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Bayesian Estimation of Bessel K Form
Random Vectors in AWGN
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Abstract—We present new Bayesian estimators for spheri-
cally-contoured Bessel K form (BKF) random vectors in additive
white Gaussian noise (AWGN). The derivations are an extension
of existing results for the scalar BKF and multivariate Laplace
(MLAP) densities. MAP and MMSE estimators are derived. We
show that the MMSE estimator can be written in exact form in
terms of the generalized incomplete Gamma function. Compu-
tationally efficient approximations are given. We compare the
proposed exact and approximate MMSE estimators with recent
results using the BKF density, both in terms of the shrinkage rules
and the associated mean-square error.

Index Terms—Bayesian estimation, Bessel K form density, MAP
estimator, MMSE estimator, wavelet denoising.

I. INTRODUCTION

WAVELET coefficients of natural images and discrete
Fourier transform (DFT) coefficients of short speech

segments usually possess peaked, symmetric, zero-mean distri-
butions, with heavier than Gaussian tails. The peaked behavior
is roughly captured by the Laplace density. More accurate den-
sities better model wavelet histograms near the origin, and in the
tails. Some such models either require more degrees of freedom
(two or more parameters), for example [1], [14], [16], or entail
mixtures of densities [7], [8], [11]. A review of priors used for
wavelet-domain modeling is provided by [3]. The Bessel K form
(BKF) density has been used in [4], [9], [12], and [22].

Multivariate modeling offers advantages over scalar mod-
eling, because dependencies and/or correlations between
coefficients can be captured. Such models can be applied to
neighborhoods of coefficients, and they are effective in appli-
cations [6], [18], [20], [21].

In this letter, we derive MAP and MMSE estimators for
Bessel K form random vectors in independent additive white
Gaussian noise (AWGN). The multivariate Bessel K form
(MBKF) density is a two-parameter extension of the multi-
variate Laplace (MLAP) density we considered in [19]. We
draw from and extend the results of [19]. This letter also builds
upon results in [4], [9], and [17], where MAP and MMSE
estimators are derived in the scalar case.

II. MULTIVARIATE BESSEL K FORM (MBKF) DENSITY

The spherically-contoured zero-mean -dimensional BKF
density [10] can be written as

(1)
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Fig. 1. Example wavelet subband histogram with a fitted scalar BKF density
(1), illustrated on a log scale.

with , and where is the modified Bessel func-
tion of the second kind [1], and and are the scale and shape
parameters. The marginals of (1) are scalar BKF densities. Pa-
rameter allows a tradeoff between heaviness of the tails and
sharpness of the mode. Although in general , wavelet data
from natural images typically exhibit [9], [22], as
in Fig. 1. For , the MBKF density reduces to the MLAP
density in [19, eq. (7)], while when , the MBKF reduces
to the scalar BKF in [12, eq. (6)].

A BKF random vector can be represented as a Gaussian
scale mixture (GSM) [10], [15]

(2)

where is a -dimensional zero-mean Gaussian random vector,
. We take , which gives the spherically-con-

toured BKF. is a scalar Gamma random variable with param-
eter . Consequently, the density of can be expressed as the
integral

(3)

with

(4)

a form that proves useful below.

III. BKF VECTORS IN AWGN

We consider a -dimensional BKF random vector in inde-
pendent AWGN

(5)
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The density of can be written as a convolution

(6)

where is given in (1), and . Using
the GSM property in (3), this convolution can be written as

(7)

The term inside brackets is a -dimensional convolution of
the Gaussians and . The result is
a Gaussian . Rewriting, changing the
variable of integration, and simplifying gives

(8)

The factor can be expanded using the infinite
form of the Binomial theorem as

(9)

with convergence for , and where is defined in
(27). Then (8) can be expressed using the generalized incom-
plete Gamma function [5] in (26) as

(10)

IV. MAP ESTIMATOR

With reference to (5), MAP estimation corresponds to the
maximization problem

(11)

which is equivalent to

(12)

Maximizing this expression for each component gives

(13)

Using (25), the second term can be computed as

(14)

Therefore, the MAP estimator is

(15)

Rewriting this in terms of the norms gives

(16)

This estimator can be computed by successive substitu-
tion, namely, with the initialization

. For , the MBKF MAP estimator special-
izes to the MLAP case in [19, eq. (17)], while setting
results in the soft-threshold rule.

V. MMSE ESTIMATOR

In the context of (5), the MMSE estimator is given by the
conditional posterior mean

(17)

Applied to the MBKF density, the denominator is given
in (10), while the numerator can be manipulated similarly to (6)
to give

(18)

Taking the ratio of (18) and (10) gives the MBKF MMSE esti-
mator in exact form as

(19)

For , the infinite sums become finite and (19) simplifies
to the MLAP case in [19, eq. (24)]. For , the MMSE
estimator is given in [17]. For , we get the MMSE
estimator of a scalar Laplace random variable in AWGN which
has been given in [13].

VI. APPROXIMATIONS

The MBKF MAP and MMSE estimators can be approxi-
mated in ways that are computationally efficient, and yet remain
close to exact expressions in mean-square error sense.

The MAP estimator in (16) is implicit; replacing on the
right-hand side by gives an approximate MAP estimator

(20)
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Fig. 2. Exact and approximate estimators (16) and(20) of BKF random vectors
in AWGN.

Fig. 3. Exact and approximate estimators (19) and (22) of BKF random vectors
in AWGN.

Fig. 2 illustrates the exact and approximate MAP estimators in
(16) and (20).

The MMSE estimator may be approximated for small by
a line with slope equal to the slope of (19) at

(21)

where is the incomplete Gamma function [5]. For large
, the approximate MAP estimator (20) is accurate. There-

fore, an approximate MMSE estimator is given by

(22)

where is the linear approximation in (21), and denotes the
estimator in (20). Fig. 3 compares the exact and approximate
MMSE rules in the vector case.

Fig. 4 compares the exact MMSE estimator (19) and the ap-
proximate MMSE estimator in [9, eq. (17)]. The exact BKF
MMSE nonlinearity shrinks less than the estimator in [9, eq.
(17)]. The estimators agree for large and are also almost iden-
tical for .

Fig. 4. Two estimators of a BKF random variable in AWGN: exact MMSE
estimator (19) and approximate MMSE estimator [9, eq. (17)].

As a further comparison, we derive the conditional mean-
square error (MSE)

(23)
with . The term is given in (19), and
can be derived as

(24)

where

With , Fig. 5 illustrates the conditional MSE where
we have taken the estimators to be (19), (22), and [9, eq. (17)].
The proposed approximate MMSE estimator (22) achieves near-
optimum MSE performance; the approximation in [9, eq. (17)]
differs from the optimum for small to midrange values of .
The approximation in (22) behaves similarly in the vector case
as well.

VII. IMAGE DENOISING EXPERIMENTS

We apply the exact MAP (16), approximate MAP (20), and
approximate MMSE (22) estimators to two images corrupted by
AWGN, using a critically sampled DWT with three decompo-
sition levels. We have used 80 terms to compute (21) (the terms
decay rapidly when ). The parameters and have been
estimated from noisy wavelet data as in [9]. It is assumed that the
noise variance is known. The results (averaged over five real-
izations), shown in Table I, show the improvement obtained by
multivariate probability modeling, compared to univariate prob-
ability modeling. In terms of PSNR, the exact MAP estimator
(16) is surpassed by its approximate version (20), and the ap-
proximate MMSE estimator (22) gives the best overall perfor-
mance.

VIII. CONCLUSION

This letter presents new Bayesian estimators for spher-
ically-contoured BKF random vectors in AWGN derived
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Fig. 5. Comparison of several estimators of BKF random vectors in AWGN.
The estimators are (19), (22), and [9, eq. (17)].

TABLE I
PSNR RESULTS FOR WAVELET-DOMAIN IMAGE DENOISING USING THE

EXACT MAP ESTIMATOR (16), THE APPROXIMATE MAP ESTIMATOR (20),
AND THE APPROXIMATE MMSE ESTIMATOR (22)

using the generalized incomplete Gamma function. The pro-
posed MMSE estimator (19) builds upon [9] and [17] by
addressing the multivariate, albeit spherically-contoured, case.
This letter also proposes a computationally efficient approx-
imate MMSE estimator (22). The presented estimators are
limited because in many cases, especially denoising using
overcomplete transforms, the multivariate prior should not be
spherically-contoured and the noise is not white. However, the
MMSE estimator in the more general case, currently under
investigation, cannot be expressed in terms of the special
functions used here.

APPENDIX

A useful property of the modified Bessel function of the
second kind is

(25)

The generalized incomplete Gamma function [5] is given by

(26)

The Pochhammer symbol is defined as

(27)
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