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Exchange Algorithms for the Design of Linear Phase
FIR Filters and Differentiators Having Flat
Monotonic Passbands and Equiripple Stopbands

Ivan W. Selesnick and C. Sidney Burrus

Abstract—This brief describes a modification of a technique proposed
by Vaidyanathan for the design of filters having flat passhands and
equiripple stopbands. The modification ensures that the passband is
monotonic and does so without the use of concavity constraints. Another
modification described in this brief adapts the method of Vaidyanathan to
the design of low-pass differentiators having a specified degree of tangency
at w = 0.

I. INTRODUCTION

Linear phase FIR filters having very flat passbands and equiripple
stopbands are important for several applications [21]. For example,
consider the removal of high frequency noise from a low frequency
signal by low-pass filtering: To reduce the distortion of the signal
introduced by the filter, the use of a filter having a very flat passband
is desirable. To maximize the stopband attenuation, the use of a filter
having an equiripple stopband is desirable. Filters having very flat
passbands are also useful in applications in which a filter appears in
cascade with other filters, such as in a long-distance communication
channel with “repeater stations” [3]. Furthermore, in [17] Steffen
shows that such filters have good approximation properties. Briefly,
filters that achieve a specified degree of flatness at w = O preserve
the moments of an input signal to a specified degree, see also [14].

Fig. 1 shows the frequency response amplitude of a length 33
filter having these characteristics. It equals 1 at w = 0 and has 21
derivatives equal to 0 at w = 0. The stopband edge, ws, and the
Chebyshev error in the stopband, 6, are shown in the figure. The
parameters used in this brief are:

N filter length

L degree of flatness at w = 0
ws stopband edge

§s  stopband Chebyshev error

By degree of flatness we mean the number of derivatives of
A(w)—1 equal to 0 at w = 0, where A(w) is the frequency response
amplitude.

The design of linear phase FIR filters having very flat passbands
and equiripple stopbands has been studied by several authors. Dar-
lington [2] described some transformation principles for filters of
this type. Kaiser, Steiglitz, and Parks have used linear programming
methods [7], [18], [19]. While linear programming is a very general
and flexible design method for filter design, it is more computationally
intensive and is no more immune to numerical difficulties than
are exchange algorithms. In [21], Vaidyanathan presents a method
based upon the Remez exchange algorithm. The method he describes
employs the Parks—-McClellan algorithm [9] and a special filter
structure. This structure, which has also been used by SchiiBler and
Steffen [13], [14], and [17], enforces a specified degree of flatness
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Fig. 1. N =33, L =22, ws = 0.67, and 65 = 0.0175.

at w = 0 and results in a design algorithm with good numerical
properties and a filter implementation with good sensitivity properties.
However, the filters obtained by the method described in [21] do
not necessarily have monotonic passbands, which is sometimes a
requirement.

This brief describes a modification to the filter design method
of [21]. It produces odd-length linear phase filters with equiripple
stopbands and monotonic passbands having a specified degree of
flatness at w = 0. Although passband monotonicity can be ensured by

 linear programming methods (by the use of derivative constraints), it

is preferable to use the modification of [21] described below, because
of its 1) computational efficiency, 2) good numerical properties during
the design, and 3) its low sensitivity filter structure. This brief also
discusses bandpass filter design and adapts the techniques of [21] to
the design of low-pass differentiators.

II. THE DESIGN ALGORITHM

The structure described in {21], shown in Fig. 2, achieves an L
degree of flatness at w = 0. The filter length N must be odd,
otherwise the delay component is a fractional delay which we wish
to avoid. The filter transfer function is given by

H(z)=z"WN"Y"2 L B (2)H,(2) e

where Hy(z) is given by

1_.,—1 L
Hl(z)=< 2‘—) : @

Taking H> to be a high-pass filter whose impulse response is
symmetric and of length N — L, H Q(ej“’) can be written [9] as
Hy(e?*) = e IN=L=1/2w 4, () where Az(w) is the frequency
response amplitude, a real valued function of w. When L is chosen
to be even, [(1 — e™7“)/2]" can be written as :

(A7) =i g)’

where we have used the identity (1 — (3“@)/2 = jefjw/2 sin w/2.
Therefore H(e’*) can be written as H (¢/*) = eIUN=D/2w 410y
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Fig. 2. Filter structure for implementation and design of low-pass filter.

where the frequency response amplitude can be written as
L
A(w) = 14 Az(w)(=1)5/? (sin g) . 3

It should be noted that the use of L, here and below, includes all
the derivatives that are made to match the desired response, and so
includes the zeroth derivative.

Let M = (N — L —1)/2 and denote the filter coefficients of Hy
by h2(0), -+, ho(N — L — 1). Az(w) can be written as

M=1
Ax(w) = hao(M) + 2 Z ha(n) cos[w(M — n)]. (€))
n=0 .

Two approaches to the problem formulation for which exchange
algorithms can be used are the following.

1) Specify N, L, w,; minimize 8.

2) Specify N, L, 6.; minimize the passband width, (minimize

Ws).

The first of these two options is the traditional approach in which
the bands of interest are well defined and the Chebyshev norm of
the error function over those bands is minimized. The second version
is a variation of this approach in which the Chebyshev error in the
stopband is specified but the band edge, however, is not fixed. In this
case, no band edge is actually used during the course of the design
procedure. The band edge that results is the one that corresponds to
the specified Chebyshev error 6, and the specified degree of flatness
L. .

A. Specifying ws

The first of these two approaches is solved by applying the Remez
exchange algorithm [9] over just the stopband. In other words, the
modification made to the method of [21] is to simply weight the
passband error by 0. The use of the Remez algorithm in this way
will yield the coefficients of H, that minimize

14 Ag(w) (=12 <sin g)[’ 5)

over the stopband. On each iteration, a reference set of stopband
frequencies is updated and the filter H» is found such that A(w)
alternately interpolates 6, and —§, over the reference set frequencies.
The size of the reference setis ¢ = (N — L+3)/2. Let wy, ++ -, w,
denote the reference set frequencies ordered in increasing order. The
equation

Afwi) = 85(=1)" ©®)
that appears in the course of the Remez algorithm becomes
bs(=1)" — 1
Az (wi) = LG Mk T (7

(=1)L/2 (sin %) -

which is linear in the coefficients of Hs and §,. Solving these
equations for 1 < ¢ < ¢ gives the coefficients of Hy and §,. These

can be found efficiently by using the interpolation formulas as in
the Park-McClellan algorithm. The reference set is updated as in the
Parks~McClellan algorithm and a new filter A is found, and so on,
until convergence is obtained. Quadratic convergence to the unique
optimal solution is guaranteed by the appropriate use of the Remez
algorithm.

It should be noted that any implementation of the Remez algorithm
which allows the user to give an arbitrary weighting function and an
arbitrary desired magnitude response can be used.

Setting
) 0 o for w < ws

W(w) = (—1)]‘/2 (sin —;—) for w > ws ®

and
_(—1)L/2
(sm 5)
Equation (5) becomes
{42 (w) = D)W (w)ll,, (10)

which is the appropriate formulation for use with the Remez algo-
rithm.

B. Specifying 6,

To specify &, and leave the stopband edge variable, we use an
approach similar to that of [15]. Like the Remez algorithm, this
approach employs a set of stopband reference frequencies. On each
iteration: 1) an interpolation problem is solved and 2) the reference
set is updated. The reference set here, however, does not contain the
stopband edge (indeed, it is not specified). Therefore the reference
set contains (N — L + 1)/2 stopband frequencies.

Given a set of reference frequencies, the filter that alternately
interpolates —§&; and &, is found. The interpolation is such that the
filter interpolates —&, at the first reference set frequency. Note that
because &, is specified by the user, it does not have to be found as in
the Remez algorithm. Also note that a filter can be found that satisfies
this interpolation requirements because the number of reference set
frequencies equals the number of filter parameters. At each iteration,
the Jocal extremal frequencies of A(w) in (0, 7] are found and are
taken to be the reference set frequencies for the next iteration.

In Fig. 3, the circular marks indicate the reference set frequencies
upon convergence when. this approach is used. Notice that the
stopband edge is not included among these circular marks and its
location is controlled only indirectly. However, with this approach,
the user can.directly specify the §; parameter.

This approach produces the same set of filters as does the use of the
Remez algorithm described above, however, it gives a different way
to specify the filter parameters in the design process. Note that this
approach is also similar to the approach of Hofstetter, Oppenheim,
and Siegel to the design of extra-ripple filters [5], [6]. The similarity
lies in: 1) the ability to specify 6 and the use of this specified value
during the interpolation process and 2) the variability of the band
edge. The approach described above is also like the algorithm of
Hofstetter et al., in that, while we have no proof of convergence, in
practice the algorithm duplicates the rapid, robust convergence of the
Remez algorithm.

C. Passband Monotonicity

The passband can be shown to be monotonic by the following
reasoning. Recall that when no degree of flatness is imposed upon
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Fig. 3. n =33,1= 22, and é; = 0.02.

A(w) the maximum number of frequencies in [0, 7] at which the
derivative of A(w) equals zero is (N + 1)/2 [11]. Note also that
additional degrees of flatness imposed at w = 0 reduces the number
of frequencies at which A'(w) can equal zero. Because the filters
produced by the methods described above have the property that
A'(w) equals zero at (N + 1 — L)/2 frequencies in the stopband,
it appears that there can be no passband frequencies (other than
w = 0) at which A’'(w) equals zero. Therefore, the passband will
be monotonic. :

III. BANDPASS FILTER DESIGN

This method can also be applied to the design of bandpass filters
having very flat passbands. In this case, we specify a passband
frequency, w,, where we wish to impose flatness constraints. Fig. 4
shows the frequency response amplitude of a length 55 bandpass
filter. The deviations from 0 in the first and second stopbands are
denoted by 6; and 63, respectively.

The appropriate filter structure has the transfer function H(z) =
2~ (N=U12 4 H(2)Hs(z) with
1—2(cos wp)z~t+ 272 Lz
4

Hi(2)= 11

where L is even, N is odd, and H- is a filter whose impulse response
is symmetric and of length N — L. The overall frequency response
H (e’ can then be written as H (¢/*) = eIV =1/2% 4 () where
the frequency response amplitude A(w) is given by

COS Wy — COS W

L/
2 ) 2 Az (w)

Aw) =1+ (=1)"2 ( (12)
and where A2(w) is given by (4).

In keeping with the previous discussion, we desire that the pass-
band be monotonic on both sides of w,. To ensure this behavior in
the exchange algorithms described below, it is necessary that L be
a multiple of 4. When 4 divides L, the zeros of Hi(z) have even
multiplicity, making 4;(w) a nonnegative function. Then A(w) is
concave over the passband with appropriately chosen H>.

As above, there are two approaches for which simple exchange
algorithms are well suited:

1) Specify N, L, w,, stopband edges, K = 63/6:1; minimize ;.

2) Specify N, L, wp, 61, §2; minimize passband width.

0 0.2 04 0.6 0.8 1

Fig. 4. N =55, L =16, wp = 0.47, and w; = 0.157.

First we describe approach (1), which uses the Remez algorithm
with a zero-weighted passband. Because our approach places all the
reference set frequencies in the stopbands, and because the Remez
algorithm requires that the error function alternate sign over the
reference frequencies, the reference set must contain exactly one
stopband edge at each iteration. For example, see Fig. 4 in which the
circular marks indicate the reference frequencies upon convergence.
In this figure, the first stopband edge is included in the final reference
set, but the second is not. Note that bandpass filters designed such
that the passband is concave and flat at w, have passbands that are
generally quite symmetric around w,. For this reason, we suggest that
the stopband edges are taken to be w, == wp —w; and wp = wp +we.

The reference set is updated by the following procedure: First
compute the set of all local extremal frequencies of A(w) in [0, 7].
Calling this set R, remove w, from R. R will then contain either
(N - L+1)/2 or (N - L+ 3)/2 frequencies. If R contains
(N — L+ 3)/2 frequencies, then remove either 0 or 7 as follows:
if |A(w)| < K|A(0)| then remove w, otherwise remove 0. Next,
append either w, or wp to R: if |[A(wi)| < K|A(w,)| then append
wq, otherwise append ws. R is the new reference set and has size
(N —L+3)/2.

On each iteration, the filter H> is found such that A(w) interpolates
8,(—1)" over the reference set frequencies in the first stopband
and K6,(—1) in the second stopband. The resulting interpolation
equations are linear in the coefficients of H> and 6;. Convergence to
a filter with a concave passband is quadratic.

A similar algorithm is used for approach (2) in which 6 and 6, are
specified and the stopband edges are left variable. The reference set
is updated in the same manner, except no stopband edge is appended
to R. Let wy, - - -, wq denote the reference set frequencies ordered in
increasing order. On each iteration, the filter H; is found such that

Aw) =(-1)"F°6  for wi <wp 13)
Alwi) = (1) for wi> wp (14)
where ¢ equals O or 1, whichever gives A(w) = —&; at the highest

reference frequency less than w,,. If the filter in Fig. 4 were designed
by specifying &1 and &, the reference set upon convergence would
exclude the first stopband edge w, = wp — wy.

IV. Low-PASS DIFFERENTIATORS

Low-pass digital differentiators can' also be designed using the
approach described above. However, the parameterization for dif-
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Fig. 5.
differentiator. C(z) =

Filter structure for implementation and design of a length N low-pass
—(1—2712/2, S(z) = (271 —1)/2, N odd.

ferentiators having a specified degree of tangency at w = 0 is more
complicated, and the simple structure used above must be modified.
Let C'(w) = 1—cos w and let L and N both be even. The frequency
response amplitude of a length IV differentiator with L degrees of
flatness can be expressed as

A(w) = (sin %) 2+ diC(w) + do CF(w)

o dr ey + CFP T W) + As(w)CH P (w)]
(15)

where A;(w) is an arbitrary cosine polynomial of degree (N — L —
1)/2 and the first few d; are as follows: d; = 1/6, d2 = 3/80, d3 =
5/448, dy = 35/9216, d5s = 63/45056, and ds = 231/425984.
The general formula appears to be given by

135 (2k—1)
b= 5 (2k+1) - 22F—1° (16)
For the amplitade given in (15), A(0) = 0, A'(0) = 1, and

A®RO) =0 for k=2, ---, L.

Because the method described above for low-pass filter design
uses a reference set of stopband frequencies only, exactly the same
procedure can be used here. Accordingly, it is possible to either: 1)
specify the stopband edge w, and leave §, variable or 2) specify
6. and leave w, variable. As above, the interpolation equations are
linear in the coefficients of A2(w) and ;.

Fig. 5 shows the filter structure of an even-length differentiator
for which L = 6. In the figure, H(z) is a linear-phase transfer
function of order N — L — 1. A maximally-flat differentiator can be
obtained by setting H(z) = 1, but see also [8], [14]. The structure
for odd-length differentiators is similar. Fig. 6 shows the frequency
response amplitude of a length 58 digital differentiator designed by
this approach.

For odd length differentiators, the amplitude response can be
written as

A(w) =(sin w)[1 4 d;C(w) + (d2 + C*(w)

Foodpa CFP N (w) + Ag (W) Y2 (W)
a7

where As(w) is an arbitrary cosine polynomial and the first few d;
are as follows: dy = 1/3,dy = 2/15, ds = 2/35, dy = 8/315, and
ds = 8/693. The general formula appears to be

k!

dy = .
FTIT35 (264 D)

For the amplitude glven in (17), A(0) = 0, A'(0) = 1, and
A®O0) =0 for k=2, --, L.

!
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Fig. 6. N = 58, L = 34, and 6, = 0.01.

V. DIsCUSSION AND CONCLUSION

Even-though the use of structures improves the numerical proper-
ties of the design procedure, there are limits on the filter length due to
the difficulty associated with (sin w/2)" in (7) when L is very large.
The reader is referred to [21] for discussions on IFIR filter design
and implementation considerations, including coefficient sensitivity
arid roundoff noise.

It should be noted that passband monotonicity is achieved by
this method without any explicit constraints on the concavity of the
frequency response amplitude. It is obtained simply by locating all
reference set frequencies in the stopband, so that the passband is
shaped by the constraints embedded in the filter structure. Conse-
quently, in the design of low-pass filters by the algorithm described
above, the location of the passband edge arises as the result of
the stopband specification, which is given in terms of either w, or
s, but not both. Similar tradeoffs between the ability to directly
achieve specified parameters are discussed for equiripple low-pass
and band-pass filters in [15].

Note that when L is taken to be 2 for the low-pass case, the
filter can be expressed analytically using Chebyshev polynomials
[11]. More interestingly, if L is taken to be 4 for the bandpass case,
then the subset of maximal ripple bandpass filters can be found using
analytic methods involving Zolotarev polynomials as described by
Chen and Parks in [1]. Analytic solutions for higher values of L in
each case do not appear to be known.

We also wish to note that filters minimizing an integral square error
having a specified degree of flatness at w = 0 are discussed in [10],
[13], [14], and [17].

The low-pass filters designed by the method described above are
analogous to the classical type Il Chebyshev (or inverse Chebyshev)
IR filters [9]. Filters analogous to the classical type I Chebyshev
IIR filters can be designed by the same principles. Linear phase FIR
filters that are analogous to the classical Butterworth and Elliptic TIR
filters are the maximally flat FIR filters of [4] and the equiripple
FIR filters obtained by the Parks—-McClellan algorithm. Thus, FIR
analogs to each of the four classical IR filter types can be designed
without the use of general linear programming methods and without
the need to explicitly impose lincar constraints. The advantages of
this is that: 1) linear programming methods can be computationally
intensive and 2) the use of linear constraints on derivatives become
ill-conditioned for modest filter lengths. It is interesting to note: ‘1)
that maximally flat filters can be designed by employing simple
filter structures [20], 2) that equiripple filters can be designed by
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employing exchange algorithms, and 3) that the filters described in
this brief can be designed by combining the use of a simple structure
and by employing exchange algorithms. This is satisfying because
the characteristics of the filters designed in this brief combine the
characteristics of maximally flat filters and equiripple filters.

Also, recall that the four classical IIR filter types all have an
equal number of poles and zeros. It is possible to design IIR
filter with an unequal number of poles and zeros by combining
the techniques described above with the rational Remez exchange
algorithm discussed in [16].

Matlab programs are available from the authors or electronically
on the World Wide Web at URL http://www-dsp.rice.edu.
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Fast Interpolation of n—Dimensional
Signal by Subsequence FFT

Yao Dezhong

Abstract— Based on the differential property of Fourier transform
and the Taylor expansion of a n-variables function, the subsequence
interpolating algorithm is extended to a general n—dimensional signal.
As the interpolating process is consisted of a few parallel inverse FFT
with the same size as the forward FFT, it is very efficient and is suitable
for parallel processing.

I. INTRODUCTION

Discrete interpolation between successive samples of a sequence
is often required in digital signal processing. The conventional FFT-
based interpolation begins by taking the FFT of the original sequence.
This is then zero-filled and properly scaled before the application
of an inverse FFT (IFFT) to obtain the interpolated sequence [1],
[2]. Since the input to the IFFT consisis mostly. of zeros, additional
savings can be obtained by eliminating operations with zeros. In order
to avoid these redundant operations, Adams proposed a subsequence
approach for 1-dimentional (1-D) signal that permits the use of an
IFFT with the same size as the original sequence [3], then Mao and
Chan et al. extended this algorithm to 2-D signal [4], [5]. Here based
on a novel derivation idea, the general subsequence interpolation
algorithm of a n-D signal is obtained succinctly.

II. GENERAL THEORY OF SUBSEQUENCE INTERPOLATION

Assuming a n-D signal f(&) has arbitrary order derivative in the
near supersphere region B(Zo, £o) of point Zo, we have its Taylor

expansion as
2o (h" en )

m=0

. f(.’l?()l + hl,' s To(n—1) + hn—la 370n)

=1 0 \"=1 a \"
> () Z ()

f(& +h)

m=0 m=0
< f(xor + hiy ot To(n—1)» Ton)
n =) 1 9 N m .
=11 Z—,(hla—) f(#o) M
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