = x(i+j+1);
for k = Q:c:c*(p-2)
y{(i*p+j+k+1) =
X(1i+3+1) + x(i*(p-1)+Jj+k+a*c+l);
y(i*p+j+c*(p-1)+1) =
y{(i*p+j+c* (p-1)y+1) -
x(i*(p-1) +j+k+a*c+1) ;
end
end
end
In using the similarity (6) and (7), it is necessary to
‘implement R~L. To this end, we note that the inverse of R,
has the form

1 p-1 -1 -1 -1
qro-r op-1 -1 -1
Ry'==11 -1 -1 p-1 -1 (13)
Pli -1 -1 -1 p-1
1 -1 -1 -1 -1

The inverse of the matrix R described by (9)—~(11) is therefore
given by

k
R =[] Q(mi,psi,mi)~ (14)
=1

. 71— i k e;
with m; = szll p;T , Ny = Hj:'H—l p;’, and
Q(a,p%,c)7!
0
- H [Ia ®l§,®jcpj Ia®v;z®jcpf

Pl Tacr i)

15)

where V), denotes the matrix in (13) without its first column.

Programs for R~! and R~* are similar to the programs
for R above. It should be noted that by using the matrix
exchange property below, the relevant operations that need
to be implemented turn out to be R, R, and R~

II. BILINEAR FORMS FOR CIRCULAR CONVOLUTION

A basic technique in fast algorithms for convolution is
interpolation: Two polynomials are evaluated at some common
points, these values are multiplied, and by computing the
polynomial interpolating these products, the product of the
two original polynomials is determined [2], [12], [14]. This
interpolation method is often called the Toom~Cook method,
and it is given by two matrices that describe a bilinear form.

We use bilinear forms to give a matrix formulation of
the split nesting algorithm. The split nesting algorithm com-
bines smaller convolution algorithms to obtain algorithms for
longer lengths. We use the Kronecker product to explicitly
describe the way in which smaller convolution algorithms are
appropriately combined.

A. The Toom—Cook Method

Recall that the linear convolution of h and z can be
represented by a matrix vector product. When n = 3

ho
h1 ho)
hs hi ho| |z1 (16)
hy hy| |z
hy

This linear convolution matrix can be written as hgHy +
hi1Hy + hoHs, where H; are clear. This product y =

n—1
Z hiHrx can be found using the Toom—Cook algorithm.
k=0
One writes
n—1)
> hiHyz = C{Ah x Az}
k=0

a7

where * denotes point-by-point multiplication. The terms
Ah and Az are the values of H(s) and X(s) at some
points i1,...42,—1. The point-by-point multiplication gives
the values Y (41),...,Y (42,—1). The operation of C' obtains

18 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO, 1, JANUARY 1996

the coefficients of Y (s) from its values at these points of
evaluation. This is the bilinear form and it implies that

Hy = Cdiag(Aer)A 18)
where ¢ is the kth standard basis vector. However, A and
C do not need to be Vandermonde matrices as suggested
above. As long as A and C are matrices such that Hy =
Cdiag(Aeg)A, then the linear convolution of x and A is given
by the bilinear form y = C{Ah* Ax}. More generally, as long
as A, B, and C are matrices satisfying Hy = Cdiag(Bey)A,
then y = C{Bh * Az} computes the linear convolution of
h and z. For convenience, if C{Bh * Az} computes the n-
point linear convolution of ~ and z (both h and z are n point
sequences), then we say that (A, B,C) describes a bilinear
form for n-point linear convolution. For example, (4, 4, C)
describes a two-point linear convolution where

10 1 0 0
A=]0 1 and C=|-1 -1 1 (19)
11 0 1 0

Similarly, we can write a bilinear form for cyclotomic
convolution. Let d be any positive integer, and let X (s)
and H(s) be polynomials of degree ¢(d) — 1, where ¢(-)
is the Euler totient function. If A, B, and C are matrices
satisfying (Cy,)" = Cdiag(Be)A for 0 < k < $(d) — 1,
then the coefficients of Y (s) = (X(s)H(s))a,(s) are given
by y = C{Bhx Az}. As above, for such A, B, and C, we say
“(A, B, C) describes a bilinear form for ®4(s) convolution.”

However, since (X (s)H (s))s,(s) can be found by comput-
ing the product of X (s) and H(s) and reducing the result, a
cyclotomic convolution algorithm can always be derived by
following a linear convolution algorithm by the appropriate
reduction operation: If G is the appropriate reduction matrix
and if (A, B, F) describes a bilinear form for a ¢(d) point
linear convolution, then (A, B, GF') describes a bilinear form
for ®,4(s) convolution. That is, y = GF{Bh x Az} computes
the coefficients of (X (s)H (5))a,(s)-

B. Circular Convolution

Consider p®-point circular convolution. Since S, =
R;el (®f=0Cq>pi)Rpc, the circular convolution is decom-
posed into a set of e + 1 disjoint ®,:(s) convolutions.
If (Api,Byi,Cpi) describes a bilinear form for ®,:(s)
convolution and-if

A=10A4,® - @A (20)
B=1®B,® - ® Bpe 2))
C=19C, @ @ Cpe (22)
where @ denotes the matrix direct sum, then

(ARye, BRye, R, C) describes a bilinear form for p°-
point circular convolution. In particular, if (Dg, Eq, Fy)
describes a bilinear form for d-point linear convolution, then
Api, By, and Cp: can be taken to be

(23)

Api = qu(pz) sz = E¢(pz) Opi - G ’LF¢,(p’L)

where G« represents the appropriate reduction operation, and
¢(-) is the Euler totient function. Specifically, G,: has the
following form:

Gy
= [I(p—l) -1 =L, @Iy [Tp-2pi=1-1 H
i - i Opi=i41,(p—2)pi=1-1] |
24
if p > 3, whereas
Goi = [IQH [_I“””—lH. (25)
01,26-11

Note that the matrix R,. block diagonalizes Sp., and each
block on the diagonal represents a cyclotomic convolution.
Correspondingly, the matrices ‘A, B, and C' of the bilinear
form also have a block diagonal structure.

C. A Matrix Formulation of the Split Nesting Algorithm

We now describe the split nesting algorithm for general
length circular convolution [14]. Let n = pi' - --pg*, where
p; are distinct primes. We have seen that

S, =P'R™'EPU(d) |RP (26)
din
where P is the prime factor permutation P = Ppilpu,p;k,

and R = Rpil’.“’pilc represents the reduction operations. For
example, see (12). RP block diagonalizes S,,, and each block
on the diagonal represents a multidimensional cyclotomic
convolution. To obtain a bilinear form for a multidimensional
convolution, we can combine bilinear forms for 1-D convolu-
tions as follows: If (Ap;; By ,ij_) describes a bilinear form
for @, (s) convolution and if

A=®ynldas B=®gnBi C=&4.Ca (27)
with
Aq = ®plaperAHu(p) 28)
By = ®p|aperBHy(p) (29)
Ca = @pjapePCHalp) (30

where Hy(p) is the highest power of p dividing d and P is
the set of primes, then (ARP, BRP, P!R~1C) describes a
bilinear form for n-point circular convolution. That is

y = PP R™*C{BRPh x ARPz} (31)
computes the circular convolution of A and z.
As above, (A,i,B,:,Cyi) can be taken to be
7 J 3 .
(D?(?;),Ed,(p;),Gp;Fﬂp;)), where (Dd,Efz,Fd) describes
a bilinear form for d-point linear convolution. This is one
particular choice for (A, B,:,C,:); other bilinear forms
J J 3 -
for cyclotomic convolution that are not derived from linear
convolution algorithms exist [2], [14].

SELESNICK AND BURRUS: AUTOMATIC GENERATION OF PRIME LENGTH FFT PROGRAMS 19

Example 3—A 45-Point Circular Convolution Algorithm:
y = P'R™*C{BRPh x ARPz} 32)
where P = P9,5, R = R975

A=10A430 A9 ® A5 ® (A3 ® 45) © (A9 ® 45) (33)
B=1®B3s®By® Bs® (B3 ®Bs)®(By® Bs) (34)
C=10C30Co®Csd(C30C5)®(Ce®Cs) (35)

and where (Ap;-_ s Bpi, Cyi) describes a bilinear form for ®,,: (s)
convolution. !

D. The Matrix Exchange Property

The matrix exchange property is a useful technique that
allows one to save computation in carrying out the action of
bilinear forms [8]. When A is known and fixed in (31), BRPh
can be precomputed and stored so that y can be found using
only the operations represented by P*R~'C and ARP and
the point-by-point multiplications denoted by *. The operation
of BRP is absorbed into the multiplicative constants. Note

_that in (31), P!R~1C is more complicated than is BRP, and
it is therefore advantageous to absorb the work of PtR™1C
instead of BRP into the multiplicative constants. Let J be the
reversal matrix (the anti-identity matrix). Applying the matrix
exchange property to (31), one gets

y = JP'R'B*{C'R™'PJh* ARPz}. 36)

Example 4—A 45-Point Circ\t‘dar Convolution Algorithm:
y = JP'R'B*{u x ARPz} (37)
where u = CtR_tPJh, P = P9,5, R = R9,5

A=10A3 0 A ® As © (A3 @ A5) D (A9 ® A5) (38)
B'=1® B o B{® Bt © (B ® Bt) ® (Bs ® B) (39)
C'=10CloCiaCia (CiaCl) e (Cte Ct) (40)

and where (4,:, B,:, C,;:) describes a bilinear form for ®,; (s)
J 7 3 J
convolution.

III. A BILINEAR FORM FOR THE DFT

A bilinear form for a prime length DFT can be obtained
by making minor changes to a bilinear form for circular
convolution. This relies on Rader’s observation that a prime
p-point DFT can be computed by computing a p — 1 point
circular convolution and by performing some extra additions
[15]. It turns out that when the Winograd or the split nesting
convolution algorithm is used, only two extra additions are
required. '

A. Rader’s Permutation

To explain Rader’s conversion of a prime p-point DFT into
a p — 1-point circular convolution [3], [15], we recall the
definition of the DFT
p—1

y(k) = 3 a(m)wh

n=0

41

with W = exp (—j27/p). In addition, recall that a primitive
root of p is an integer 7 such that (r™), maps the integers
m=0,...,p—2totheintegers 1,...,p—1. Lettingn = r~™
and k = r!, where =™ is the inverse of 7™ modulo p, the
DFT becomes

p—2
y(r') = 2(0) + 3 a(rTmywr "

m=0

42)

for I = 0,...,p — 2. The “DC” term is given by y(0) =
P4 x(n). By defining new functions z'(m) = z(r™™),
y'(m) = y(r™), and W'(m) = W™ , which are simply
permuted versions of the original sequences, the DFT becomes

p—2
y()=2(0)+ > 2'(m)W'(l - m) 43)
=0
forl =0,...,p— 2. This équation describes circular convo-
lution, and therefore, any circular convolution algorithm can
be used to compute a prime length DFT. It is only necessary
to do the following:

i) Permute the input, the roots of unity, and the output

il) Add z(0) to each term in (43).

iii) Compute the DC term.

Define a permutation matrix ¢) for the permutation above.
If p is a prime and r is a primitive root of p, then let Q,
be the permutation matrix defined by Qe(xy,_1 = e for
0 < k < p— 2, where ¢;, is the kth standard basis vector.
Let the w be a p — l-point vector of the roots of unity:
w = (W, ..., WP~1! If 5 is the inverse of + modulo p
(that is, 7s = 1 modulo p) and 7 = (2(1),...,z(p — 1))},
then the circular convolution of (43) can be computed with
the bilinear form of (36):

QLJP'R'B'{C*'R*PJQ.® x ARPQ,%}. (44)
This bilinear form does not compute y(0), which is the DC
term. Furthermore, it is still necessary to add the z(0) term to

each of the elements of (44) to obtain y(1),...,y(p — 1).

B. Calculation of the DC term

The computation of y(0) turns out to be very simple
when the bilinear form (44) is used to compute the circular
convolution in (43). The first element of ARPQ,Z in (44)
is the residue modulo the polynomial s — 1, that is, the
first element of this vector is the sum of the elements of
Z. Therefore, the DC term can be computed by adding the
first element of ARPQ..# to z(0). Hence, when the Winograd
or split nesting algorithm is used to perform the circular
convolution of (44), the computation of the DC term requires
only one extra complex addition for complex data.

The addition z(0) to each of the elements of (44) also
requires only one complex addition. By adding z(0) to the first
element of {C*R™'PJQsw x ARPQ,%} in (44) and applying
QtJP!R? to the result, z(0) is added to each element.

Although the DFT can be computed by making these two
extra additions, this organization of additions does not yield
a bilinear form. However, by making a minor modification, a
bilinear form can be retrieved. The method described above

20

x(0) 1

(1) —J

¥

y1)

x(p-1) — (-1

u(l)

Fig. 1. Flow graph for the computation of the DFT.

Fig. 2. ' Flow graph for the bilinear form.

can be illustrated in Fig. 1 with u = C*R™*PJQ,w. Clearly,
the structure highlighted in the dashed box can be replaced
by the structure in Fig. 2. By substituting the second structure
for the first, a bilinear form is obtained. The resulting bilinear
form for a prime length DFT is

1
y= [QZJPthBt]
1 1
'Uﬁ{vp[C’tR—tPJQS]w*UP[ARPQT]Q:}
45)

where w = (WO, ..., WP~ 1)t and z = (z(0),...,z(p — 1))},
and where U, and V,, are the matrices with the forms

1

1

UP

(46)

1

IV. IMPLEMENTING KRONECKER PRODUCTS EFFICIENTLY

In the algorithm described above, we encountered expres-
sions of the form 4; ® 4, ® -+ ® A,, which we denote
by ®2.; 4;. To calculate the product (®;4;)z, it is computa-
tionally advantageous to factor ®;A; into terms of the form
I ® A; ® I [1]. For the Kronecker product ®}_; A;, there are
n! possible different ways in which to order the operations A;.
To find the best factorization of ®;A4;, it is necessary only to
compute the ratios (rows; — cols;)/cost; and to order them
in an nondecreasing order [1].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 1, JANUARY 1996

x10* Operation Counts for Prime Length FFTs
3.5 T T 1 T T T T T

3+

adds and muls

L L
300 350 400 450

Fig. 3. Plot of additions and multiplications incurred by prime length FFT’s.

A. Vector/Parallel Interpretation

The command I ® A ® I, where ® is the Kronecker
(or tensor) product, can be interpreted as a vector/parallel
command [5], [19]. In these references; the implementation of
these commands is discussed in detail, and it was found that
the tensor product is “an extremely useful tool for matching
algorithms to computer architectures [5].”

In the programs written in conjunction with this paper, the
commands y = (I ® A® I)z are implemented with loops in a
set of subroutines. The circular convolution and prime length
FFT programs we present, however, explicitly use the form
I® A®I to make clear the structure of the algorithm, to make
them more modular and simpler, and to make them amenable
to implementation on special architectures (see Fig. 3). In fact,
in [5], it is suggested that it might be practical to develop tensor
product compilers. The FFT programs described here will be
well suited for such compilers.

V. PROGRAMS FOR CIRCULAR CONVOLUTION

In writing a program that computes the circular convolution
of h and z using the bilinear form (36), we have written
subprograms that carry out the action of P, P*, R,'Rf, A,
and B?. We are assuming, as is usually done, that h is fixed
and known so that v = C*R™*PJh can be precomputed and
stored. To compute these multiplicative constants- v, we need
additional subprograms to.carry out the action of C* and R™?,
but the efficiency with which we compute v is unimportant
since this is done beforehand, and wu is stored.

In Section I-B, we discussed the permutation P. The reduc-
tion operations R, R?, and R~* have been described in Section
I-C, and programs for these reduction operations have been
described above. To carry out the operation of A and Bt, we
need to be able to carry out the action of A4, ®- - -®Ag, , which
was discussed in Section IV. Note that since A and B? are
block diagonal, each diagonal block can be done separately.

SELESNICK AND BURRUS: AUTOMATIC GENERATION OF PRIME LENGTH FFT PROGRAMS 21

However, since they are rectangular, it is necessary to be
careful so that the correct indexing is used.

To facilitate the discussion of the programs we generate, it
is useful to consider an example. Take as an example the 45-
point circular convolution algorithm. From (32), we find that
we need to compute z = Py sz and z = Rg 5.

We noted above that bilinear forms for linear convolu-
tion (Dg, Eq, Fy) can be used for cyclotomic convolutions;
specifically, we can take A, = Dy, Bpi = Eypiy, and
Cpi = Gpi Fy(piy. In this case, (33) becomes

A=1®Dy® Ds® Dys® (D2 ® Dg) ® (Dg ®-Dy). (47)

When one uses bilinear forms for convolution obtained by
nesting [2], one can take Dy = Dy ® Dy and Dg = Dy @ Ds.
Then

A=10Dy & (D3 ® D3)® (D3 ® D3) & (D2 @ Dy @ D)
® (D2 ® D3 ® Dy ® Dy). (48)

From the discussion above, we found that the Kronecker
products like Dy ® Dy ® D, appearing in these expressions
are best carried out by factoring the product into factors of the
form I, ® Dy ® I,. Therefore, we have written programs to
program to carry out (I, @ Ds®1;)z and (I,@ D3s®1I;)z. These
function are called ID2T (a,b,x) and ID3I(a,b,x) and
appear in the program in the Appendix. The transposed form
(I, ® D} @ I)x is called ID2tI(a,b,x).

To compute the multiplicative constants, we need C'. Using
Cpi = Gp«'Fqg(pi), we get

C'=1@ FIGL @ FiG! @ FiGL & (FIGL ® FiGL)
@ (F/Gh @ FIGL) 49)
=1e FiGi e FiGY o FIGL o (F} ® F})(G, ® GY)
@ (F @ F})(Gh © GY). (50)

This requires programs to carry out the operation Fg, ®- - - Fy,
and Gp21 Q-G ex.
1 Py

A. Operation Counts

Table I lists operation counts for some of the circular
convolution algorithms we have generated. The operation
counts do not include any arithmetic operations involved in
the index variable or loops. They include only the arithmetic
operations that involve the data sequence x in the convolution
of z and h. ‘

In [14, Table 3.5], the split nesting algorithm gives very sim-
ilar arithmetic operation counts. For all lengths not divisible
by 9, the algorithms we have developed use the same number
of multiplications and the same number or fewer additions.
For lengths that are divisible by 9, the algorithms described in
[14] require fewer additions than do ours. This is because the
algorithms whose operation counts are tabulated in [14, Table
3.5] use a special ®o(s) convolution algorithm. It should be
noted, however, that the efficient $9(s) convolution algorithm
of [14] is not constructed from smaller algorithms using the
Kronecker product, as is ours. As we have discussed above, the
use of the Kronecker product facilitates adaptation to special

TABLE I
OPERATION COUNTS FOR' SPLIT NESTING CIRCULAR CONVOLUTION ALGORITHMS
N muls adds | N muls adds | N muls adds| N muls adds
2 2 4 24 56 244 | 80 410 1546 [240 1640 6508
3 4 11 |27 94 485 | 84 320 1712 | 252 1520 7920
4 5 15 (28 80 416 | 90 380 1858 | 270 1880 9074
5 10 31 {30 80 386 | 105 640 2881 | 280 2240 9516
6 8 34 |35 160 707 [108 470 2546 | 315 3040 13383
7 16 71 |36 95 493 | 112 656 2756 | 336 2624 11132
8 14 46 |40 140 568 | 120 560 - 2444 | 360 2660 11392
g 19 82 |42 128 718 [126 608 3378|378 3008 16438
10 20 82 |45 190 839 | 135 940 4267 | 420 3200 14704
12 20 92 48 164 656 | 140 800 3728 [432 3854 16430
14 32 170 |54 188 1078 [144 779 3277 | 504 4256 19740
15 40 163 [56 224 1052 [168 896 4276 | 540 4700 21508
16 41 135 |60 200 952 [180 950 4466 | 560 6560 25412
18 38 200 | 63 304 1563 | 189 1504 7841 | 630 6080 28026
20 50 214 |70 320 1554 | 210 1280 6182|720 7790 30374
21 64 317 {72 266 1250 [216 1316 6328 { 756 7520 38144
TABLE II
OPERATION COUNTS FOR PRIME LENGTH FFT’s

P muls adds | P muls adds | P muls adds

3 4 12 | 41 280 1140 | 241 3280 13020

5 10 34 43 256 1440 | 271 3760 18152

7 16 72 | 61 400 1908 | 281 4480 19036

11 40 168 | 71 640 3112 | 337 5248 22268

13 40 188 | 73 532 2504 | 379 6016 32880

17 82 274 (109 940 5096 | 421 6400 29412

19 76 404 | 113 1312 5516 | 433 7708 32864

29 160 836 | 127 1216 6760 | 541 9400 43020

31 160 776 | 181 1900 8936 [631 12160 56056

37 190 990 | 211 2560 12368 | 757 15040 76292

computer architectures and yields a very compact program
with function calls to a small set of functions.

It is possible to make further improvements to the operation
counts given in Table I [13], [14]. Specifically, algorithms for
prime power cyclotomic convolution based on the polynomial
transform, although more complicated, will give improvements
for the longer lengths listed [13], [14]. These improvements
can be included in the code-generating program we have
developed.

VI. PROGRAMS FOR PRIME LENGTH FFT’S

Using the circular convolution algorithms described above,
we can easily design algorithms for prime length FFT’s.
The only modifications that needs to be made involve the
permutation of Rader [15] and the correct calculation of
the DC term (y(0)). These modifications are easily made
to the above described approach. It simply requires a few
extra commands in the programs. Note that the multiplicative
constants are computed directly.

In the version we have currently implemented and veri-
fied for correctness, we precompute the multiplicative con-
stants, the input permutation, and the output permutation.
From (45), the multiplicative constants are given by V(1 &
C'R™*PJQ;)w, the input permutation is given by 1 ® PQ,,
and the output permutation is given by 1 @& Q%JP*. The
multiplicative constants and the input and output permutation
are each stored as vectors. These vectors are then passed to
the prime length FFT program that consists of the appropriate
function calls (see the Appendix). In the prime length FFT

22) IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 1, JANUARY 1996

modules of [9], the input and output permutations are com-
pletely absorbed into the computational instructions. This is
possible because they are written as straight line code. It is
possible to modify the code generating program so that it
produces straight line code and absorbs the permutations into
the computational program instructions.

In an in-place in-order prime factor algorithm for the DFT
[4], [18], the necessary permuted forms of the DFT can be
obtained by modifying the multiplicative constants. This can
be easily done by permuting the roots of unity w in the expres-
sion for the multiplicative constants [4], [8], nothing else in the
structure of the algorithm needs to be changed. By changing
the multiplicative constants, it is not possible, however, to omit
the permutation required for Rader’s conversion of the prime
length DFT into circular convolution.

A. Operation Counts

Table II lists the arithmetic operations incurred by the FFT
programs. Note that the number of additions and multiplica-
tions incurred by the programs are the same as previously
existing programs for prime lengths up to and including 13.
For p = 17, a program with 70 multiplications and 314
additions has been written, and for p = 19, a program with 76
multiplications and 372 additions has been written [9]. Thus,
for the length p = 17, the program we have generated requires
fewer total arithmetic operations, whereas for p = 19, ours
uses more.

The focus of [11] is the implementation of the prime point
FFT on various computer architectures and the advantage that
can be gained from matching algorithms with architectures.
Although we have not executed the programs described in this
paper on special architectures, they are, as mentioned above,
designed to be easily adapted to parallel/vector computers.

There are several tables of operation counts in [11], each
table corresponding to a different variation of the algorithms
used in that paper. For most variations, the algorithms we
have described use fewer additions and fewer multiplications.
According to Table VIII of [11], however, a 13-point DFT can
be implemented using 172 additions and 90 multiplications.
This is 16 fewer additions but 50 more multiplications than
the operation counts of Table II for this length. On many RISC
processors, the 13-point algorithm of [11] is the more efficient
because on such machines, multiplications can often be hidden
in additions via dual operations.

B. On the Row-Column Method

In the context of the DFT, the row-column method computes
the transform of a data array by computing the DFT of the
rows and by then computing the DFT of the columns. Some
algorithms for prime length FFT’s for which operation counts
are given [17] assume that a row-column method can be used
for multidimensional convolution. Unfortunately, however, the
convolution of two sequences cannot be found in general by
forming two arrays, by convolving their rows, and by then
convolving their columns. It should be noted that the row-
column convolution method of [11] apparently refers to the
nested polynomial multiplication method.

TABLE 1L

1 -1.0333333333333 41 -1.4798746704251
2 0.1855921454276*1 42 -0.0582790615545
3 0.2510268729290 43 -0.9087860322523
4 0.6380942903798 44 0.7212576727979
5 -0.2963737211029 45 -0.3514840137309
6 -0.4622019198251*1 46 -1.1133902803320
7 0.1559094262303*1 47 0.5148237842546
8 0.1020974978649*1 48 0.7764329487646

9 -0.1004982391648 49 0.4353299640755
10 -0.2174213318414 50 -0.1778664526872
11 -0.3250821649557 51 -0.3412062232109
12 0.7985895086968 52 0.2573602728664
13 -0.7809940420742 53 -0.0506222762445
14 -0.2560860118996 54 -2.7456733402296*1
15 0.1694943922209 1 55 2.6851774245075*1
16 0.7119978890181 56 0.8804630264001*1
17 -0.0600648208767 57 -5.0288512206368*1
18 -1.2351975704272*1 58 -0.3455283759802*1
19 -0.2716913692885*1 59 1.4632107697292*1
20 0.5417896123495*1 60 3.3284210835587*1
21 0.3294105607973*1 61 -0.2372193673488%*1
22 1.3174975050498*1 62 -1.0869751024678*1
23 -0.5995088038583*1 63 -1:6655229563854*1
24 0.0938991542192*1 64 1.6288261888106*1
25 -0.1761950888418*1 65 0.5340880727622*1
26 0.0280038252262*1 - | 66 -3.0504965865739*1
27 1.3166990503057 67 -0.2095971992901*1
28 1.3303152705405 68 0.8875823250010*1
29 -0.3851227530061 69 2.0190172086242*1
30 -2.9586665460213 70 -0.1438970529486*1
31 -2.5353019951462 71 -0.6593581106877*1
32 2.0134740284870 72 1.4703987655383*1
33 1.0818977311873 73 -1.4380012044393*1
34 0.1367052136530 74 -0.4715170330541*1
35 -0.5693908440642- 75 -2.6931159357369*1
36 -0.2622470091128 76 0.1850418584234*1
37 2.0098555704556 71 -0.7835976982434*1
38 -1.1593485997578 78 -1.7824794307276*1
39 0.6293676997273 79 0.1270388067658*1
40 1.2293121029196 80 0.5821110710518*1

VII. CONCLUSION

We have found that by using the split nesting algorithm for
circular convolution, a new set of efficient prime length DFT
modules that cover a wide variety of lengths can be developed.
We have also exploited the structure in the split- nesting
algorithm to write a program that automatically generates
compact readable code for convolution and prime length FFT
programs. . '

The resulting code makes clear the organization and struc-
ture of the algorithm and clearly enumerates the disjoint
convolutions into which the problem is decomposed. These
independent convolutions can be executed in parallel, and
moreover, the individual commands are of the form I ®
A ® I, which can be executed as parallel/vector commands
on appropriate computer architectures [19]. In addion, by
recognizing that the algorithms for different lengths share
many of the same computational structures, the code we
generate is made up of calls to a relatively small set of
functions. Accordingly, the subroutines can be designed to
specifically suit a given architecture.

SELESNICK AND BURRUS: AUTOMATIC GENERATION OF PRIME LENGTH FFT PROGRAMS

function y = fft31(x,u,ip,op)

% v = £ft31(x,u,ip,op)

% vy : the 31 point DFT of x

% u : a vector of precomputed multiplicative constants

%ip: input permutation, % op : output permutation

Yy = zeros(31,1);

x = x(ip); %

x(2:31) = KRED([2,3,5],[1,1,1],3,x(2:31)); %

y{1) = x(1)+x(2); % DC term
¥ - block : 1 —-----mmmmmm e
v{(2) = x(2)*u(l);

T block 1 2 —---ommmm e
y(3) = x(3)*u(2);

B mmmm o block : 3 =—wwmemmmmm e
v = ID2I(1,1,%(4:5)); & v = (I(1
v = v.*u(3:5);

y(4:5) = ID2tI(1,1,v); % y(4:5) =
% ——————- T block : 6 = 2 * 3 - ____
v = ID2I(1,1,x(6:7)); g v = (I(1
v = v.*u(6:8);

y(6:7) = ID2tI(1,1,v); % y(6:7) =
B e block : 5 =-emmmmmmmom
v = ID2I(1,2,x(8:11)); g v o= (I(1
v = ID2I(3,1,v); $ v o= (I(3
v o= v.*u(9:17);

v = ID2tI(1,3,v); & v = (I(1
y(8:11) = ID2tI(2,1,v); % y(8:11)

g —mmm e block : 10 = 2 * 5 ———em
v = ID2I(1,2,x(12:15)); $ v = (I(1l
v = ID2I(3,1,v); & v = (I(3
v = v.*u(18:26);

v = ID2tI(1,3,v); g v = (I(1
y{12:15) = ID2tI(2,1,v); % y(12:15)
§ e block : 15 = 3 * 5 —comm
v = ID2I(1,4,x(16:23)); v o= {I(1
v = ID2I(3,2,v); % v = (I(3
v = ID2I(9,1,v); & v o= (I(9
vV = v.*u(27:53);

v = ID2tI(1,9,v); ¥ v = (I(1
v = ID2tI(2,3,Vv); g v = (I(2
v(16:23) = ID2tI(4,1,v); % y(1l6:23)
B e block : 30 = 2 * 3 * 5 o ____
v = ID2I(1,4,x(24:31)); T v o= (I(1
v = ID2I(3,2,v); % v = (I(3
v = ID2I(9,1,v); g v = (I(9
v = v.*u(54:80);

v = ID2tI(1,9,v); g v = (I(1
v = ID2tI(2,3,v); g v = (I(2
y(24:31) = ID2tI(4,1,Vv); % y(24:31)
% __
v(2) = y(1)+y(2); % DC term
v(2:31) = tKRED([2,3,5],[1,1,1],3,y(2:31)); % transpos
y = y(op); %

23

input permutation
reduction operations

calculation

kron D2’ kron I(

D2 kron I(1l)) * x(6:7)

kron D2’ kron I(1l)) *

D2 kron I(2)) * x(8:11)
D2 kron I(1l)) * v

v

) kron
) kron

)

kron D2’ kron I(3)) * v

(I(2) kron D2’ kron I(1)) * v
) kron D2 kron I(2)
) kron D2 kron I (1)

) kron D2’ kron I(3)) * v
(I(2) kron D2’ kron I(
) kron D2 kron I(4)) * x(16:23)
) kron D2 kron I(2)) * v
) kron D2 kron I(1)) * v

- *

v

) kron D2’ kron I(9)) * v

} kron D2’ kron I(3)) * v
(I(4) kron D2’ kron I(1))
D2 kron I(4)) * x(24:31)
D2 kron I(2)) * v

D2 kron I(1)) * v

*

v

} kron
) kron
) kron

} kron D2
) kron D2’
(I(4) kron D2’

kron I(9)) * v
kron I(3)) * v
kron I(1))
calculation

e reduction operations

- *

v

output permutation

The number of additions and multiplications incurred by
the programs we have generated are the same as or are
competitive with existing prime length FFT programs. We
note that previously, prime length FFT’s were made available
for primes only up to 29. As in the original Winograd short
convolution algorithms, the efficiency of the resulting prime
p-point DFT algorithm depends largely on the factorability of
p — 1. For example, if p ~ 1 is two times a prime, then an
efficient p-point DFT algorithm is more difficult to develop.

It should also be noted that the programs for convolution
developed above are useful in the convolution of long integer
sequences when exact results are needed. This is because all
multiplicative constants in an n-point integer convolution are
integer multiples of 1/n, and this division by 7 can be delayed

until the last stage or can simply be omitted if a scaled version
of the convolution is acceptable.

By developing a library of prime point FFT programs, we
can extend the maximum length and the variety of lengths
of a prime factor algorithm or a Winograd Fourier transform
algorithm. Furthermore, because the approach taken in this
paper gives a bilinear form, it can be incorporated into
the dynamic programming technique for designing optimal
composite length FFT algorithms [7]. The programs described
in this paper can also be adapted to obtain discrete cosine
transform (DCT) algorithms by simply permuting the input
and output sequences [6].

More information can be found on the World Wide Web at
URL http://www-dsp.rice.edu/.

24

APPENDIX
A 31-PoINT FFT PROGRAM

As an example, we list a 31-point FFT program. The matrix
D5 used in the program is part of the bilinear form for a
two-point linear convolution in (19):

10
D=0 1
11

The program is shown at the top of the previous page.
The multiplicative constants for the 31-point FFT are given
in Table III.
The input permutation is given by
ip = [1 217 95 3 26 29 15 8 20 6 19 10 21
11 31 16 24 28 30 7 4 18 25 13 27 14 23 12
227.
The output permutation is given by
op = [1 31 30 2 29 26 6 19 28 23 25 9 5 7
18 12 27 3 22 20 24 10 8 13 4 21 11 14 17
15 16]. \

REFERENCES
[1]1 R. C. Agarwal and J. W. Cooley, “New algorithms for digital convo-
lution,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25,
no. 5, pp. 392410, Oct. 1977.
R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading,
MA: Addison-Wesley, 1985.
C. S. Burrus, “Efficient Fourier transform and convolution algorithms,”
in J. S. Lim and A. V. Oppenheim, Eds., Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1988.
C. S. Burrus and P. W. Eschenbacher. “An in-place, in-order prime
factor FFT algorithm,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-29, no. 4, pp. 806-817, Aug. 1981.
J. Granata, M. Conner, and R. Tolimieri, “The Tensor product: A
mathematical programming language for FFI’s and other fast DSP
operations,” IEEE Signal Processing Mag., vol. 9, no. 1, pp. 4048,
Jan. 1992.
M. T. Heideman, “Computation of an odd-length DCT from a real-
valued DFT of the same length,” IEEE Trans. Signal Processing, vol.
40, no. 1, pp. 54-59, Jan. 1992.
H. W. Johnson and C. S. Burrus, “The design of optimal DFT algorithms
using dynamic programming,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31, no. 2, pp. 378-387, Apr. 1983.
, “On the structure of efficient DFT algorithms,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-33, no. 1, pp. 248-254,
Feb. 1985.
, “Large DFT modules: 11, 13, 17, 19, 25,” Tech. Rep. 8105,
Rice Univ., 1981.
K. J. Jones, “Prime number DFT computation via parallel circular
convolvers,” Proc. Inst. Elec. Eng., Part F, vol. 137, no. 3, pp. 205212,
June 1990.
C. Lu, J. W. Cooley, and R. Tolimieri. “FFT algorithms for prime
transform sizes and their implementations of VAX, IBM3090VF, and
IBM RS/6000,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
41, no. 2, pp. 638-648, Feb. 1993.
D. G. Myers, Digital Signal Processing: Efficient Convolution and
Fourier Transform Techniques. Englewood Cliffs, NJ: Prentice-Hall,
1990.
H. J. Nussbaumer, “Fast polynomial transform algorithms for digital
convolution,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 28,
no. 2, pp. 205-215, Apr. 1980.
, Fast Fourier Transform and Convolution Algorithms. New
York: Springer-Verlag, 1982.

[2]
[3]

[4]

[5]

[6]

[7}

(8]

[9]
[10]

[11]

[12]

[13]

[14]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 1, JANUARY 1996

C. M. Rader, “Discrete Fourier transform when the number of data
samples is prime,” Proc. [EEE, vol. 56, no. 6, pp. 1107-1108, June
1968.

I. W. Selesnick and C. S. Burrus. “Automating the design of prime
length FFT programs,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 1,
pp- 133-136, 1992.

R. Stasinski, “Easy generation of small-n discrete Fourier transform
algorithms,” Proc. Inst. Elec. Eng. Part G, vol. 133, no. 3, pp. 133-139,
June 1986. i

C. Temperton, “Implementation of a self-sorting in-place prime factor
FFET algorithm,” J. Comput. Phys., vol. 58, pp. 283-299, 1985.

R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier
Transform and Convolution. New York: Springer-Verlag, 1989.

S. Winograd, Arithmetic Complexity of Computations. Philadelphia::
SIAM, 1980.

Y. Zalcstein, “A note on fast cyclic convolution,” IEEE Trans. Comput.,
vol. 20, pp. 665-666, June 1971. :

[15]

[16]

[17]

[18]
{19]
[20]

[21]

Ivan W. Selesnick received the B.S. and M.E.E.
degrees in electrical engineering in 1990 and 1991,
respectively, from Rice University, Houston, TX,
USA. He is currently working towards the Ph.D.
degree at Rice University.

He received a DARPA-NDSEG Fellowship in
1991. He has been employed by McDonnell Dou-
glas and IBM, working on neural networks and
expert systems. His current research interests are in
the area of digital signal processing, in particular,
fast algorithms for DSP, digital filter ‘design, and
the theory and applications of wavelets.

Mr. Selesnick is a member of Eta Kappa Nu, Phi Beta Kappa, and Tau
Beta Phi.)

C. Sidney Burrus (S’55-M’61-SM’75-F’81) was
born in Abilene, TX, USA, on October 9, 1934. He
received the B.A., B.S.E.E., and M.S. degrees from
Rice University, Houston, TX, USA, in 1957, 1958,
and 1960, respectively, and the Ph.D. degree lrom
Stanford University, Stanford, CA, USA, in 1965.

From 1960 to 1962, he taught at the Navy Nuclear
Power School, New London, CT, USA, and during
the summers of 1964 and 1965, he was a Lecturer
in electrical engineering at Stanford University. In
1965, he joined the faculty at Rice University, where
he is now Professor of Electrical and Computer Engineering and Director of
the Computer and Information Technology Institute. From 1972 to 1978, he
was Master of Lovett College at Rice University, and from 1984 to 1992, he
was chairman of the Electrical and Computer Engineering Department at Rice.
From 1975 to 1976 and again from 1979 to 1980, he was a Guest Professor
at the Universitdt Erlangen, Nuernberg, Germany. During the summer of
1984, he was a Visiting Fellow at Trinity College, Cambridge University,
Cambridge, England, and during the academic year 1989-1990, he was a
Visiting Professor at the Massachuseits Institute of Technology, Cambridge,
USA. '

Dr. Burrus is a member of Tau Beta Pi and Sigma Xi. He received teaching
awards at Rice in 1969, 1974, 1975, 1976, 1980, and 1989, an IEEE ASSP
Society Senior Award in 1974, a Senior Alexander von Humboldt Award in
1975, a Senior Fulbright Fellowship in 1985, and he was a Distinguished
Lecturer for the Signal Processing Society and for the Circuits and Systems
Society from 1989 through 1992. He received the Society Award from the
IEEE Signal Processing Society in 1995 and was recently appointed the
Maxfield and Oshman Professor at Rice. He served on the IEEE Signal
Processing Society ADCOM for three years and has co-authored four books
on digital signal processing.

