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Low-Pass Filters Realizable as All-Pass
Sums: Design via a New Flat Delay Filter

Ivan W. Selesnick,Member, IEEE

Abstract—This paper describes a new class of maximally flat
low-pass recursive digital filters. The filters are realizable as
a parallel sum of two all-pass filters, a structure for which
low-complexity low-noise implementations exist. Note that, with
the classical Butterworth filter of degreeN which is retrieved
as a special case, it is not possible to adjust the delay (or
phase linearity). However, with the more general class of filters
described in this paper, the adjustment of the delay becomes
possible, and the tradeoff between the delay and the phase
linearity can be chosen. The construction of these low-pass filters
depends upon a new maximally flat delay allpole filter, for which
the degrees of flatness at! = 0 and ! = � are not necessarily
equal. For the coefficients of this flat delay filter, an explicit
solution is introduced, which also specializes to a previously
known result.

I. INTRODUCTION

T HE design of digital all-pass filters has received much
attention in recent years, for it has become well known

that: 1) low-complexity structures with low roundoff noise
behavior are available for all-pass filters [32], [43] and 2) they
are useful components in a variety of applications. Indeed,
while traditional applications of all-pass filters appear to be
phase equalization [7], [19] and fractional delay elements [18],
their uses in multirate filtering, filterbanks, notch filtering,
recursive phase splitters, and Hilbert transformers have also
been described [30], [35], [37], [38]. Of particular interest has
been the design of frequency selective filters realizable as a
parallel combination of two all passes

(1)

illustrated in Fig. 1. This structure, the all-pass sum, has its
history in analog lattice circuitry [45] and wave-digital filters
[9].

It is interesting to note that digital filters of odd degree,
obtained from the classical analog (Butterworth, Chebyshev,
and elliptic) prototypes via the bilinear transformation, can be
realized as all-pass sums1 [34], [42]–[44]. As all-pass sums,
such filters can be realized with low complexity structures
that are robust to finite precision effects [43]. However, the
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1The classical filters of even degree can also be realized as a sum of two

all-pass filters, however, in that case complex coefficients are required. In this
paper, only real-coefficient filters will be considered.

Fig. 1. All-pass sum. The upper branch gives1=2[A1(z) + A2(z)]. The
lower branch gives the complementary filter1=2[A1(z) � A2(z)] without
additional filtering.

realization of a low-pass filter as an all-pass sum is not
restricted to the classical filter prototypes. The all-pass sum
is a useful generalization of the classical transfer functions,
that is honored with a number of benefits. Specifically, when
some degree of phase linearity is desired, nonclassical filters
of the form (1) can be designed that achieve superior results
with respect to implementation complexity and phase linearity
[11], [14].

The desired degree of phase linearity can, in fact, be
structurally incorporated. If one of the all-pass branches in
an all-pass sum is a pure delay , then the all-pass sum
exhibits approximately linear phase in the passbands [17], [31].
The frequency selectivity is then obtained by appropriately
designing the remaining all-pass branch. Interestingly, by
varying the number of delay elements used and the degrees of

and , the phase linearity can be affected. Simulta-
neous approximation of the phase and magnitude is a difficult
problem in general, so the ability to structurally incorporate
this aspect of the approximation problem is attractive.

While general procedures for all-pass design [4], [10], [15],
[16], [21], [24], [26]–[28], [36], [46] are applicable to the
design of frequency selective all-pass sums, several publica-
tions have addressed, in addition to the general problem, the
details specific to all-pass sums [1], [2], [13], [22], [31], [33],
[35]. Several authors have also described iterative Remez-like
exchange algorithms for the design of all-pass filters and all-
pass sums according to the Chebyshev criterion [11], [14],
[20], [38].

This paper considers the design of maximally flat low-pass
filters realizable as all-pass sums. It is explained that the
design problem can be formulated as the problem of group
delay approximation of a single allpole filter2. The solution
sought in this paper depends on an allpole filter, the group
delay of which possesses a maximally flat characteristic at

and . An explicit solution is given for this

2In this paper, the term “allpole filter” allows for zeros atz = 0.
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allpole filter, where the degrees of flatness at and
need not be equal. Also, by developing a method by

which the cutoff frequency can be continuously varied, it is
found that the classical Butterworth digital filter is retrieved
a special case of the class of low-pass filters described in
this paper. Various examples are provided and simple Matlab
programs are given in the Appendix. The solution given is
applicable to the approximately linear phase case and the
general case.

II. FLAT DELAY FILTER

Let denote the group delay, the negative derivative
of the phase with respect to. This section examines the
transfer function

(2)

where and the dc gain is normalized to unity:
. The goal is to design the transfer function

so that its group delay possesses a specified degree of flatness
at and , where the degree of flatness at each
point is not necessarily equal. There are free parameters

. will denote the number of constraints assigned
to , and will denote the number of constraints assigned
to . The problem is formulated as follows.

Given (the desired group delay), , and , with
, find real coefficients such that the group

delay of (2) satisfies the following derivative constraints:

1) . (If );

2) . (If );

3) for ;

4) for .

Because the group delay is an even function of, the odd
indexed derivatives of are automatically zero, so they
need not be specified. The solution has the property that

for , and
for .

Following the derivation given in [41], the four group delay
conditions are equivalent to the following system of equations,
linear in the coefficients :

for

(3)

for

(4)

The system matrix is comprised of two Vandermonde-like
matrices, corresponding to (3) and (4), respectively. Vander-
monde matrices arise in polynomial interpolation problems
and, accordingly, become ill-conditioned in cases where many
derivatives at a few points are specified, as is the case here.
With some assistance from the computer algebra system [6],

TABLE I
MAXIMALLY FLAT DELAY DIGITAL ALLPOLE FILTER,

K = 6; L = 3; � = 7=2 AND � = �3=2

the solution was found to be

(5)

for . The Pochhammer symbol denotes the
rising factorial .
We define as 1 for . Although (5) looks rather
cumbersome, the coefficients can be efficiently calculated.
A method for doing so is described in the appendix, where a
Matlab program for this calculation is also given.

Note that for some negative values ofno solution exists.
These are values for which the denominator in (5) vanishes:

for . These values
of are more negative than will be needed later on. It is
expected that there should be values of for which no
solution exists, since the determinant of the system matrix is
a polynomial in of degree . Except for those values,
can be any real number, positive or negative, although
will be unstable for sufficiently negative values of.

The use of (5) for negative values ofis not purely for theo-
retical interest. In fact, for the design of stable causal low-pass
filters realizable as all-pass sums, the use of unstable solutions
(5) obtained with negative values of will be necessary, as
illustrated in Section III. Properties of the zeros of
that will later be relevant are discussed in Appendix A.

Example 1: To illustrate the maximally flat delay filter, a
ninth degree example is provided. For this example,

, and . The coefficients as rational functions
of are given in Table I, as well as the solution for
and . The group delay and the pole–zero diagram
for those two filters are shown in Figs. 2 and 3. For ,
the solution is stable. For , the solution possesses
two poles outside the unit circle.

A. A Special Case

The allpole filter possessing a flat delay characteristic only
at dc is well established in the literature. In this case,
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(a)

(b)

Fig. 2. Maximally flat delay filter,K = 6; L = 3; � = 7=2; group delay
and pole–zero diagram.

the solution (5) specializes to the previously reported solution

(6)

This solution has been described in various forms, see for
example [8], [12], [40], [41]. For example, in [41] this formula
is written as

(7)

which is the same as (6) after simplification (cancelling the
terms common to the numerator and denominator

of the term product). It should also be noted that the
solution of [40] is the same when it is understood that [40]
considers the transfer function ; the appropriate
change of variables is straightforward.

Various uses of the special case (6) have been described.
One application of (6) is the design of all-pass fractional
delay filters [18]. It is also used in one of several approaches
described in [23] for the design of negative group delay
systems. It should also be noted that if one sets in
(5), then is an even function of . In this case, one can
write , where can be obtained using (6).
Hence, with the substitution , the special case
is mapped to the special case . That solution is also
useful for the design of halfband filters [37] and has been

(a)

(b)

Fig. 3. Maximally flat delay filter,K = 6; L = 3; � = �3=2; group delay
and pole–zero diagram.

developed and used for the design of biorthogonal filterbanks
and wavelet bases in [29] (see also [3]).

It should be noted that the bilinear transformation (BLT)
does not preserve the flat delay characteristic. Therefore, the
Bessel filter (the analog filter with a maximally flat delay
characteristic at dc) does not provide, via the BLT, the digital
filter (6) having that characteristic.

III. T HE ALL-PASS SUM

It will be useful to write the all-pass sum as

(8)

where and are both stable causal all passes and
is a nonnegative integer. Note that the all-pass sum

(9)

has the same magnitude response as (8), but has a different
phase response and has poles outside the unit circle. In the
design of all-pass sums for magnitude approximation, it is
therefore sufficient, as noted in [11], to consider only the
design of an all-pass sum of the form

(10)
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where may possess poles outside the unit circle in gen-
eral. The factorization of into , where
and are both stable causal all passes, is straightforward.
With such a factorization, the transfer function (8) will be
stable causal. For this reason, stability of is unimportant
during the design phase—a causal stable low-pass filter of
the form (8) can be simply obtained even when is
unstable. If is itself stable causal, then the total response
has approximately linear phase, as previously mentioned. The
degree of phase linearity of the total response depends, in part,
on the relative degrees of and . For greater values
of the phase will be more linear but the overall delay will
be greater. As will be illustrated by examples, this tradeoff
between phase linearity and overall delay can be controlled
by appropriate selection of and design of .

Consider the design of an all-pass sum of the form (10)
where is an all-pass filter of degree with real coeffi-
cients. Being all pass, is of the form

(11)

where is a real polynomial in of degree . In
addition, if satisfies the following approximations, then
the total response of (10) will clearly be low pass.

1) in the passband.
2) in the stopband.

It follows that the group delay of should approximate in
both the passband and the stopband. Consequently, the group
delay of the transfer function should approximate

in both the passband and the stopband. (Note that
if the group delay of is , then the group delay of

is . Therefore, if the group
delay of is to be , then the group delay of is
to be . Various useful expressions for the group
delay are provided in [34].

The solution sought in this paper depends upon the transfer
function , the group delay of which approximates

in the maximally flat sense. This solution is obtained
by setting derivatives of the group delay equal to zero at
and , and was introduced in Section II. The low-pass
filters described herein are maximally flat in the following
sense. Given the all-pass sum structure (8) whereand
are specified, the coefficients are chosen so that as many
derivatives of the magnitude response as possible vanish at

and . As in Section II, will denote the number
of constraints assigned to , and will denote the number
of constraints assigned to . The relative values of and

determine the location of the transition region. As above
.

Some restrictions apply to the selection of , and .
Leaving the details in Appendix B, , and must be
selected so that they satisfy the following two conditions:

1) ;
2) must have the same parity as .

It follows that must be an odd multiple
of one half. Also, when and are approximately equal,
more choices for are available than when and are

disparate. Note that, for fixed values of and can take
on different values. Similarly, for a
fixed value of , there are different permissible pairs.

As noted previously, the all pass will in general
possess poles lying outside the unit circle, thus requiring the
factorization where and
are both stable causal. The degree of is equal to the
number of poles of outside the unit circle, while the
degree of is minus this number. Denote the degrees
of and by and , respectively. From the
observations in Appendix A, one has

(12)

(13)

The important special case yields a low-pass filter
with approximately linear phase at ; for , one
has and no factorization of is necessary. In this
case, is stable causal. Although the
same is true for , the corresponding low-pass filters
have a significantly poorer magnitude response.

To be explicit, the stable causal is obtained as follows.
Let , for , denote the zeros of . Then
and are, respectively, formed from the zeros of
that lie inside and outside the unit circle

(14)

(15)

Then the all-pass subfilters are given by

(16)

(17)

Define and .
The all-pass sum is then

(18)

(19)

From (19), it is evident that the numerator of is
symmetric and of degree . It is worth noting that
can be implemented as an all-pass sum withmultiplications
per sample and delay elements. (An all pass of degree

can be implemented with multiplications per sample and
delay elements [25].)
Example 2: To illustrate the design of a low-pass filter

realizable as an all-pass sum, consider an example where
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(a)

(b)

Fig. 4. The unwrapped phase responses ofz�6 andA(z) gives rise to the
desired low-pass behavior of the sum(z�6 + A(z))=2. The factorization
A(z) = A1(z)=A2(z) into stable causal all passes yields a stable causal
filter (z�6A2(z) + A1(z))=2 with the same magnitude response.

, and . Then , and the
all pass is to be formed from the
flat delay filter shown in Fig. 3. The unwrapped phase
responses of and are shown in Fig. 4. Note that the
unwrapped phase of takes on the value at .
The low-pass behavior of their sum follows from this behavior
of the phase difference. However, as has two poles
outside the unit circle, the factorization ,
where and are stable causal, is necessary. In
this example, is of degree and is of
degree . The unwrapped phase responses of
and are shown in Fig. 4, where the phase difference
remains unchanged. The magnitude response, group delay, and
pole–zero plot of are shown in Fig. 5.
Note that some of the poles and zeros inside the unit circle
almost cancel, a behavior which has been noted before [11].

We have formed low-pass filters from flat delay filters whose
group delay derivatives vanish at and . In the
following, it is shown to be the case that the low-pass filters
obtained in this way have magnitude response derivatives that
vanish at and .

Beginning with the transfer function

where , the square magnitude response of
will be denoted by

(20)

(21)

(22)

(23)

Consider first the point . With the flat behavior
of , the group delay of at can
be written as . Therefore

near . Note that
near , and hence

near . Therefore for .
Now consider the point . With the flat behavior

of at can be written as
near . Therefore

. Because
must be an odd multiple of (so that ),

is equal to where is some odd integer. Note that
near ,

hence,

near . Therefore for .
It follows that the transfer function in (18) possesses a
zero at of multiplicity .

The flatness properties of correspond to the flatness
properties of . Summarizing, with

(24)

for (25)

for (26)

Example 3: By varying and , while keeping
and constant, the location of the cutoff frequency can

be varied. For , Fig. 6 illustrates the solutions
obtained by varying from 1 to 8.

Example 4: By varying , while keeping and con-
stant, the delay response of can be varied. For
and , Fig. 7 illustrates the solutions obtained by varying

from 2 to 8 in increments of 2. Note that for larger values
of , the overall delay is greater, but that the phase is more
linear. Note that the filters in Fig. 7 do not all posses the
same cutoff frequency . That is to be expected because
is not part of the problem formulated. The cutoff frequency is
determined by the parameters and . However, in Section
IV, it will be shown how to fine-tune so that the filters
achieve prescribed values of .

The design method suffers from the drawback that there
is no simple formula for selecting , and to obtain
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(a) (b)

(c)

Fig. 5. Sum of two all-pass filters,K = 6; L = 3; d = 6. The zeros that lie outside the unit circle are not shown. Since the numerator is symmetric
real, for each zerozi inside the unit circle, another zero lies at1=zi.

Fig. 6. Sum of two all-pass filters.N = 9; d = 8; K is varied from 1 to
8, L = N � K. (It follows that � = �

1

2
).

a filter having a prescribed cutoff frequency . However,
the relationship between these three parameters and the filter
characteristics, such as and the DC group delay , can
be investigated by plotting as a coordinate in a
plane. In this way, the qualitative behavior of and as
a function of , and can be examined.

For , Fig. 8 illustrates this for various
low-pass filters obtained from degree 9 allpole filters.
The parameters are indicated in the figure for

; the frequency is that frequency at which
.

IV. CONTINUOUS VARIATION OF THE CUTOFF FREQUENCY

For a fixed value of , the design approach described above
produces a discrete set offilters. For these filters, the location
of the cutoff frequency is entirely determined by , and

. However, by giving up a single derivative constraint, the
location of the cutoff frequency can be continuously varied.
In this way, the cutoff frequency can be precisely specified, if
desired. The method begins with the flat delay filter described
in Section II. Let us make the dependence of on and

in (5) explicit by the notation . Similarly, we will
use the notation , etc. The ability to vary the cutoff
frequency is obtained by forming a weighted average of two
filters

(27)

(28)

where lies in the real interval . The group delay of
has a flat characteristic at and ,

but the total number of contiguous vanishing derivatives is
one less than the maximum number achievable. The reason
this linear combination of coefficients retains the flatness
parameters and , is that (3), (4) are linear equations. Note
that is of degree .
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(a)

(b)

Fig. 7. Sum of two all-pass filters,K = 5; L = 4; d is varied from 2 to
8 in increments of two. (It follows that� is varied from�3:5 to �0:5 in
increments of 1.)

By continuously varying in , the cutoff frequency
can be continuously varied. The all pass and the low
pass are now written as

(29)

(30)

Certainly there is no simple functional form for the way in
which the zeros vary with . Therefore, the formation of

and for a specific value of requires computing
the zeros of for that value.

When a weighted average is used, as described in this
section, the conditions which , and must satisfy,
given in Section III, are to be modified. Because one of
the derivative conditions is given up, the conditions become
somewhat looser. The less restrictive conditions on , and

are:

1) ;
2) must have the same parity as .

Note that when and are chosen to be equal, may
be selected to be zero. In this case, the weighted average
filter is the classical digital Butterworth filter of odd degree.
Hence, the filters described in this paper can be interpreted
as a generalization of the Butterworth filter. Note that the

Fig. 8. Locations in the!c-G(0) plane of maximally flat all-pass sums (8)
for which the sum of the degrees ofA1(z) andA2(z) is 9. The parameters
(d;K;L) are indicated in the figure.

Fig. 9. Variation of cutoff frequency. For each of the filters shown,d = 8,
andN , the degree of the all-pass filterA(z) is nine. The flatness parameters
of the three filters are: (a)K = 3; L = 6, (b) K = 3; L = 5, (c) K = 4;
L = 5. The filter shown as a dashed line, (b), is obtained by using a weighted
average as described in the text with� = 0:5.

generalization of the Butterworth filter described in this paper
is quite different from the generalization described in [39]. The
filters described in this paper are realizable as all-pass sums,
while those in [39] did not have that constraint imposed.

Example 5: As an example, with , and
, we obtain a degree 9 all-pass filter. For , the

magnitude response of the all-pass sum is shown as a dashed
line in Fig. 9.

Fig. 10 illustrates some of the achievable points in the-
plane when is of degree 9, obtained by continuously

varying the cutoff frequency . This figure indicates how to
choose the parameters to obtain a filter having a
desired bandwidth and delay. It is interesting to note that at
the vertices, the curves are slightly cusped.

How does one choose to satisfy a prescribed cutoff
frequency ? First, one should check that the desired cutoff
frequency lies between the cutoff frequencies of

and . Otherwise, the following formula for
cannot be expected to yield a meaningful solution. Given
, the method to calculate the appropriate valuecan be
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Fig. 10. Locations in the!c-G(0) plane of all-pass sums (8) for which the
sum of the degrees ofA1(z) andA2(z) is nine, obtained by the continuous
variation of the the cutoff frequency!c.

derived by beginning with the equation .
Using the expression for the square magnitude (23), one then
gets where

. Using (11) one obtains where
. In turn, this gives

Solving for , the desired value of the phase of
at , gives

(31)

where is some integer. From the desired phase , the
desired value of can be determined. Let us define

by

(32)

(33)

Then can be written as
. The sought value of is such that

where is some positive real number and is the desired
phase (31). After some geometry, the solution is found to be

where . The additive multiple of in (31)
can be dropped because tangent is periodic with. This leaves
two candidate values of. It was found in practice that only
one of those two values will lie in .

Example 6: Fig. 11 illustrates a set of low-pass filters
where the is prescribed to be . Compare toExample
4. The filter with least delay is the classical Butterworth filter.
The figure shows that with this approach, the tradeoff between
the delay and the phase linearity can be managed with out
affecting the magnitude response significantly.

(a)

(b)

Fig. 11. Sum of two all-pass filters, with prescribed cutoff frequency
!c = 0:56�. K = 4; L = 4; N = 9; d is varied from zero to eight
in increments of two. (It follows that� is varied from�4:5 to �0:5 in
increments of one.)

V. CONCLUSION

This paper presents two main results: 1) the design and
closed-form solution of an allpole filter (or all-pass filter), the
group delay of which approximates any value with prescribed
flatness and at and , respectively; and 2)
the application of this result to the design of low-pass filters
realizable as all-pass sums, whose magnitude response is flat
at and , accordingly. This new class of maximally
flat low-pass recursive digital filters can be made to have
approximately linear phase in the passband (for ),
and the tradeoff between delay and phase-linearity can be
controlled by appropriate selection of the delay parameter.
In addition, the continuous variation of the cutoff frequency
was described, in which case, for special values of ,
and , the classical Butterworth digital
filter of odd degree is retrieved. Note that, with the classical
Butterworth filter of degree , it is not possible to adjust the
delay (or phase-linearity). However, with the more general
class of filters described in this paper, the adjustment of the
delay becomes possible, and the tradeoff between the delay and
the phase-linearity can be chosen. Matlab programs for the the
construction of the low-pass filters described in this paper, and
the new maximally flat delay allpole filter on which it depends,
are also provided. Additional programs are available at URL
http://taco.poly.edu/selesi/.
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APPENDIX A
THE ZEROS OF

As noted in Section III, for the design of low-pass filters
realizable as all-pass sums,will be of the form .
It is therefore useful to examine the properties of when

is an integer multiple of one half. Of particular interest is
the location of the zeros of with respect to the unit circle

. While poles of outside the unit circle do not
pose a problem [recall the factorization as in (9)], zeroson
the unit circle will not give rise to useful solutions. Because

, it is not necessary to consider integer multiples of one
half that are more negative than .

It was found empirically that for , all the zeros
of lie inside the unit circle. The remaining values
of to be considered are for . Let

. Three ranges of will be considered:
, and . The following

observations were made, based on numerical observation.

1) with . For these values of
zeros of lie outside the unit circle.

In addition, if , then two zeros lie on the
unit circle.

2) . For this value of
.

3) with . For even, zeros
of lie outside the unit circle and two zeros lie on
the unit circle. For odd, zeros of lie outside
the unit circle and zeros lie at .

Note that, of the negative values ofconsidered, only those
solutions for which and , are free
from zeros on the unit circle.

APPENDIX B
RESTRICTIONS

As noted in Section III, some restrictions apply to the
selection of , and . Although, as stated above, the
group delay of in (10) should approximate in both the
passband and the stopband, this alone is not sufficient to ensure
that the all-pass sum (10) is low pass. It is also necessary that

near . That means that for the all-pass
sum (10), should be . On the other hand, (11)
immediately yields . It follows that must
have the same parity as . Note that, in this case,
is odd; therefore, the relevant values of, namely ,
are of the form where is an odd integer.

Two more conditions, in addition to the parity condition,
are necessary. Recall that in Appendix A it was noted that, for

with , the solution (5) possesses zeros
on the unit circle. Since this precludes the utility of (5), we
need only consider . It follows that must satisfy the
inequality ; that is, ,
or equivalently, . In combination with the parity
condition, the condition follows.

The last restriction is . For values of greater than
this, the unwrapped phase of differs from the unwrapped
phase of by in . Consequently, the magnitude
response of the all-pass sum will posses zeros in , and
points of unity gain between these zeros and . Therefore,
the magnitude response when is hardly low pass.

Taken together, these considerations yield the requirements
and must have the same

parity as .

APPENDIX C
PROGRAMS

A. Calculating the Flat Delay Filter

Although (5) appears rather cumbersome, the coefficients
are very simple to compute because a recursive relationship
exists. Let us begin with (6). Note that in (6)

(34)

(35)

With , and the ratio (35), can be computed
from by simply multiplying by this ratio. The Matlab
command for the cumulative productcumprod makes it
possible to write (6) in two lines, shown at the bottom of
the page.

The procedure for computing in (5) is similar. Write
as where

(36)

Then

(37)

Therefore, can be computed by multiplying by
this ratio. Note, however, that is zero for , so the
cumulative product operation must begin with the first nonzero
term . It turns out that these terms can also be computed by
the cumulative product operation; the ratio is also
a simple rational function. The simple Matlab program in Table
II is obtained by putting these ratios together. The variable
denotes the term, and it is updated asis incremented.

B. Calculating the All-Pass Sum

The programmfaps, for “maximally flat all-pass sum,” in
Table III, implements the design procedure described in this
paper. Given the flatness parametersand , and the delay

in (8), the program returns the all-pass filters and
, so that the all-pass sum (8) is low pass. The sum of the
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TABLE II
MATLAB PROGRAM FOR THE FLAT DELAY FILTER

TABLE III
MATLAB PROGRAM FOR THE DESIGN OF A

LOW-PASS FILTER REALIZABLE AS AN ALL-PASS SUM

degrees of and is . The frequency response
magnitude has a flat characteristic at and . The
all-pass filters are represented by their denominatorsand

. The program also gives and which represent the total
low-pass response.
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[37] H. W. Scḧußler and P. Steffen, “Halfband filters and hilbert trans-
formers,” Circuits, Syst., Signal Process., vol. 17, no. 2, pp. 137–164,
1998.

[38] H. W. Schüssler and J. Weith, “On the design of recursive Hilbert-
transformers,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Process-
ing (ICASSP), Dallas, Apr. 6–9, 1987, vol. 2, pp. 876–879.

[39] I. W. Selesnick and C. S. Burrus, “Generalized digital butterworth filter
design,” IEEE Trans. Signal Processing, vol. 46, pp. 1688–1694, June
1998.

[40] S. Signell, “Design of maximally flat group delay discrete-time recur-
sive filters,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS),
Montreal, May 7–10, 1984, vol. 1, pp. 193–196.

[41] J. P. Thiran, “Recursive digital filters with maximally flat group delay,”
IEEE Trans. Circuit Theory, vol. CT–18, pp. 659–664, Nov. 1971.

[42] P. P. Vaidyanathan,Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1993.

[43] P. P. Vaidyanathan, S. K. Mitra, and Y. Neuvo, “A new approach to the
realization of low-sensitivity IIR digital filters,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 34, pp. 350–361, Apr. 1986.

[44] P. P. Vaidyanathan, P. A. Regalia, and S. K. Mitra, “Design of doubly-
complementary IIR digital filters using a single complex all pass filter,
with multirate applications,”IEEE Trans. Circuits Syst. I, vol. 34, pp.
378–389, Apr. 1987.

[45] A. N. Wilson and H. J. Orchard, “Insights into digital filters made as
the sum of two all pass functions,”IEEE Trans. Circuits Syst. II, vol.
42, pp. 129–137, Mar. 1995.

[46] X. Zhang and H. Iwakura, “Novel method for designing digital allpass
filters based on eigenvalue problem,”Electron. Lett., vol. 29, no. 14,
pp. 1279–1281, July 1993.

Ivan W. Selesnick (M’98) received the B.S.,
M.E.E., and Ph.D. degrees in electrical engineering
in 1990, 1991, and 1996, respectively, from Rice
University, Houston, TX.

He received a DARPA-NDSEG fellowship in
1991. He spent part of 1997 at the the Lehrstuhl
für Nachrichtentechnik at the Universit¨at Erlangen-
Nürnberg. He was also with McDonnell Douglas
and IBM, working on neural networks and expert
systems. Currently, he is an Assistant Professor in
the electrical engineering department at Polytechnic

University, Brooklyn, NY. His current research interests include digital signal
processing, particularly fast algorithms for DSP, and digital filter design, the
theory and application of wavelets, and the application of Gr¨obner bases.

Dr. Selesnick’s Ph.D. dissertation received the Budd Award for Best
Engineering Thesis at Rice University in 1996 and an award from the Rice-
TMC chapter of Sigma Xi. In 1997 he received an Alexander von Homboldt
Award. He is a member of Eta Kappa Nu, Phi Beta Kappa, Tau Beta Phi,
and Sigma Xi.


