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a b s t r a c t

Vibration signals arising from faulty gearboxes are often a mixture of the meshing component

and the periodic transient component, and simultaneously contaminated by noise. Sparsity-

assisted signal decomposition is an effective technique to decompose a signal into morpho-

logically distinct components based on sparse representation and optimization. In this paper,

we propose a sparsity-enhanced signal decomposition method which uses the generalized

minimax-concave (GMC) penalty as a nonconvex regularizer to enhance sparsity in the sparse

approximation compared to classical sparsity-assisted signal decomposition methods, and

thus to improve the decomposition accuracy for gearbox fault diagnosis. Even though the GMC

penalty itself is nonconvex, it maintains the convexity of the GMC regularized cost function to

be minimized. Hence, similar to the classical L1-norm regularization methods, the global opti-

mal solution can be guaranteed via convex optimization. Moreover, we present and validate

a straight-forward way to choose transforms and set parameters for the proposed method.

Through simulation studies, it is demonstrated that the proposed sparsity-enhanced signal

decomposition method can effectively decompose the simulated faulty gearbox signal into

the meshing component and the periodic transient component. Comparisons with the clas-

sical L1-norm regularized signal decomposition method and spectral kurtosis show that the

proposed method can accurately preserve the amplitude of the periodic transient compo-

nent and provide a more accurate estimation result. Experiment and engineering case studies

further verify that the proposed method can accurately estimate the periodic transient com-

ponent from vibration signals, which demonstrate that the proposed method is a promising

tool for gearbox fault diagnosis.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Gearboxes are used extensively for the transmission of speed and power in mechanical systems, such as wind turbines,

aero-engines, helicopters, automobiles, and mining equipment. However, gearboxes are extremely prone to various faults when

operated continuously in a harsh working environment. If a fault occurs in the key gear during its operation, it may cause an

abnormal operation or system failure, which results in long downtimes, increased maintenance loss, or even casualties. For

example, gearbox failures are regarded as one of the most serious causes of breakdown in wind turbines, and the reliability of

* Corresponding author. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China.

E-mail addresses: wangshibin2008@gmail.com, wangshibin2008@mail.xjtu.edu.cn (S.Wang).

https://doi.org/10.1016/j.jsv.2018.06.037

0022-460X/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jsv.2018.06.037
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jsvi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2018.06.037&domain=pdf
mailto: wangshibin2008@gmail.com
mailto: wangshibin2008@mail.xjtu.edu.cn
https://doi.org/10.1016/j.jsv.2018.06.037


G. Cai et al. / Journal of Sound and Vibration 432 (2018) 213–234214

gearboxes is an important concern in the wind energy industry [1–3]. Therefore, condition monitoring and fault diagnosis of

gearboxes have attracted considerable attention during the past decades [4].

Vibration signals generated by mechanical faults are important indicators of machinery operating condition, and contain

information not only about the machine health condition but also the severity of the fault [5,6]. For a fault-free gear pair, the

vibration signal of the gearbox tends to be dominated by the meshing frequency and its harmonics [7]. When there exists

a localized fault on the gear, such as spall, pit or breakage, it will interact with another gear and thus generate a series of

transients which are periodic at the inverse of the shaft rotational frequency [8]. Therefore, the vibration signal arising from

a faulty gearbox system is usually a mixture of the meshing component and the periodic transient component, and these two

components are polluted by heavy background noise from other machine components and the working environment [9]. How

to accurately estimate the periodic transients corresponding to the fault from the complex noisy signal is a key task for gearbox

fault diagnosis.

Over the past decades, various signal processing methods have been widely studied and applied to vibration signal analysis

and fault diagnosis, such as short-time Fourier transform (STFT) [10], wavelet transform [11–13], empirical mode decomposition

[14–16], spectral kurtosis (SK) [17–20], stochastic resonance [21–23] and time-frequency analysis [24–29]. These contributions

have greatly enriched researches in machinery fault diagnosis. However, the effectiveness of most above-mentioned methods

is diminished by two inevitable limitations. First, most of these methods reduce the amplitude of the component of interest

while eliminating the noise and interference. If the signal of interest is preserved, the noise or interference is also preserved

simultaneously. Second, most of the aforementioned methods analyze signals in the frequency domain or in the time-frequency

domain. Vibration signals collected from faulty gearboxes are a combination of the meshing component, the periodic transient

component, and noise. However, the meshing component and the periodic transient component not only overlap in the time

domain but they may also overlap in the frequency domain. Hence, these two mixed components are difficult to decompose by

these methods.

As a new branch of the signal processing method, sparse representation has received considerable attentions and has been

widely used in the field of machinery fault diagnosis [30–35]. Sparsity-assisted signal decomposition using morphological com-

ponent analysis (MCA) has proven to be a useful technique for machine fault signal decomposition. MCA is implemented via

sparse representations and optimization and it is designed to separate additively-mixed components in a signal using morpho-

logical diversity rather than frequency or scale information [36]. It was first used for the separation of texture and piecewise

smooth components in an image, and later widely used in a variety of fields. Abrial et al. extended MCA to the analysis of spher-

ical data map [37]. Yong et al. generalized MCA to separate multi-channel EEG signal sources [38]. Farshchian et al. used MCA

with two STFTs to separate the wing-beat signature from the body signature of radar bird data [39]. Considering that many

complex signals arising from physiological and physical processes are often a mixture of components with different oscillation

behaviors, Selesnick proposed a sparsity-assisted signal decomposition method using MCA and wavelet transform to decompose

a signal into its components [40]. Cai et al. introduced the sparsity-assisted signal decomposition method using MCA to gearbox

fault diagnosis in which the faulty gearbox vibration signal is separated into the meshing component and the periodic transient

component [41]. The effectiveness of the sparsity-assisted signal decomposition method using MCA in faulty gearbox vibration

signal decomposition is based on the fact that the meshing component and the periodic transient component possess different

morphologies. Subsequently, other researchers began to study the usage of sparsity-assisted signal decomposition via MCA for

gearbox fault diagnosis. Li et al. introduced the kernel spectral regression framework into MCA to diagnose the marine propul-

sion gearbox fault [42]. Yu et al. employed the principle of the minimum entropy of information to select the optimal dictionary

for the transient component representation and proposed an improved MCA for signal decomposition to diagnose compound

faults in gearboxes [43]. Zhang et al. proposed a resonance-based sparse signal decomposition with a comb filter method using

MCA for gearbox multi-fault diagnosis [44]. These studies provide new insights on how to extract fault features for gearbox fault

diagnosis. In these studies, the L1-norm is classically used to regularize the MCA problem because the L1-norm induces spar-

sity most effectively among convex penalties [45]. However, the L1-norm regularizer often underestimates the high-amplitude

components of the sparse coefficients and tends to underestimate the signal of interest while eliminating noise and interference

signal [46], which may cause missed alarm or underestimation of the fault severity.

In recent years, researches have addressed the design of penalties to strongly promote sparsity. Nonconvex sparsity-inducing

penalties can provide a more accurate estimation of the high-amplitude component. However, most nonconvex penalties do not

seek to maintain the convexity of the cost function to be minimized. Hence, the cost function is generally nonconvex and has

extraneous suboptimal local minimizers. Blake, Zisserman and Nikolova designed convexity-preserving nonconvex penalties,

and these penalties were further developed [47–50]. However, these penalties are separable, so when they are parameterized

to maintain cost function convexity, they can only improve on the L1-norm penalty to a very limited extent. Recently, Selesnick

proposed a novel class of nonconvex penalty functions, named the generalized minimax-concave (GMC) penalty, which can

induce sparsity effectively while maintaining the cost function convexity [51]. Theoretical analysis proves that it is easy to

prescribe the GMC penalty to maintain the convexity of the cost function to be minimized. Hence, the cost function has no

suboptimal local minimizers and can be minimized via convex optimization comprising simple computations. The superiority

of the GMC penalty is that it can effectively enhance the sparsity level in a sparse approximation problem and achieve a more

accurate estimation of the signal of interest.

In this paper, we propose a sparsity-enhanced signal decomposition method for gearbox fault diagnosis by using the GMC

penalty to improve the signal decomposition performance of the L1-norm regularized MCA. The paper proves that the convexity

of the sparsity-enhanced MCA cost function can be maintained by prescribing the GMC penalty appropriately, and provides an
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iterative algorithm to solve the convex sparsity-enhanced MCA problem for signal decomposition. This paper further proposes

this method for decomposing gearbox vibration signals into the meshing component and the periodic transient component,

and presents a straight-forward way to choose transforms and set parameters for the implementation of the proposed sparsity-

enhanced signal decomposition method. A simulation study verifies the effectiveness of the proposed method and shows that

the signal decomposition accuracy is improved. Experiment and engineering case studies further verify the effectiveness of

the proposed method for signal decomposition as well as the transform choose and parameter setting strategy. Comparisons

show that the proposed method can more accurately estimate the amplitude of the periodic transient component and thus can

significantly improve the gearbox fault diagnosis accuracy compared with the L1-norm regularized MCA method or SK.

The main contributions of this paper are in two categories. First, we propose a sparsity-enhanced signal decomposition

method via using the GMC penalty to regularize the MCA problem, give a condition to guarantee the convexity of the sparsity-

enhanced MCA cost function, and derive a practical iterative algorithm based on the forward-backward splitting (FBS) algorithm

to obtain the global minimum. Second, through simulation, an experiment case study and an engineering case study, we verify

the effectiveness and superiority of the proposed sparsity-enhanced signal decomposition method for gearbox fault diagnosis.

We also present and validate a straight-forward way to choose transforms and set parameters for the proposed method.

The remainder of this paper is organized as follows. Section 2 recalls the L1-norm regularized MCA for sparsity-assisted signal

decomposition. In Section 3, we propose the sparsity-enhanced signal decomposition method using the GMC penalty, show how

to maintain the convexity of the MCA cost function, and present a proximal algorithm to minimize the cost function. In Section

4, we provide a procedure to apply the sparsity-enhanced signal decomposition method to gearbox fault diagnosis. Section 5

validates the effectiveness and superiority of the proposed method for gearbox fault diagnosis by simulated signal analysis,

and investigates the transform choice and parameter setting strategy. Section 6 applies the method to gearbox fault diagnosis

(for an automobile transmission gearbox and the reduction gearbox of a hot-strip finishing milling machine) and compares its

performance to the L1-norm regularized MCA and SK. Section 7 draws conclusions.

2. Review of sparsity-assisted signal decomposition using MCA

The vibration signal 𝐲 ∈ ℝM measured from a faulty gearbox is modeled as

𝐲 = 𝐲1 + 𝐲2 + 𝐧 (1)

where 𝐲1 ∈ ℝM comprises the meshing component and its harmonics, 𝐲2 ∈ ℝM comprises fault-induced periodically occurring

transients, and 𝐧 ∈ ℝM is noise. The meshing component and the periodic transient component have different morphologies:

the former exhibits a high oscillatory behavior and the latter exhibits a low oscillatory behavior [41].

For the signal in Eq. (1), the sparsity-assisted signal decomposition using MCA assumes that there are two specific transforms

so that the component y1 can be sparsely represented by one transform but cannot be sparsely represented (or at least significant

less sparsely) by the other transform, and vice versa. That is,

𝐲1 = 𝐀1𝐱1, 𝐲2 = 𝐀2𝐱2, (2)

where the matrix 𝐀1 ∈ ℝM×N1 and 𝐀2 ∈ ℝM×N2 (with Ni ⩾ M, i = 1, 2) correspond to the two specific transforms, and 𝐱1 ∈ ℝN1

and 𝐱2 ∈ ℝN2 are sparse coefficients vectors. The goal of MCA is to recover y1 and y2 from y. Under the MCA framework with

the classical L1-norm penalty, the MCA regularizer is

𝜙(𝐱1, 𝐱2;𝜆1, 𝜆2) = 𝜆1‖𝐱1‖1 + 𝜆2‖𝐱2‖1 (3)

where 𝜆1 > 0 and 𝜆2 > 0 are the regularization parameters. Then the components y1 and y2 can be estimated by solving the

following unconstrained optimization problem,

(𝐱opt

1
, 𝐱opt

2
) = arg min

𝐱1,𝐱2

{
F(𝐱1, 𝐱2) =

1

2
‖𝐲 −𝐀1𝐱1 − 𝐀2𝐱2‖2

2
+ 𝜆1‖𝐱1‖1 + 𝜆2‖𝐱2‖1

}
(4)

where F is the cost function to be minimized.

Convex optimization algorithms, such as split augmented Lagrangian shrinkage algorithm (SALSA) [40], alternating direction

method of multipliers (ADMM) [52], majorization-minimization (MM) [53], and FBS [54], can be used to solve the problem in Eq.

(4). Then the two additively-mixed components y1 and y2 in the signal can be decomposed: the estimated meshing component

is 𝐲̂1 = 𝐀1𝐱
opt

1
; the estimated periodic transient component is 𝐲̂2 = 𝐀2𝐱

opt

2
.

Eq. (4) shows the most common case of MCA using L1-norm as the penalty. However, L1-norm tends to underestimate

the true value of the signal [46]. Hence, the estimated components are also underestimated. To overcome this deficiency, we

introduce the newly developed GMC penalty to regularize the MCA least squares problem to enhance the signal decomposition

accuracy of MCA in the next section.

3. GMC penalty and sparsity-enhanced signal decomposition method

The GMC penalty is a nonconvex regularizer designed to maintain the convexity of sparse-regularized linear least squares

problems. It is derived based on a multivariate generalization of the Huber function. In this section, we firstly recall the definition

of the GMC penalty. Then we propose a sparsity-enhanced signal decomposition method by using the GMC penalty to penalize



G. Cai et al. / Journal of Sound and Vibration 432 (2018) 213–234216

Fig. 1. (a) The generalized Huber function and (b) the GMC penalty.

the MCA problem. We also derive a condition to ensure that the GMC penalty maintains the total convexity of the sparsity-

enhanced MCA cost function. Finally, we provide an iterative FBS algorithm to solve the sparsity-enhanced MCA problem for

signal decomposition.

3.1. GMC penalty

The GMC penalty is prescribed via the generalized Huber function, which is actually a multivariate generalization of the

scaled Huber function. Detailed information about the scaled Huber function can refer to reference [55]. Given a matrix 𝐁 ∈
ℝM×N , the generalized Huber function S ∶ ℝN → ℝ is defined as

S(𝐱;𝜆,𝐁) = min
𝐯

{
𝜆‖𝐯‖1 + 1

2
‖𝐁(𝐱 − 𝐯)‖2

2

}
, (5)

which itself is an L1-norm regularized optimization problem. The GMC penalty function 𝜓 ∶ ℝN → ℝ is defined as

𝜓(𝐱) = 𝜆‖𝐱‖1 − S(𝐱;𝜆,𝐁) = 𝜆‖𝐱‖1 − min
𝐯

{
𝜆‖𝐯‖1 + 1

2
‖𝐁(𝐱 − 𝐯)‖2

2

}
. (6)

To illustrate the property of the generalized Huber function S(x;𝜆,B) and the GMC penalty 𝜓(x;𝜆,B), we set matrix B as

𝐁 =
⎡⎢⎢⎢⎣

1 0

1∕2 1∕2

0 1

⎤⎥⎥⎥⎦ (7)

and 𝜆 = 1. Fig. 1(a) shows the generalized Huber function, and Fig. 1(b) shows the GMC penalty. It can be observed from Fig. 1(b)

that the GMC penalty itself is nonconvex, and the GMC penalty approximates the L1-norm penalty around zero. Moreover, the

GMC penalty also has the regularization property: large values are penalized more than (or the same as) small values.

3.2. Sparsity-enhanced signal decomposition using GMC penalty

Now we consider how to use the GMC penalty to regularize the MCA problem and thus to improve its performance for sig-

nal decomposition. To accurately estimate the components in the compound signal, a sparsity-enhanced signal decomposition

method is proposed by using the GMC penalty to regularize the MCA problem.

First, the GMC penalty for signal decomposition is defined as

𝜓(𝐱1, 𝐱2;𝜆1, 𝜆2,𝐁1,𝐁2) = 𝜆1‖𝐱1‖1 + 𝜆2‖𝐱2‖1 − min
𝐯1,𝐯2

{
𝜆1‖𝐯1‖1 + 𝜆2‖𝐯2‖1 + 1

2
‖𝐁1(𝐱1 − 𝐯1) + 𝐁2(𝐱2 − 𝐯2)‖2

2

}
, (8)

where 𝜆1 > 0 and 𝜆2 > 0. Then the GMC penalty is used to regularize the MCA problem. The cost function is

F(𝐱1, 𝐱2) =
1

2
‖𝐲 −𝐀1𝐱1 − 𝐀2𝐱2‖2

2
+𝜓(𝐱1, 𝐱2;𝜆1, 𝜆2,𝐁1,𝐁2). (9)
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The sparse MCA solution is obtained via minimizing of the cost function in Eq. (9), that is,

(𝐱opt

1
, 𝐱opt

2
) = arg min

𝐱1,𝐱2

{
F(𝐱1, 𝐱2)

}
= arg min

𝐱1,𝐱2

{
1

2
‖𝐲 − 𝐀1𝐱1 − 𝐀2𝐱2‖2

2
+ 𝜆1‖𝐱1‖1 + 𝜆2‖𝐱2‖1

− min
𝐯1,𝐯2

{
𝜆1‖𝐯1‖1 + 𝜆2‖𝐯2‖1 +

1

2
‖𝐁1(𝐱1 − 𝐯1) + 𝐁2(𝐱2 − 𝐯2)‖2

2

}}
. (10)

Next, we consider how to prescribe the GMC penalty to maintain the convexity of the cost function in Eq. (9). During the

derivation of the convexity condition, the following notations are used to simplify the expression of the cost function,

𝐀 = [𝐀1,𝐀2],𝐁 = [𝐁1,𝐁2], 𝐱 =

[
𝐱1

𝐱2

]
, 𝐯 =

[
𝐯1

𝐯2

]
, and𝝀 =

[
𝜆11N1

𝜆21N2

]
, (11)

where 1N = (1, 1,… , 1)T ∈ ℝN is the N-dimension vector of ones. Then Eq. (9) is rewritten as

F(𝐱) = 1

2
‖𝐲 − 𝐀𝐱‖2

2
+ ‖𝝀⊙ 𝐱‖1 − min

𝐯

{‖𝝀⊙ 𝐯‖1 + 1

2
‖𝐁(𝐱 − 𝐯)‖2

2

}
(12)

where ⊙ denotes the element-wise multiplication of equal-size vectors. Next, Eq. (12) is written as

F(𝐱) = 1

2
‖𝐲 − 𝐀𝐱‖2

2
+ ‖𝝀⊙ 𝐱‖1 − min

𝐯

{‖𝝀⊙ 𝐯‖1 + 1

2
‖𝐁(𝐱 − 𝐯)‖2

2

}
= max

𝐯

{
1

2
‖𝐲 − 𝐀𝐱‖2

2
+ ‖𝝀⊙ 𝐱‖1 − ‖𝝀⊙ 𝐯‖1 −

1

2
‖𝐁(𝐱 − 𝐯)‖2

2

}
= max

𝐯

{
1

2
𝐱T(𝐀T𝐀 − 𝐁T𝐁)𝐱 + ‖𝝀⊙ 𝐱‖1 + 1

2
𝐲T𝐲 − ‖𝝀⊙ 𝐯‖1 + (𝐯T𝐁T𝐁 − 𝐲T𝐀)𝐱 − 1

2
𝐯T𝐁T𝐁𝐯

}
= 1

2
𝐱T(𝐀T𝐀 − 𝐁T𝐁)𝐱 + ‖𝝀⊙ 𝐱‖1 + max

𝐯
{g(𝐱, 𝐯)}

where g(𝐱, 𝐯) = 1

2
𝐲T𝐲 − ‖𝝀⊙ 𝐯‖1 + (𝐯T𝐁T𝐁 − 𝐲T𝐀)𝐱 − 1

2
𝐯T𝐁T𝐁𝐯 is affine in x. The function maxv g(x, v) is convex in x as it is the

pointwise maximum of a set of convex function in x (where the set is indexed by v). Hence, the condition for F(x) to be convex

is

𝐀T𝐀 − 𝐁T𝐁 ⪰ 0 (13)

i.e. the matrix ATA − BTB is positive semi-definite. Hence, during the application, for a given A = [A1,A2], we can simply set

𝐁 =
√
𝛾𝐀, i.e., 𝐁1 =

√
𝛾𝐀1, 𝐁2 =

√
𝛾𝐀2 (14)

with 0 ⩽ 𝛾 ⩽ 1 to satisfy the convexity condition in Eq. (13). The convexity parameter 𝛾 controls the nonconvexity of the GMC

penalty. If 𝛾 = 0, then B1 = 0, B2 = 0, and the penalty in Eq. (8) reduces to the L1-norm penalty. If 𝛾 = 1, then Eq. (13)

is satisfied with equality and the penalty is “maximally” nonconvex such that the total convexity of the cost function can be

guaranteed. In this case, BTB = 𝛾ATA, and the convexity condition is satisfied. Then 𝐁 =
√
𝛾𝐀 is substituted into Eq. (12), and

the optimization problem for the sparsity-enhanced MCA is rewritten as

𝐱opt = arg min
𝐱

{
1

2
‖𝐲 − 𝐀𝐱‖2

2
+ ‖𝝀⊙ 𝐱‖1 − min

𝐯

{‖𝝀⊙ 𝐯‖1 +
𝛾
2
‖𝐀(𝐱 − 𝐯)‖2

2

}}
. (15)

That is,

(𝐱opt

1
, 𝐱opt

2
) = arg min

𝐱1,𝐱2

{
F(𝐱1, 𝐱2)

}
= arg min

𝐱1,𝐱2

{
1

2
‖𝐲 − 𝐀1𝐱1 − 𝐀2𝐱2‖2

2
+ 𝜆1‖𝐱1‖1 + 𝜆2‖𝐱2‖1

− min
𝐯1,𝐯2

{
𝜆1‖𝐯1‖1 + 𝜆2‖𝐯2‖1 +

𝛾
2
‖𝐀1(𝐱1 − 𝐯1) + 𝐀2(𝐱2 − 𝐯2)‖2

2

}}
. (16)

Then y1 and y2 can be estimated by 𝐲̂1 = 𝐀1𝐱
opt

1
and 𝐲̂2 = 𝐀2𝐱

opt

2
. For gearbox fault diagnosis, 𝐲̂1 and 𝐲̂2 are the estimates of the

meshing component and the periodic transient component, respectively.
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3.3. Convex optimization for solving sparsity-enhanced MCA problem

In this subsection, we consider how to solve the optimization problem for the sparsity-enhanced MCA.

Because the GMC penalty in Eq. (8) itself is an L1-norm regularized optimization problem, and does not have an explicit

formula, and so cannot be directly evaluated, it may appear necessary to use an iterative algorithm comprising a double nested

loop: an outer loop to iteratively solve for the optimal solution xopt and an inner loop to solve for the optimal solution vopt.

Fortunately, because F can be expressed as a saddle-point function which is convex in x and concave in v, a global minimum

can be readily calculated using a proximal algorithm with no nested iterations. There is no need to explicitly evaluate the GMC

penalty or its gradient [56].

The minimization problem in Eq. (15) can be rewritten as the saddle-point problem

(𝐱opt, 𝐯opt) = arg min
𝐱

min
𝐯

{
Fs(𝐱, 𝐯) =

1

2
‖𝐲 − 𝐀𝐱‖2

2
+ ‖𝝀⊙ 𝐱‖1 − ‖𝝀⊙ 𝐯‖1 −

𝛾
2
‖𝐀(𝐱 − 𝐯)‖2

2

}
(17)

with 0 < 𝛾 < 1. The solution (xopt, vopt) is a saddle-point of Fs(x, v). This saddle point problem can be solved via the FBS

algorithm, as shown in Algorithm 1, where 𝜇 is a constant satisfying [36]

0 ⩽ 𝜇 ⩽ 2

max{1, 𝛾∕(1 − 𝛾)}‖𝐀T𝐀‖2

(18)

where ‖ATA‖2 is the maximum eigenvalue of ATA. The detailed derivation is listed in Appendix A. In this algorithm, we usually

use 0.5 ⩽ 𝛾 ⩽ 0.8. The soft thresholding operator with threshold T ∈ ℝ+ is defined as

soft(y; T) = y · max{0, 1 − T∕|y|}, y ∈ ℂ. (19)

It can be seen from Algorithm 1 that the computation cost of the proposed sparsity-enhanced signal decomposition method

depends on the computation costs of the transforms A1 and A2 for the meshing component and the periodic transient compo-

nent, as well as the iterative algorithm. Hence, for the purpose of sparse representation of the meshing component and periodic

transient component, and taking the computation cost into account, we choose DCT and STFT among kinds of transforms to

minimize the computation cost of the proposed method. This is because DCT can sparsely represent the meshing component

while it is not sparse for the transient component, and STFT with the Gaussian window can sparsely represent the transient

component while it is not sparse for the meshing component. Thus, A1 is an oversampled inverse DCT and 𝐀T
1

is an oversam-

pled DCT. The columns of A1 form a normalized tight frame, i.e., 𝐀1𝐀T
1
= 𝐈. Similarly, A2 is an oversampled inverse STFT and

𝐀T
2

is an oversampled STFT. The columns of A2 also form a normalized tight frame, that is, 𝐀2𝐀T
2
= 𝐈. Moreover, the operation

of DCT and STFT is matrix-free and efficiently implemented using FFT. Thus Algorithm 1 is also matrix-free and efficient for

minimizing the cost function in Eq. (16). Then, the computational cost of the proposed sparsity-enhanced signal decomposition

method depends on the computational costs of DCT and STFT. The computation cost of DCT is O(N1 log2 N1) where N1 is the

transform length for DCT, and the computation cost of STFT is O(M∕L · Nft log2 Nft) where M is the signal length, L is the window

hop-length for STFT, and Nft is the Fourier transform length for STFT. Hence, the total computation cost of the proposed method

is O(Niter(N1 log2 N1 + M∕L · Nft log2 Nft), where Niter is the iteration in the FBS algorithm.

Algorithm 1 FBS algorithm for sparsity-enhanced MCA problem.

1: Initialize: 𝐱(0)
1

, 𝐱(0)
2

, 𝐯(0)
1

, 𝐯(0)
2

, 0 ⩽ 𝜇 ⩽ 2

max{1,𝛾∕(1−𝛾)}‖𝐀T𝐀‖2
.

2: Number of iteration: Niter

3: Stopping threshold: 𝛿
4: for k = 0 to Niter do

5: 𝐰(k)
1

= 𝐱(k)
1

− 𝜇𝐀T
1
(𝐀1(𝐱

(k)
1

+ 𝛾(𝐯(k)
1

− 𝐱(k)
1
)) + 𝐀2(𝐱

(k)
2

+ 𝛾(𝐯(k)
2

− 𝐱(k)
2
)) − 𝐲),

6: 𝐰(k)
2

= 𝐱(k)
2

− 𝜇𝐀T
2
(𝐀1(𝐱

(k)
1

+ 𝛾(𝐯(k)
1

− 𝐱(k)
1
)) + 𝐀2(𝐱

(k)
2

+ 𝛾(𝐯(k)
2

− 𝐱(k)
2
)) − 𝐲),

7: 𝐮(k)
1

= 𝐯(k)
1

− 𝜇𝛾𝐀T
1
(𝐀1(𝐯

(k)
1

− 𝐱(k)
1
) + A2(v

(k)
2

− 𝐱(k)
2
)),

8: 𝐮(k)
2

= 𝐯(k)
2

− 𝜇𝛾𝐀T
2
(𝐀1(𝐯

(k)
1

− 𝐱(k)
1
) + A2(v

(k)
2

− 𝐱(k)
2
)),

9: 𝐱(k+1)
1

= soft(𝐰(k)
1
;𝜇𝜆1),

10: 𝐱(k+1)
2

= soft(𝐰(k)
2
;𝜇𝜆2),

11: 𝐯(k+1)
1

= soft(𝐮(k)
1
;𝜇𝜆1),

12: 𝐯(k+1)
2

= soft(𝐮(k)
2
;𝜇𝜆2),

13: if max{‖𝐱(k+1)
1

− 𝐱(k)
1
‖2, ‖𝐱(k+1)

2
− 𝐱(k)

2
‖2} ⩽ 𝛿, then break; end if

14: end for

15: return 𝐱opt

1
= 𝐱(k+1)

1
, 𝐱opt

2
= 𝐱(k+1)

2

For gearbox fault diagnosis, based on the above iteration, the meshing component and the periodic transient component

can be decomposed by 𝐲̂1 = 𝐀1𝐱
opt

1
and 𝐲̂2 = 𝐀2𝐱

opt

2
, respectively. In the next section, we consider how to use the proposed
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sparsity-enhanced signal decomposition method to improve the signal decomposition accuracy and diagnose gearbox fault.

4. Gearbox fault diagnosis via sparsity-enhanced signal decomposition method

To improve the signal decomposition accuracy and obtain a more reliable fault diagnosis result, we introduce the proposed

sparsity-enhanced signal decomposition method for the analysis of gearbox vibration signal. Fig. 2 illustrates the flowchart

describing the use of sparsity-enhanced signal decomposition method for gearbox fault diagnosis, which consists of three steps:

Step 1: We collect vibration signals from the gearbox.

Step 2: The vibration signal is decomposed using the proposed sparsity-enhanced signal decomposition method. In the imple-

mentation of sparsity-enhanced signal decomposition via MCA, we first choose two distinct transforms which can sparsely

represent the meshing component and the periodic transient component, respectively. MCA relies on the use of appropriate

transforms for effective sparse decomposition. In this paper, we prescribe DCT and STFT as the transforms for the meshing

component and the periodic transient component, respectively. Second, transform-specific parameters are set. Third, the

regularization parameters 𝜆1, 𝜆2 and the convexity parameter 𝛾 are set. Then, the sparsity-enhanced MCA cost function is

defined using the GMC penalty as a regularizer. Finally, the iterative algorithm in Algorithm 1 is used to solve the sparse

coefficients of each signal component.

Step 3: Based on the decomposition result of Step 2, the meshing component and the periodic transient component are

decomposed. The fault feature for the gearbox is obtained from the periodic transient component. Finally, a gearbox fault

diagnosis decision is made.

5. Simulation study and parameter selection

To verify the effectiveness of the proposed sparsity-enhanced signal decomposition method for gearbox fault diagnosis, a

simulation experiment is studied in this section. The result is compared with that of the L1-norm regularized MCA and SK to

illustrate the benefit of the sparsity-enhanced MCA for signal decomposition. Moreover, a strategy for choosing transforms and

setting parameters is discussed in this section.

5.1. Simulation study

Considering the characteristic of the faulty gearbox vibration signal, a noisy simulated signal is constructed:

y(t) = y1(t) + y2(t) + n(t) = (0.8 cos(2𝜋f1t) + 0.6 cos(2𝜋f2t)) +
∑

k

h(t − T0 − kT) + n(t)

where y1(t) = 0.8 cos(2𝜋f1t) + 0.6 cos(2𝜋f2t) represents the meshing component with f1 = 45 Hz and f2 = 500 Hz,

y2(t) =
∑

kh(t − T0 − kT) represents the periodic transient component. Here, h(t) is a single transient and kT + T0 is the

time center of the k-th transient with a time-offset of T0 = 0.08 s and a period of T = 0.1 s, defined as

h(t) = e−𝜉∕
√

1−𝜉2·(2𝜋f0t)2 cos(2𝜋f0t)

where the frequency is f0 = 180 Hz and the damping ratio is 𝜉 = 0.015. The noise n ∼ N(0, 𝜎2) is the additive white Gaussian

noise with standard deviation 𝜎 = 0.6. The sampling frequency is 4096 Hz and the signal length is M = 4096. The waveforms

of the simulated signals are illustrated in Fig. 3(a)–(d).

We use the proposed method to analyze the simulated signal. According to the procedure illustrated in Fig. 2, we first choose

two transforms to represent the meshing component y1 and the periodic transient component y2, respectively. By taking the

computation cost into consideration, DCT and STFT which have high computation efficiency and are suitable for the sparse rep-

resentation of the meshing component and the periodic transient component are introduced in this study. Next, the transform

parameters of DCT 𝐀T
1

and STFT 𝐀T
2

are set to perform the proposed method. The transform length for DCT is N1 = 2.5 M. For

STFT 𝐀T
2

, a Gaussian window with a length of R = 128 is employed. The window hop-length is set to be L = 16 samples. The

Fourier transform length for STFT is Nft = 4R. The detailed discussion about parameter setting will be provided in the next

subsection.

Then, we must set the regularization parameters 𝜆1 and 𝜆2. During the implementation of the proposed method, we found

the regularization parameters 𝜆1 and 𝜆2 are critical for the performance of the proposed method and they must be set appro-

priately. In this example, 𝜆1 is set to be 3.558 and 𝜆2 is set to be 0.332 (the detailed strategy for parameter setting is discussed

in the next subsection).

Finally, we must also set 𝛾 to guarantee the convexity condition 𝐀T𝐀 − 𝐁T𝐁 ⪰ 0. It has been mentioned that the suggested

range for 𝛾 is 0.5 ⩽ 𝛾 ⩽ 0.8. Here we simply set 𝛾 = 0.8 to maintain the convexity of the sparsity-enhanced MCA cost function.

Besides the value of 0.8, some other values between 0.5 and 0.8 also can be assigned to 𝛾 to obtain a reasonable analysis result.

Fig. 4 shows the decomposition result using the proposed sparsity-enhanced signal decomposition method with the above

parameters, where the dashed line represents the noise-free signal and the solid line represents the estimated signal obtained
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Fig. 2. Flowchart of the sparsity-enhanced signal decomposition method for gearbox fault diagnosis.
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Fig. 3. The simulated signal: (a) the meshing component y1(t); (b) the periodic transient component y2(t); (c) the noise free simulated signal y1(t) + y2(t); (d) the noisy

simulated signal y(t).

using the proposed method. Fig. 4(a) is the estimated meshing component and Fig. 4(b) is the estimated periodic transient

component. The comparison between the estimated transients and the noise-free signal shows that the proposed method can

provide a reasonably accurate result. Moreover, we use the root-mean-square-error (RMSE) to evaluate the performance of the

sparsity-enhanced MCA. The RMSE is defined as

RMSE =

√√√√ 1

M

M∑
m=1

(x(m) − x̂(m))2 (20)

where x and x̂ are the original component and the estimated component. The smaller the RMSE is, the better the decomposition

performance is. It can be seen from Fig. 4(a) and (b) that the RMSE values of the estimated meshing component and the periodic

transient component are 0.088 and 0.053, respectively. Fig. 4(c) and (d) show the details of the first and fifth estimated transients

in Fig. 4(b). It can be observed from Fig. 4(c) that the estimated transient is almost the same as the noise-free signal. Fig. 4(d)

shows the fifth transient in detail. Even though the estimation result is not as accurate as that of the first transient in Fig. 4(c),

we observe that it quite accurately preserves the maximum amplitude value of the noise-free signal.

For comparison, the simulated signal is also analyzed using the L1-norm regularized MCA and SK. We use the same trans-

forms and transform parameters with the proposed method for the L1-norm regularized MCA. We properly adjust the regular-

ization parameters for the L1-norm solution to minimize the RMSE for y2 (the detailed strategy for parameter setting is discussed

in the next subsection). Fig. 5 shows the decomposition result using the L1-norm regularized MCA with the minimum RMSE for

the periodic transient component, where the dashed line represents the ground-truth and the solid line represents the L1-norm

regularized MCA solution. The estimated meshing component and the periodic transient component are illustrated in Fig. 5(a)

and (b), respectively. The RMSE values for these two components are 0.091 and 0.103, respectively. Compared with the result

of the proposed method, it can be seen that the proposed method reduces the RMSE value of the periodic transient component

by about 50% relative to the L1-norm regularized MCA. Fig. 5(c) and (d) show the details of the first and fifth estimated tran-

sients in Fig. 5(b). It can be seen from Fig. 5(b)–(d) that the amplitude of the estimated transient is diminished. Moreover, there

also exist interferences in the estimated transient component. In practical signal analysis, the noise is usually more difficult to

be removed and thus the weak fault feature may still be disturbed by the noise. If we increase the regularization parameters to

remove more noise, the amplitude of the transient will be diminished even heavier. From this comparison, it can be seen that the
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Fig. 4. Decomposition result using the proposed sparsity-enhanced signal decomposition method: (a) the estimated meshing component; (b) the estimated periodic

transient component; (c) the zoomed-in plot for the first transient; (d) the zoomed-in plot for the fifth transient; (e) the residual component.

proposed method more accurately preserves the signal of interest while reducing noise, thus improves the signal decomposition

performance.

SK is a powerful analysis technique for transients detection in vibration signals and it has been widely studied and used in

rotating machine fault diagnosis [18,19]. In this study, SK is also used to analyze the simulated signal. The kurtogram of SK and

the resulting filtered signal are illustrated in Fig. 6. It can be observed that SK effectively detects the location (Fig. 6(b)) and the

period (Fig. 6(c)) of the transients. However, the amplitude of the periodic transients in Fig. 6(b) is diminished, and there are

many artifacts in the filtered result. The proposed method also outperforms SK in this example.

5.2. Parameter setting strategy

In this subsection, we discuss a guideline for choosing the transforms and setting the regularization parameters.

5.2.1. Transform choice

The success of MCA relies on the sparse representations of morphologically-distinct components. That is, each component

should be sparsely represented by a prescribed transform which should not be able to sparsely represent the other component.

This gives us a basic principle for choosing transforms in the use of the proposed method. In this paper, the goal is to separate the

meshing component and the periodic transient component in the signal. Hence, we choose two distinct transforms to represent

the meshing component and the periodic transient component. For the meshing component, we use DCT with a transform

length N1 = 2.5 M. For the sparse representation of the periodic transient component, we use STFT with a Gaussian window.

As for the window length, we suggest choosing a relatively short window because a short window gives good time resolution,

which is useful for the identification of the location of transients and their periodicity. If the window is too long, then it will

enhance the ability of STFT to sparsely represent the meshing component, which is unfavorable for the decomposition of the

raw signal into the meshing component and the periodic transient component. In this study, we always use a Gaussian window

with a window length R = 128. Moreover, we suggest choosing the length of the DFT for each window 2 or 4 times the window

length. This is because if DFT for each window is too long, then it will affect the computation efficiency. In this paper, the length

of DFT is always 4 times the window length, that is Nft = 4R. And after each step, we always shift the analysis window along by
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Fig. 5. Decomposition result using the L1-norm regularized MCA: (a) the estimated meshing component; (b) the estimated periodic transient component; (c) the zoomed-in

plot; (d) the zoomed-in plot; (e) the residual component.

Fig. 6. The analysis result of the simulation signal via SK: (a) the kurtogram; (b) the resulting filtered signal; and (c) the envelope spectrum.

L = 16 samples each time (hop-length). Other hop-length for L which can satisfy the perfect reconstruction condition also can

be used in this method. The larger the hop-length L is, the more computationally efficient the algorithm is.

Fig. 7 shows the ability of DCT and STFT to represent the simulated signal. It can be observed from Fig. 7(b) and (c) that DCT

can sparsely represent the meshing component, while its representation of the periodic transient component is inefficient (non-

sparse). From Fig. 7(f) and (g), it can be seen that STFT can sparsely represent the periodic transient component, while it cannot

achieve a sparse representation of the meshing component. This figure demonstrates that the transforms used in this example

meet the basic principle and are appropriate for the separation of the meshing component and the periodic transient component
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Fig. 7. Representation ability of DCT and STFT for different components in the simulated signal: (a) DCT for y; (b) DCT for y1; (c) DCT for y2; (d) the waveform of y1; (e) the

waveform of y2; (f) STFT for y1; (g) STFT for y2; (h) STFT for y.

via MCA. It must be mentioned that other transforms which have similar representation properties can also be employed in

the study. Other transforms which can give a sparse representation for the meshing component can also be employed as 𝐀T
1
,

such as the discrete Fourier transform (DFT) and tunable-Q wavelet transform (TQWT) with a high Q-factor. Additionally, other

transforms which can represent transients sparsely can be employed as 𝐀T
2
, such as TQWT with a low Q-factor and adaptive

impulse dictionary.

5.2.2. Regularization parameters setting

The regularization parameters 𝜆1 and 𝜆2 are also critical for signal decomposition accuracy. The parameters 𝜆 = [𝜆1, 𝜆2]
control the tradeoff between the regularization term and the data fidelity term in the objective function. Moreover, the parame-

ters 𝜆1 and 𝜆2 also control the relative sparsity of the transform coefficients of the two morphological different components [57].

In this paper, it means that the parameters 𝜆1 and 𝜆2 control the relative sparsity between the DCT coefficients and the STFT

coefficients. Furthermore, it can be seen from the FBS algorithm in Algorithm 1 that the regularization parameters determine the

threshold of the soft threshold operator in the algorithm. The transforms (DCT and STFT) used in this paper have the property

that each column of the inverse transforms A1, A2 have the same L2 norm 𝜂1, 𝜂2, respectively. Hence, we suggest setting 𝜆1 and

𝜆2 as follows,
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𝜆1 = 𝛽1𝜂1𝜎, 𝜆2 = 𝛽2𝜂2𝜎 (21)

Both parameters 𝜆1 and 𝜆2 consist of three factors. They are: (1) the standard deviation 𝜎 of the noise in the signal, (2) the L2

norm of each column of the inverse transform A1 and A2 (𝜂1, 𝜂2), and (3) the ratio parameters 𝛽1 and 𝛽2. Next, we consider how

to set the parameters 𝜆1 and 𝜆2.

1) Parameter 𝜎: The parameter 𝜎 is the standard deviation of the noise in the signal. In this example, the standard deviation of

the noise in the simulated signal is known. However, in practical application, the standard deviation of the noise is usually

unknown. Fortunately, we can roughly estimate the standard deviation of the noise in a signal by [58]

𝜎 = MAD(y)∕0.6745. (22)

This is a conventional noise level estimator, and it depends only on the noisy observation. The MAD function is the ‘median

absolute deviation’ operator, defined as

MAD(y) = median(|y − median(y)|). (23)

2) Parameters 𝜂1 and 𝜂2: The parameters 𝜂1 and 𝜂2 are the L2 norm of each column of the inverse transform of DCT and STFT,

respectively. Transforms, DCT and STFT, used in this paper have the property that each column of the inverse transform

has the same L2 norm. If the transform is determined, then its L2 norm of each column is determined accordingly. In this

example, 𝜂1 and 𝜂2 can be calculated as follows [59],

𝜂1 =
√

M∕N1, 𝜂2 =
√

L∕Nft. (24)

It has been mentioned above, M = 4096, N1 = 2.5 M, L = 16 and Nft = 4R = 512 in this example. Therefore, we have

𝜂1 = 0.6325, 𝜂2 = 0.1768.

3) Parameters 𝛽1 and 𝛽2: The remaining task for setting 𝜆1 and 𝜆2 is to set 𝛽1 and 𝛽1. It is obvious that 𝜆1 and 𝜆2 determine the

threshold of the soft thresholding in FBS, and the threshold is proportional to the energy of the noise to be removed in the

signal. In this paper, we set 𝛽1 and 𝛽2 as

𝛽1 = 𝛽𝜃, 𝛽2 = 𝛽(1 − 𝜃), (25)

and then we have

𝜆1 = 𝛽𝜃𝜂1𝜎, 𝜆2 = 𝛽(1 − 𝜃)𝜂2𝜎, (26)

where the parameter 𝛽 is an unified ratio, and the parameter 𝜃 with 0 < 𝜃 < 1 controls the relative sparsity of the sparse

coefficients of the two morphological-distinct components in the transform domain (DCT and STFT).

Next, we analyze how to set 𝛽 and 𝜃. We fix other parameters in the algorithm and tune 𝛽 and 𝜃 to obtain different decom-

position results for the simulated signal, and use RMSE to evaluate the performance of the proposed method. We vary 𝛽 from

1 to 25 with an increment of 0.1, and vary 𝜃 from 0.2 to 0.9 with an increment of 0.025. Fig. 8(a) shows the RMSE between the

periodic transient component and its estimation of the proposed method. During the analysis of the simulated signal in Section

5.1, we choose 𝛽 and 𝜃 from the area where the RMSE value of the estimated periodic transients is extremely small. We choose

𝛽 = 12.5 and 𝜃 = 0.75 which is marked in Fig. 8(a) to analyze the signal. Then the corresponding 𝜆1 and 𝜆2 are as follows,

𝜆1 = 𝛽𝜃𝜂1𝜎 = 12.5 × 0.75 × 0.6325 × 0.6 = 3.558,

𝜆2 = 𝛽(1 − 𝜃)𝜂2𝜎 = 12.5 × 0.25 × 0.1768 × 0.6 = 0.332.

This explains the reason why we use 𝜆1 = 3.558 and 𝜆2 = 0.332 to analyze the simulated signal in Section 5.1. Moreover, it

also can be observed that, besides 𝛽 = 12.5 and 𝜃 = 0.75, there is a relatively large range where the RMSE is small, which

means that we can also set 𝛽 and 𝜃 to these values to obtain reasonably accurate results using the proposed method.

Up to now, we have analyzed these three types of parameters contributing to 𝜆1 and 𝜆2. In the practical application to gear-

box fault diagnosis, we can use Eq. (22) to estimate the standard deviation of the noise in the signal and calculate 𝜂1 and 𝜂2

according to the transforms employed in the proposed method. Then we choose 𝛽 and 𝜃 according to the cross validation result

in Fig. 8(a) to determine 𝛽1 and 𝛽2. A general way to set the 𝛽 and 𝜃 parameters is to first use the parameter 𝛽 = 12.5 and

𝜃 = 0.75 to analyze the vibration signal. If the result is not satisfactory, then we can change 𝛽 and 𝜃 around (12.5, 0.75) accord-

ing to Fig. 8(a) to obtain a reasonable result. Case-studies (below) in automobile transmission and hot strip milling reduction

gearbox fault diagnosis will verify the effectiveness of this parameter setting strategy.

Moreover, for comparison, we use the same strategy to find the appropriate parameters for the L1-norm regularized MCA.

Fig. 8(b) shows the RMSE value between the periodic transient component and its estimation of the L1-norm regularized MCA.

There is also a relatively large area where the L1-norm regularized MCA can achieve a relatively good result. The parameters

used for the analysis in Fig. 7 are also marked in Fig. 8(b). However, it can be seen from Fig. 8 that the RMSE value of the L1-norm
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Fig. 8. RMSE of the periodic transient component and its estimate: (a) the proposed method; (b) the L1-norm regularized MCA.

Fig. 9. The automobile transmission gearbox: (a) The structure of the gearbox and (b) the setup of the gearbox.

regularized MCA is much larger than that of the proposed method, which further verifies that the proposed sparsity-enhanced

signal decomposition method can achieve a more accurate result than the L1-norm regularized MCA.

6. Practical applications

In this section, we apply the proposed method to analyze signals collected from a run-to-failure experiment test and an

engineering case to further validate the performance of the proposed method, as well as the usability of the strategy for choosing

the transforms and setting parameters.

6.1. Case 1: automobile transmission gearbox vibration signal analysis

In this experiment case study, the vibration signals are collected from an automobile transmission. The tested gearbox has

five forward speeds and one backward speed as shown in Fig. 9(a). Vibration signals were acquired using an accelerometer

mounted on the outer case of the gearbox which is loaded on the third speed, as shown in Fig. 9(b). This experiment concerns

a fatigue test of 7 cycles. At the beginning of the seventh cycle, a tooth of the third-speed driving gear was found to be bro-

ken. During the experiment, the input rotating speed is 1600 r/min (fI = 1600∕60 = 26.7 Hz) and the sampling frequency is

3000 Hz. Table 1 shows the working parameters of the third-speed gears. The vibration signal is taken for the following analysis.

Table 1

Working parameters of the third speed gears.

The third speed gears Constant meshing gears

Driving gear Driven gear Driving gear Driven gear

Number of teeth 25 27 24 32

Rotating frequency (Hz) 20 18.5 25 33.3

Rotating period (s) 0.05 0.054 0.04 0.03

Meshing frequency 500 640



227G. Cai et al. / Journal of Sound and Vibration 432 (2018) 213–234

Fig. 10. (a) The measured vibration signal of gearbox with severe fault and (b) its Fourier spectrum.

Fig. 11. Vibration signal decomposition via the proposed method: (a) the estimated meshing component; (b) the estimated periodic transient component; (c) the residual

component.

We expect to find evidence of periodic transients with a frequency of fr = 20 Hz corresponding to the fault frequency of the

third-speed driving gear.

6.1.1. Severe fault signal analysis

Firstly, a vibration signal collected during the sixth cycle is taken for analysis. Fig. 10(a) shows the time-domain waveform of

the collected signal with a length of 2048 samples, and Fig. 10(b) shows the Fourier spectrum of the vibration signal in Fig. 10(a).

The fault signature cannot be identified in the time domain in Fig. 10(a) due to background noise contained in the signal. Its

Fourier spectrum shows that the component with 500 Hz is predominant, which is the meshing frequency of the third-speed

gears. There is no sufficient evidence in the time-domain waveform nor the Fourier spectrum to detect the fault.

We use the proposed method to decompose the vibration signal into the meshing component and the periodic transient

component. To run the proposed method, DCT is used to sparsely represent the meshing component in the signal; STFT with a

Gaussian window is used to represent the periodic transient component. In this application, both DCT and STFT use the same

parameters as in the simulation study. The transform length of DCT is also 2.5 times the signal length. Additionally, the STFT win-

dow length is 128 and the window hop-length is 16 samples. The regularization parameters 𝜆1 and 𝜆2 are set via Eq. (26). The

standard deviation of the noise in the signal is estimated via Eq. (22). The parameters 𝛽 and 𝜃 are chosen according to the anal-

ysis in subsection 5.2. Here we also choose 𝛽 = 12.5 and 𝜃 = 0.75 which are the same values as in the simulation study. The

parameter 𝛾 is simply set to be 0.8 in accordance with the simulation study. Fig. 11 shows the decomposition result: Fig. 11(a)

shows the estimated meshing component and Fig. 11(b) shows the estimated periodic transient component. In Fig. 11(b) we

observe a series of periodic transients with a period of 0.05 s, which corresponds to the rotational frequency of the third-speed
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Fig. 12. The estimated periodic transient component via the L1-norm regularized MCA.

Fig. 13. The analysis result of the gearbox vibration signal via SK: (a) the kurtogram; (b) the resulting filter signal; (c) the envelope spectrum.

gears. The proposed method successfully decomposes the signal into the meshing component and the periodic transient com-

ponent, and extracts fault signatures for gearbox fault diagnosis.

For comparison, the signal is also analyzed via the L1-norm regularized MCA as shown in Fig. 12, and the parameters are the

same with that used in the simulation study. It can be seen that the estimated periodic transients component is not as accurate

as that estimated by the proposed sparsity-enhanced signal decomposition method. A series of transients are also estimated by

the L1-norm regularized MCA. However, the amplitudes of the transients are highly underestimated. Moreover, there also exist

interferences in Fig. 12 which affects on the diagnosis of fault.

For further comparison, the signal in Fig. 10(a) is analyzed using SK. Fig. 13 shows the kurtogram and the analysis result using

SK. It is difficult to find the periodic transient response in Fig. 13(b). Fig. 13(c) shows the Hilbert envelope of the filtered signal in

Fig. 13(b). The fault frequency for the car transmission is still not obvious in Fig. 13(b). The proposed method also outperforms

SK in this application.

6.1.2. Incipient fault vibration signal analysis

To further illustrate the superiority of the proposed method, we try to analyze the vibration signal of incipient fault which

is collected at the end of the fourth cycle during the experiment. Fig. 14(a) shows the time domain waveform of the signal and

Fig. 14(b) shows its Fourier spectrum.

Then we use the proposed method to analyze the signal, and the parameters used in this case are the same with that used

in the above. Fig. 15(a) shows the estimated periodic transient component by using the proposed sparsity-enhanced signal

decomposition method. It can be seen that the transients in the decomposition result are apparent and the period of the tran-

sients is obvious. Fig. 16(a) shows the squared envelope spectrum (SES) of the estimated transient component in Fig. 15(a). It

can be seen that the dominant frequencies are fr and its multiple (2fr), which correspond to the rotating frequency of the third

speed driving gear. Based on this analysis result, we can also conclude that there is a localized fault on the third speed driving

gear.

Fig. 15(b) shows the analysis result by using the L1-norm regularized MCA. From Fig. 15(b), we can see that the periodic

characteristic of the estimated transient component by using the L1-norm regularized MCA is inapparent, and the transient

component are submerged in the noise or other interference. Fig. 16(b) shows the SES of the estimated transient component via

the L1-norm regularized MCA. However, due to the underestimation problem of L1-norm and the influence of noise, there are a

series of frequencies with the similar amplitude in the spectrum and no dominant frequency can be found. There is no evident

signature for the fault of the third speed driving gear. From this comparison, it can be seen that the underestimation of L1-norm

tends to lead to missed detection of fault. The proposed sparsity-enhanced signal decomposition method can more accurately

preserve the signal of interest, thus can diagnose fault earlier in this case.
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Fig. 14. (a) The vibration signal of gearbox with incipient fault and (b) its Fourier spectrum.

Fig. 15. The estimated periodic transient component of the signal with incipient fault using different method: (a) the proposed sparsity-enhanced method; (b) the L1-norm

regularized MCA.

6.2. Case 2: hot-strip finishing milling machine signal analysis

In order to further validate the effectiveness of the proposed method and the parameter setting strategy, vibration signals

collected from the reduction gearbox in a hot strip finishing milling production line are analyzed by the proposed sparsity-

enhanced signal decomposition method. In this engineering case, the proposed method is applied to identify fault features of

the reduction gearbox. Fig. 17 shows the schematic sketch of the reduction gearbox of the finishing milling. Its main drive

system is a single-stage gearbox with Z22/Z65. Accelerometers were mounted on the accessible bearing housings, including the

reduction gearbox and the distribution gearbox. These accelerometers were secured by means of magnetic bases. The collected

vibration signals were sampled at a frequency of 5120 Hz and each record of the signal is of length 4096. A certain day, it was

found that the vibration of the hot strip finishing milling housing exhibited abnormalities and the root mean square (RMS) value

of the signal measured by accelerometer 4 were significantly greater than those of other accelerometers. Then attentions were

focused on vibration signals collected from this accelerometer.

Fig. 16. The SES of the estimated transient component via different methods: (a) the proposed method; (b) the L1-norm regularized MCA.



G. Cai et al. / Journal of Sound and Vibration 432 (2018) 213–234230

Fig. 17. Schematic sketch of the F3 milling stand.

Table 2

Characteristic parameters of the reduction gearbox in the

milling machine.

Transmission ratio (Z2/Z1) 65/22

Module of the pinion (mm) 30

Central distance (mm) 1350

Face-width (mm) 560

Rotating frequency of input shaft (Hz) 4.546

Rotating frequency of output shaft (Hz) 1.539

Meshing frequency (Hz) 100.03

In an inspection, the rotational frequency of the input shaft was measured to be 4.546 Hz via a tachometer, which is equal

to the rotational frequency of the pinion. Table 2 lists the characteristic parameters of the reduction gearbox under this condi-

tion. Fig. 18(a) shows the time-domain waveform of a record of the collected vibration signal measured by accelerometer 4 and

Fig. 18(b) shows its Fourier spectrum. The time-domain waveform appears to have feature similar to local impulses, however,

the Fourier spectrum mainly consists of the meshing frequency 100.0 Hz and its multiple harmonics can be clearly observed.

No significant sidebands round meshing frequency and its multiple harmonics can be observed. However, there are some fre-

quencies between 100.0 Hz and 200.0 Hz, which indicates a modulation phenomenon. Fig. 18(c) is the zoomed-in plot of the

spectrum, and no significant sidebands round the meshing frequency 100.0 Hz can be seen.

Then, the proposed method is applied to analyze the vibration signal for further investigation. In the implementation of the

proposed method, the transform parameters of DCT and STFT are also the same as in the simulation analysis. The standard

deviation of the noise in the vibration signal is also estimated via Eq. (22). The parameters, 𝛽 and 𝜃, are chosen as 𝛽 = 12.5 and

𝜃 = 0.75, which are also the same with the former analysis. The parameter 𝛾 is still set to be 0.8. The analysis results are shown

Fig. 18. Vibration signal measured by accelerometer 4 and its Fourier spectrum; (a) the time-domain waveform; (b) its Fourier spectrum; (c) its zoomed-in plot for the

low-frequency band.
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Fig. 19. Vibration signal decomposition result using the proposed method: (a) the estimated meshing component; (b) the estimated periodic transient component; (c) the

residual component.

Fig. 20. The estimated periodic transient component using the L1-norm regularized MCA.

in Fig. 19. Obviously, a series of strong transients (marked with I1) can be seen in Fig. 19(b). Besides that, there is another series

of successive relatively weak transients (marked with I2). Both the strong transients and weak transients occur with a period of

0.22 s, which is consistent with the rotational frequency of the input shaft. Therefore, it can be surmised that there are two sites

of localized faults in the reduction gearbox on the pinion, and the fault corresponding to the periodic transients (I1) is worse

than the fault corresponding to the periodic transients (I2). Moreover, the time interval between each transient in series I1 and

the corresponding transient in series I2 is about 1/3 the rational period of the pinion, implying that these two faults are located

about 1/3 the circle of the pinion apart.

For comparison purposes, the L1-norm regularized MCA is employed to analyze the signal, and Fig. 20 shows the decom-

posed periodic transient component. It can be seen from Fig. 20 that, even though both the strong transient I1 and the weak

transient I2 are extracted from the original signal, the amplitudes of the transients are much smaller than that estimated by

the proposed enhanced MCA method. The weak transient is almost invisible. Furthermore, SK is employed to analyze this signal

for comparison, and the SK result is shown in Fig. 21, where Fig. 21(a) shows the kurtogram of SK and Fig. 21(b) shows the

filtered signal. Fig. 21(c) shows the envelope spectrum of Fig. 21(b). We can see from Fig. 21(b) that the series of impulse I1 has

been clearly extracted. However, the amplitude of I1 has been greatly diminished. And what’s more, the impulse I2 cannot be

observed from Fig. 21(b). From the envelope spectrum of the filtered signal in Fig. 21(c), fault feature information still cannot be

observed.

Later, the production line was stopped and the reduction gearbox was disassembled for detailed examination. It was found

that two-scuffing and wear faults occurred on the pinion. Moreover, the distance between these two faults is about 1/3 the circle

of the pinion. Fig. 22(a) shows the damage corresponding to the I1 transient and Fig. 22(b) shows the damaged corresponding

to the I2 transient. It can be seen from Fig. 22(b) that several adjacent teeth are damaged on the pinion. If we revisit the analysis

result in Fig. 19(b), we can see that each I2 is not a single transient, there are a series of continuous transients. From this obser-

vation, we can also draw the conclusion that more than one tooth is broken at the localized fault I2 and the neighboring teeth
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Fig. 21. The analysis result of the hot-strip finishing milling machine vibration signal via SK: (a) the kurtogram; (b) the resulting filter signal; (c) the envelope spectrum.

Fig. 22. Fault locations on the pinion: (a) the location of the fault I1; and (b) the location of the fault I2.

are supposed to also have fault, which is consistent with the examination. The proposed method analyzes signals reasonably

accurately for gearbox fault diagnosis. And the performance of the proposed sparsity-enhanced signal decomposition method

outperforms the L1-norm regularized MCA or SK.

7. Conclusions

This paper proposes a sparsity-enhanced signal decomposition method using the GMC penalty for gearbox fault diagnosis.

The enhancement is implemented by using the GMC penalty to regularize the least squares problem of MCA. The GMC penalty

is an effective sparsity-inducing regularizer which can preserve the convexity of the MCA cost function to be minimized, even

though it is a nonconvex penalty. Thus the global minimum of the sparsity-enhanced MCA cost function can always be deter-

mined by convex optimization. In this paper, we minimize the MCA cost function using the FBS algorithm. Moreover, we provide

a guideline for choosing the transforms and setting the regularization parameters. The effectiveness and advantages of the pro-

posed method are illustrated by simulational, experimental and engineering case studies. The results demonstrate that the

proposed method can more accurately estimate the components of vibration signals and tends to avoid fault miss detection,

which can facilitate gearbox fault diagnosis.

When we use MCA to decompose vibration signals into two morphologically-distinct components, in this paper, taking the

computational efficiency into consideration, DCT is employed for the sparse representation of the meshing component, and

STFT with the Gaussian window is employed for the periodic transient component. Other transforms can also be employed for

providing the sparse representation of the meshing component and the transient component. For example, DFT for the mesh-

ing component and wavelet transform for the transient component. This topic is also interesting for machinery fault diagnosis.

Moreover, the application of the proposed method is not limited to gearbox fault diagnosis. It could also be used for the fault

diagnosis of other rotating machinery whose vibration signals exhibit similar characteristics. It has been verified that the pro-

posed method can obtain reasonably accurate estimates of fault features. Hence, it is a promising method for the condition

monitoring and degradation assessment of gearbox and other rotating machinery.
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Appendix A

In this appendix, we illustrate the derivation of the FBS algorithm for solving the saddle-point problem in Eq. (17).

The solution to the problem in Eq. (17) is a saddle-point of Fs(x, v). The point (xopt, vopt) is a saddle-point of Fs(x, v) only if

0 ∈ 𝜕Fs(xopt, vopt), where 𝜕Fs is the subdifferential of Fs. For the function Fs in Eq. (17), we have

𝜕𝐱Fs(𝐱, 𝐯) = 𝐀T(𝐀𝐱 − 𝐲) − 𝛾𝐀T𝐀(𝐱 − 𝐯) + 𝜆sign(𝐱) (27)

𝜕𝐯Fs(𝐱, 𝐯) = 𝛾𝐀T𝐀(𝐱 − 𝐯) − 𝜆sign(𝐯). (28)

Then 0 ∈ 𝜕Fs(xopt, vopt) is expressed as

0 ∈

[
𝜕𝐱Fs(𝐱, 𝐯)
𝜕𝐯Fs(𝐱, 𝐯)

]
=

[
𝐀T(𝐀𝐱 − 𝐲) − 𝛾𝐀T𝐀(𝐱 − 𝐯) + 𝜆sign(𝐱)

𝛾𝐀T𝐀(𝐱 − 𝐯) − 𝜆sign(𝐯)

]
. (29)

According to the FBS algorithm, we denote P(x, v) and Q(x, v) as

P(𝐱, 𝐯) =
[
(1 − 𝛾)𝐀T𝐀 𝛾𝐀T𝐀
−𝛾𝐀T𝐀 𝛾𝐀T𝐀

][
𝐱
𝐯

]
−

[
𝐀T𝐲

0

]
, (30)

Q(𝐱, 𝐯) =
[
𝜆sign(𝐱)
𝜆sign(𝐯)

]
. (31)

Then the iteration process for FBS is as follows:[
𝐰(k)

𝐮(k)

]
=

[
𝐱(k)

𝐯(k)

]
− 𝜇P(𝐱(k), 𝐯(k)) (32)

[
𝐱(k+1)

𝐯(k+1)

]
=

[
soft(𝐰(k);𝜇𝜆)
soft(𝐮(k);𝜇𝜆)

]
(33)

From this derivation, we can obtain the FBS algorithm shown in Algorithm 1.
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