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9 91 29.4 97 94.9 60 112.8 ligg  worth filter a_nd the weII—k_nown maximally flat FIR filter._ New cIo_sed—_
! form expressions are provided, and a straightforward design technique is

described. The new IIR digital filters have more zeros than poles (away

from the origin), and their (monotonic) square magnitude frequency
the complexity of the cascade realizations1gfD(z) and B(z) (a responses are maximally flat atw = 0 and atw = =. Another result
single block can be used for each second-order section [4]). Thus, Bihe correspondence is that for a specified cut-off frequency and a

- L . specified number of zeros, there is only one valid way in which to split

number of multiplier blocks qf th.e new realization is ap_prommate%e zeros between: = —1 and the passband. This technique also permits
the same as that corresponding in [1], and the complexity of the newatinuous variation of the cutoff frequency. IIR filters having more zeros
realization can be the same as in [1]. The number of multipliers than poles are of interest because often, to obtain a good tradeoff between
allpass sections can be also reduced; half of the multipliers can R§&formance and implementation complexity, just a few poles are best.
implemented with a shifter and an adder or a shifter only [5].

Since B(z)/D(z) is realized as two different filtersH(z) and I. INTRODUCTION

1/D(z)], the quantization noise due to multiplication is increased, The best known and most commonly used method for the design
as shown in Table I. The very high quantization noise of the filtg§t ||R digital filters is probably the bilinear transformation of the

1/D(z) can be reduced by appropriate selection of transfer functiefyssical analog filters (the Butterworth, Chebyshev | and II, and
[6]. In addition, by increasing the wordlength in the last section onlgjiptic filters) [9]. One advantage of this technique is the existence
the quantization noise is reduced, and it can be made lower than #i€grmulas for these filters. However, the numerator and denominator

noise caused by truncation fo-sample segments. of such IIR filters have equal degree. It is sometimes desirable to be
able to design filters having more zeros than poles (away from the
Ill. CONCLUSION origin) to obtain an improved compromise between performance and

In this correspondence, a new improvement to the realization of tHaPlementation complexity. o _
linear-phase IIR filters is described. It is based on the rearrangementh® new formulas introduced in this correspondence unify the
of the numerator polynomials of two IR filter functions that are usegfassical digital Butterworth filter and the well-known maximally
in the real-time realizations in [1] and [3]. The new realization haf@t FIR filter described by Herrmann [3]. The new maximally flat
better total harmonic distortion when sine input is used and small@ivpass IR filters have an unequal number of zeros and poles and
phase error due to finite section length. It enables shorter sample déig§sess a specified half-magnitude frequency. It is worth noting that
for the same phase error or lower phase error and THD improvem8ft &l the zeros are restricted to lie on the unit circle, as is the case for
for the same sample delay. The considerable improvement in ph&8E1€ Previous design techniques for filters having an unequal number
response and lower truncation noise are obtained at the expense f Roles and zeros. The method consists of the use of a formula
slightly increased number of multipliers and increased wordlength@nd polynomial root finding. No phase approximation is done; the

approximation is in the magnitude squared, as are the classical 1IR
REFERENCES filter types.
Another result of the correspondence is that for a specified number
[1] S.R.Powell and P. M. Chau, “A technique for realizing linear phase IIi3f zeros and a specified half-magnitude frequency, there is only one

flilé%rls," IEEE Trans. Signal Processingol. 39, pp. 2425-2435, Nov. y3lig way to divide the number of zeros between= —1 and the

[2] J. J. Kormylo and V. K. Jain, “Two-pass recursive digital filter with Manuscript received September 17, 1995; revised July 25, 1997. This work
zero phase shift,TEEE Trans. Acoust., Speech, Signal Processing ~ was supported by BNR and by NSF Grant MIP-9316588. The associate editor

ASSP-30, pp. 384-387, Oct. 1974. coordinating the review of this paper and approving it for publication was Dr.
[3] A. N. Willson and H. J. Orchard, “An improvement to the Powell andlruong Q. Nguyen.

Chau linear phase IIR filtersJEEE Trans. Signal Processingol. 42, I. W. Selesnick is with Electrical Engineering, Polytechnic University,

pp. 2842-2848, Oct. 1994. Brooklyn, NY 11201-3840 USA (e-mail: selesi@radar.poly.edu).

[4] A. G. Dempster and M. D. Macleod, “Multiplier blocks and complexity C. S. Burrus is with the Department of Electrical and Computer Engineer-
of IR structures,”Electron. Lett, vol. 30, no. 22, pp. 1841-1842, Oct. ing, Rice University, Houston, TX 77251 USA.
1994. Publisher Item Identifier S 1053-587X(98)03928-2.

1053-587X/98%$10.00) 1998 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 6, JUNE 1998 1689

TABLE | Pole—zero plot
NOTATION
Parameters 1 T
L+ M total number of zeros s \\\
L number of zeros at z = —1 05 ,'/ : \\
M number of zeros contributing to the passband / \
N total number of poles o '/ * \\‘
Wo half-magnitude frequency g 0 ¢ <—deg4 '
z, %(l — COSW,) - \\ I,'
Flatness 05 \\ /,’
L+ M+ N | total degrees of flatness ' N N L,
M+ N degree of flatness at w =10 \\\ ,,’/
L degree of flatness at w =7 -1 e T

-1 -0.5 0 0.5 1
Real

Frequency response Fig.2. L =4, M =0, N = 4.

Pole—zero plot
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Fig. 1. Magnitudes of the three digital IIR filters shown in Figs. 2—4.
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passband. The correspondence also describes how to constructatagle. L = 6, M = 0, N = 4. The poles at the origin are not shown
from which it is simple to determine the correct way in which to spliin the figure.
the zeros between these two bands.
Given a half-magnitude frequency,, the filters produced by -
the formulas described below are optimal (maximally flat) in th € nu_mb_er of remaining zeros. The zero_s;at —1 produce a flat
following sense: The maximum number of derivativesvat 0 and ehaylgr in the frequency response magnitude & , whereas the
w = w are set to zero under the constraint that the filter possesg} aining zeros, together with t_he poles, are uged to produce a flat
the half-magnitude frequency, and a monotonic frequency respons ehavior at = [_)' The hal-magnitude frfequency IS that_ fre_ql_Jen_cy at
magnitude. The classical digital Butterworth filter and the well-knowﬁgh'Ch thg magnitude qugls one half. Like the 3 dB point, it indicates
maximally flat FIR filter [3], [5], [6], [20], [23] are both special casest e Iocatloq of the transition band. The meamngs of the parameteas
of the filters produced by the formulas given in this paper. are shown in Table I. It sho_uld _be noted that by “degree of flatnesg,
Several authors have addressed the design and the advantagg%ecgpean the ”””f‘ber of derivatives .thaF are made to match the desired
IIR filters with an unequal number of (nontrivial) poles and zerodESPONSE, including the zeroth derivative.
While [14] and [22] give formulas for IIR filters with Chebyshev
stopbands having more zeros than poles, these methods require that IIl. EXAMPLES

all zeros lie on the unit circle. This restriction limits the range of 1. (|5ssical digital Butterworth filters (defined ly= N and
achievable cutoff frequencies. In [4], Jackson notes that the use Gf _ ) 510 special cases of the filters discussed in this paper.

Just two poles 1S ofte_n the most attractive compromise betwe%gs_ 1 and 2 illustrate a classical digital Butterworth filter of order
computational complexity and other performance measures of ngr _ 4 M = 0. N = 4). The first generalization of the

est” In [13_]' Sararaki discusses .the trad.eoffs. betwee_n nur_nerat,%fassical digital Butterworth filter described below permitso be
and denominator order and describes an iterative algorithm in whigh. . thanv. with M = 0 Fig. 3 illustrates an IIR filter with
zeros are not constrained to lie on the unit circle for the design f_ ¢ 1r — o & — 4 It was designed to have the same half-

filters having Chebyshev stopbands. In [12] and [13], Salarfinds magnitude frequency. It turns out that whén> N, the restriction

that the classical Elliptic and Chebyshev filter types are seldom ‘ﬁ%t M equal zero limits the range of achievable half-magnitude
best choice.

frequencies, as will be elaborated upon below. This motivates the
second generalization. In addition to permittihgo be greater than
N, the second generalization permit$ to be greater than zero:
Let H(z) = B(z)/A(z) denote the transfer function of a dig-L > N and M > 0. Fig. 4 illustrates an IIR filter withL = 16,
ital filter. Its frequency response magnitude is given |Bi(¢’*)|. M = 7, N = 4.
Throughout this correspondence, the degre®©f) will be denoted As mentioned above, for a specified half-magnitude frequency
by L + M, whereL is the number of zeros at= —1, andM is and specified humerator and denominator degrees, there is only one

Il. NOTATION
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Pole-zero plot

Frequency response
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Fig. 4. L =16, M =7, N = 4. The poles at the origin are not shown
in the figure. Group delay
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TABLE 1

For THE CHoICE L, M, AND N SHOWN IN THE TABLE, THE INTERVAL
OF ACHIEVABLE HALF-MAGNITUDE FREQUENCIESw, IS GIVEN BY
[wmin, wmax]- L + M |s THE NUMERATOR DEGREE (NUMBER OF

ZERO9, AND N |s THE DENOMINATOR DEGREE (NUMBER OF POLES)

L+M|L M N wpin/T Wna/7T

4 14 0 4 0 1

5 5 0 4 0 0.5349
4 1 4 0.5349 1
6 0 4 0 0.4620

6 5 1 4 0.4620 0.6017
4 2 4 06017 1 % 0.2 04 06 08 1
7 0 A4 0 0.4140 /n

- 6 1 4 0.4140 0.5299

! 5 2 4 05299  0.6446
43 4 0.6446 1 Transition sharpness vs. pole, zero assignment

0.7 . : . .

o
<)

correct way to split the zeros between= —1 and the passband. To
illustrate this property, it is helpful to construct a table that indicates
the appropriate values fat, M, and N. WhenN =4 andL + M

is varied from 4 to 7, Table Il gives the valudsand M required

to achieve a desired half-magnitude frequency. As can be seen from
the table, the intervals cover the interval (0,1) and do not overlap.
This will be true, in general, as long as at least one pole is used.

o
3}

o
'S

Negative reciprocal of slope

In the FIR case, the intervals cover an intervalb) with « > 0 0.3

andb < 1. (Neither the passband nor the stopband can be arbitrarily B
narrow). Notice that in the case of the classical Butterworth filter 0.2 : .

(L+ M = N), M equals zero, regardless of the specified half- © 2 4 N 6 8 10

magnitude frequency. As will be explained below, these intervals can

be unambiguously computed by inspecting the roots of an approprihi@ 5: Generalized Butterworth filters. + M + N = 20, w, = 0.67. N
set of polygnomla?ls P yinsp 9 pprop 55 varied from 0 to 10 in increments of 2V = 10 corresponds to the filter

having the steepest transition and the most peaked group delay. The values
To illustrate the tradeoffs that can be achieved with the generalizgdr,, A7, and N are shown in Table III.

Butterworth filters described in this correspondence, it is useful to

examine a set of filters all of which have the same half-magnitude

frequency and the same total number of poles and zdres\ + N). interesting to note that the improvement in magnitude is greatest when
For example, whed + M + N is fixed at 20 and the half-magnitudethe number of poles is increased from 0 to 2.

w, is fixed at0.6w, the filters shown in Fig. 5 are obtained. The

number of poles of the filters in this figure vary from 0 to 10 in IV. DESIGN FORMULAS

steps of 2. It is interesting to measure the slope of the magnitudeThe approach described below uses the mappiags (1 — cosw)
|H(e’*)| at the half-magnitude frequency. The figure shows thend provides formulas for two non-negative polynomiRis:) and
negative reciprocal of the slope ¢H (¢’*)| at w,—this indicates ()(x). A stable IIR filter B(z)/A(z) is obtained having a magnitude
the approximate width of the transition band. Notice from Table Iéquared frequency responé (¢’“)|? given by

and Fig. 5 that for this example, as the number of poles and zeros o

become more equal, the slope of the magnitude,abecomes more |H(e‘jw)|2 = (141

negative, and the transition region becomes sharper. However, it is Q(3 — g cosw)
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TABLE 11l TABLE V
FOR THE HALF-MAGNITUDE FREQUENCY w, = 0.67 AND L + M + N = 20, NUMBER AND LOCATIONS OF THE REAL RoOTS OF
THE TABLE SHOws THE CORRECTVALUES OF L AND M AND THE DERIVATIVE OF Tn{(1—2)" Y+ caV —4(1 —2)" FORL > N > 0
THE MAGNITUDE RESPONSE ATw,. THE FILTER RESPONSESARE SHOWN IN FIG. 5
L even L odd
wol |/
L M N |H{e) N even 2 real roots: 1 real root:
8 12 0 —1.4366 —0 0.1 1 0.1
8 10 2 —2.5410 c= zy € (0,1), 22> zy €(0,1)
8 8 4 —3.1869 N odd 2 real roots: 3 real roots:
8 6 6 —3.6882 c= (5 |21 € (0,1), 22 =1 ]2, € (0, 1), 2= 1,23 > 1
9 3 8 —3.8012
10 0 10 -3.9430
The value this expression gives formay or may not lie in the
TABLE IV appropriate range, as shown in Table IV. If it does not, then the
PERMISSIBLE RANGES FORc FOR THE FIRST GENERALIZATION specified half-magnitude frequency is too high for the current choice

of L and N. It should be noted that although the passband can be
made arbitrarily narrow, it cannot be made arbitrarily wide for a
Nodd | > (51 fixed L and N (whenL > N).

I The greatest half-magnitude frequency achievable for a fixadd
N can be found by setting equal to the appropriate value shown

as in [3]. Accordingly,F'(x) = P(x)/Q(=) is designed to approx- in Table IV and solving (4) for,. It is seen that:, is a root of
imate a lowpass response overc [0, 1]. B(z) and A(z) are most the polynomial

conveniently found by first computing the roots Bfx) and Q(x)

N even c>0

and by then mapping those roots to thelane via Tn{(1— )"} + 2™ —4(1—2)" = 0. ®)
z=1-2r+v1-22-1 (1)  Note thatz, should lie in(0,1). WhenL > N > 0, this polynomial

For stable minimum-phase solutions, take the sign of the squdl@S exactly one real root if0, 1); see [16] for a proof. The number
root yielding points inside the unit circle. We begin with the classic@nd locations of the real roots of (5) are given in Table V.

digital Butterworth filter. This establishes notation and makes the Example: For L = 6 and V' = 4, the boundary value for from
generalization more clear. Table IV is 0 (V is even); therefore, the polynomial equation (5)

becomes;{(1—xz)°} —4(1—=)° = 0. It roots are3.9476,0.3798 %
1.1659,0.4262 £ 0.32457,0.4404. Therefore, for this choice oL
and N, z, must lie in(0, 0.4404] so thatw, must lie in(0,0.4620x].
; = To obtain filters having wider passbands with the same number of
P(x)/Q(x) is given by zeros and (nontrivial) poles, it is necessary to move at least one zero
‘ (1-2)" fromz = 1 (z = —1) to the passband.
F@) = G- o +aad @
The classical Butterworth filter is obtained whah= L. Note that C. Second Generalization
|H(e™/*)|? = F(1/2) = 1/(1+ c- 2577). Clearly, ¢ should be  For the second generalization, assume that N and that/ > 0.
chosen so that this value lies between 0 and 1. Therefarmyst be The zeros lying off the unit circle are used to obtain a higher degree
greater than zero. of flatness atv = 0. Such a filter is shown in Fig. 4. In this case,
To choosec to achieve a specified half-magnitude frequency ig'(x) is given by
straightforward. The equatiofff (e’“)| = 1/2 becomesF'(z,) = .
1/4, wherez, = (1 — cosw,). Solving this equation for, we Fx) = (1 —2) (R(x) + cT(x)) ©)
getc = 3(1 — x,) /2. Because this expression is positive for all TnA(l = )M (R(x) + cT(x))}
2, € (0,1), any half-magnitudev, € (0,x) is achievable when
L < NandM = 0.

A. Classical Digital Butterworth Filter
AssumeL < N and M = 0; then, the rational functio’(x) =

whereR(x) andT'(z) are given in Table VI. Table VI also provides
expressions fof1 —z)* R(x) and(1 — z)“T(z). These polynomials
are such that the numerator éf(z) — 1 is divisible by 2+,
Again, the free parameter can be chosen to precisely position the
For the first generalization, assume tHat> N and thatM = location of the transition band. However,must lie in the ranges
0. Then, introducing the notatioffx for polynomial truncation shown in Table VII. (WhenN is even, for example, the positive
(discarding all terms beyond th€th power),F () can be written as endpoint of this interval is that point beyond whiét{z) is no longer
(1— )" monotonic—and the negative endpoint of this interval is that point
F(z) = T =o)L+ (3)  beyond whichF(z) is no longer non-negative.)

) ) ) To choose to achieve a specified half-magnitude frequency, solve
The terme is the free parameter that, as in the classical case, canlb(el,o) = 1/4 for ¢. This yields

chosen to achieve a specified half-magnitude frequency and must be

B. First Generalization

chosen to lie within an appropriate range. The allowable ranges for . 4(1 = z) " R(z,) = Tw{(1 = 2)* R(z) }(x,) %
c are given in Table IV. When is chosen to lie in the ranges shown O IN{(L = 2) LT () N (wo) — 4(1 — 2 LT (2,)

in the table, the) < F(x) < 1 for = € (0,1). See [16] for a proof.

To chooser to achieve a specified half-magnitude frequency The value this expression gives fermay or may not lie in the

solve F(z,) = 1/4 for c. This yields appropriate range given by Table VII. If it does not, then the specified
o - . y half-magnitude frequency is either too high or too low for the current
_ 4 —w) = Tn{(l - ) }(Iu). (4) choice of L, M. and N—it is necessary to alter the distribution of

xy zeros between = 1 (z = —1) and the passband.
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TABLE VI Frequency response
AUXILIARY POLYNOMIALS FoR NEGATIVE VALUES OF n, THE CONVENTION . . -
[11], ("*F 1) = (=1)%( ") Fork > 0 Is USED. IN ADDITION, NOTE THAT .
(k)—OFORn>0L<0ANDTHAT()_OFORI7>0 E>n
M- 0.8¢
(Mervk— ><L_N:k_l)zk ) L2 L5
k=0 506
iy M+N—k—2 L-N+k 5
T(z)==x ( ) ( & )zk £04
=0
L (M+N—k\(L-N+k 02
S +N -k “N+k-1Y &
WZ( » )( S i
k=0
LM 0 0j2 0:4 0.‘6 0?8 1
M+N-k-1\N/L+M-1
—_)r = _z)k /T
a-otmm= 5 (M (e
_ Fig. 6. Generalized Butterworth filters for special values af,.
L+M~-1 , L 4+ M = 22, N = 4. L is varied from 5 to 21. The widest band
A—a)T@) =2 (M FN k- 2) (L +M - l) (—2)* filter corresponds td. = 5
Pt M -1 k
Lg LM o N\ (L4 M . where S(x) is given in Table VI. The exact location of the half-
(1-2)"5(z) = ; ( M ) ( k )(*x) magnitude frequency is entirely determined by the paraméterd,
- and N. Fixing L + M = 22 and N = 4, the frequency response
magnitudes of the filters obtained using (10),lass varied from 5
TABLE VII to 21, are shown in Fig. 6.
PERMISSIBLE RANGES FORC FOR THE SECOND GENERALIZATION The FIR solution obtained, whev = 0, is a special case
T well established in the literature. Whel = 0, the function (10)
I oy _ T specializes to
N even 1<e< VTN P
M
L-N . _ NL L+k—1 k
N odd e Flz)=(1-2) ; < . @ (12)

which was given by Herrmann in [3] for the design of symmetric
For fixed L, M, and N, the minimum and maximum permISSIb|e(Type 1) FIR filters. It is worth noting that recently, formulas for all

values of the half-magnitude frequengy can be computed by ~ four types of symmetric FIR filters have been given [1].
) settingc to the values in Table VII; WhenL = M + N + 1, with N even, the function (10) is useful

i) solving (7) for « in the design of IIR orthogonal wavelets with a maximal number of
iii) using w = arccos(1 — 2z) vanishing moments [2], [17]. In this case, the transfer funchibr)
o i ) obtained from (10) satisfief (z)H (1/z) + H(—z)H(-1/z) = 1,
Whenc is finite, it is seen that is a root of the polynomial which is an equation that is central to the design of orthogonal
Tn{(1 — ) (R(x) + T(2)} — 4(1 — 2)*(R(x) + ¢T'(x)) = 0.  two-channel filter banks and orthogonal wavelet bases.

®)

Note that when¥ is odd, ¢ can be chosen to be arbitrarily large.
Letting ¢ approach infinity, we get, instead of (8), the polynomial

V. FURTHER REMARKS

To summarize, the design procedure described above requires three

parameters.
Tn{(1= )" T(x)} = 4(1 = )" T () = 0. ©) « the denominator degre@V);

Therefore, for both even and odd, the range of achievable half- * the numerator degreel. + M);
magnitude frequencies can be found by computing the roots of* the half-magnitude frequendy.,).
appropriate polynomials. It was found that each relevant polynomiy making a table such as Table II, the way to split the number
has exactly one real root in the interval (0,1); therefore, there @ zeros betweenr = —1 and the passband.(and M) can be
no ambiguity regarding root selection. A table similar to Table etermined. The corresponding formulas can then be used to compute
indicating the number and the location of the real roots of the relevahit«). After polynomial root finding and the mapping (1), the filter

polynomials is given in [16]. coefficients can be obtained. To clarify the design process presented
in this paper, we list the steps.
D. Special Values 1) Specify the numerator and denominator degreeff of) and

the frequencyw,.

Construct a specification table, like Table Il, using the equations

discussed above.

) Locatew, in the specification table. This gives and M
individually—thereby indicating how to split the zeros between
z = —1 and the passband.

. 4) Use formulas given above to construct the rational function
(=) S@) (10) F(r) = P(x)/Q(x).

In{(1—a)-S(2)} 5) Compute roots of?(x) and Q(x).

For fixed valuesV and L + M, as the specified frequency, is
varied over(0, ), the values of. and M must be varied according to 2)
a table such as Table II. For the boundary values offor example,
wo = 0.5349 whenL + M = 5 and N = 4), an extra degree of
flatness is achieved wheN is even. For those filters, the rational
function F(x) is given by

F(x) =
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TABLE VIl
EXPRESSION FORF'(x) GIVES THE MAGNITUDE SQUARED FUNCTION IN THE 2 DOMAIN IN TERMS OF A CONSTANT
¢. WHEN ¢ |s CHOSEN ACCORDING TO THEEXPRESSIONGIVEN IN THE TABLE, F'(x,) EQUALS 1/4

P(z) ¢ Case
(‘1% 3% L<N.M=0
P L
?N{(l(i%,)?}icﬁ LLEL CNI\T{(I = 2) Heo) L>NM=0
L

m%;gﬁg;:ZQM»%mﬁQﬁhgﬂwghir)ﬂ%) L>NM>0

%@% no variation of w, L>N,M>0,N even

6) Map roots toz-plane via (1). and denominator degrees and a fixed half-magnitude frequency, the

7) Compute coefficients by forming polynomials from roots.  formulas above give a direct way of finding the correct way to split

Using a specification table like Table Il in conjunction with the¢he number of zeros between= —1 and the passband.
formulas, the half-magnitude frequency, can be varied continu- The maximally flat FIR filter described by Herrmann [3] and the
ously in the interval(0, 7). If desired, a frequency other than theclassical Butterworth filter are special cases of the filters given by
half-magnitude frequency can be specified. To specify a frequer®g formulas described in this paper. Table VIl gives a summary
w, for which |H (e?*)| = H, is possible for anyH,, 0 < H, < 1. of the filter design formulas. Table VI gives auxiliary polynomials.
The resulting design formulas differ only in that they contain slightiAn earlier version of this paper is [18]. A more detailed description
different constants. In addition, note that, although the examplisgiven in [16]. Matlab programs are available on the World Wide
illustrate minimum-phase solutions, nonminimum-phase solutions céfgb at URL http://www.dsp.rice.edu/.
also be obtained by reflecting “passband” zeros about the unit circle.
This is equivalent to using different signs of the square root in (1). APPENDIX

Note that whenN is odd, one of the poles must lie on the real CONNECTION TO A SERIES OF GAUSS

line. When there are zeros that lie off the unit circle, in the passban . . .
" T " -
(M > 0), it is expected that the pole lying on the real line doegQIThe polynomialsR(x), T'(x), and S(x) given in Table VI are

ecial cases of the Gauss hypergeometric seriesF[4] b; ¢; z),
little to contribute to the performance of the frequency responséjven by yperg (@ b; c; 2)

This is indeed true. In some situations, a pole and a zero will |
close together on the real line and, depending on the specified half-
magnitude frequency, almost cancel. For this reason, it is expected
that generalized digital Butterworth filters having an odd number of
poles, and passband zeros will be of little interest—they have begfiere the pochhammer symbqla)k denotes the rising factorial
presented in this paper for completeness. Ve = (a)-(a+1)-(a+2)---(a+k—1). Whena or b is

(a
It should be noted that for the classical Butterworth filter, explic negative integerF (a, b; c; z) is a polynomial. The polynomials
solutions for the locations of the poles are known [9]. For thg(,,d), T(x), and S(x) can be written as
generalized case, however, it appears that the root®(of) and

oo _k
Fla,bjc;z) = Z —(azi)(f)k ;c_' (12)
k=0 - )

Q(x) must be found numerically. It should also be realized that a 5(z) = M F(—M,L— N;—M — Niz) (13)
filter formed by cascading i) a classical Butterworth digital filter and N
ii) a maximally flat FIR digital fil lin th I (M)n
y fla igital filter is not optimal in the maximally R(x) = S F(1—=M,L—N;1—M — N;zx) (14)

flat sense in general. To obtain a true maximally flat solution, all the N
degrees of freedom must be considered togeth y = (M)n— I 7 7

g gether. T(e)= w7y @ F(2=M,L-N-12-M- N;ux).

It is also worth noting that the classical Butterworth filter can (N =1
be realized as a parallel sum of two allpass filters [24], which is (15)

a structure that has received much attention recently. The aIOpro'Ef‘?were are many recurrence formulas for the hypergeometric series;
taken in this correspondence did not attempt to preserve this propert th them, recursion formulas foR(<), S(x), and T(x) can be
however, it is possible to obtain a quite different generalization é‘gtained 1I'hose relationships ma als,o facili’tate the computation of
the Butterworth filter by structurally imposing this property [15]. h £ th | Ip y ted in 18] and le

Finally, if phase linearity is important and a maximally flat response t € roots of the polynomials, as suggested in [8] and [21]

is desired, then it is more appropriate to use symmetric FIR filters
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In this correspondence, a new and simple method based on the
eigenfilter approach to design causal IIR filters with an arbitrary
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