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Low-Pass Filters Realizable as All-Pass
Sums: Design via a New Flat Delay Filter

Ivan W. SelesnickMember, IEEE

Abstract—This paper describes a new class of maximally flat
low-pass recursive digital filters. The filters are realizable as Ai(2)
a parallel sum of two all-pass filters, a structure for which
low-complexity low-noise implementations exist. Note that, with
the classical Butterworth filter of degree NV which is retrieved
as a special case, it is not possible to adjust the delay (or
phase linearity). However, with the more general class of filters Az(z) =
described in this paper, the adjustment of the delay becomes
possible, and the tradeoff between the delay and the phasefig. 1. All-pass sum. The upper branch give&[A4, (2) + A2(2)]. The
linearity can be chosen. The construction of these low-pass filters lower branch gives the complementary filtef2[4;(z) — Au(z)] without
depends upon a new maximally flat delay allpole filter, for which additional filtering.
the degrees of flatness atv = 0 and w = = are not necessarily
equal. For the coefficients of this flat delay filter, an explicit
solution is introduced, which also specializes to a previously realization of a low-pass filter as an all-pass sum is not

known result. restricted to the classical filter prototypes. The all-pass sum
is a useful generalization of the classical transfer functions,

|. INTRODUCTION that is honored with a number of benefits. Specifically, when

some degree of phase linearity is desired, nonclassical filters

HE design of digital all-pass filters has received muc  the f 1 be desianed that achi . It
attention in recent years, for it has become well knowf € form (1) can be designe at achieve superior resufts

that: 1) low-complexity structures with low roundoff nois with respect to implementation complexity and phase linearity
behavior are available for all-pass filters [32], [43] and 2) th 1T]h [1?:1]' ired d ¢ oh i i i fact b
are useful components in a variety of applications. Indeedt, ? ﬁs'r_e egr(iedo”p asef |trr1]ear| I?/ can,bm ar?’ e
while traditional applications of all-pass filters appear to paructurally incorporated. I -on€ ot the all-pass branches n

o : n all-pass sum is a pure delay, then the all-pass sum
phase equalization [7], [19] and fractional delay elements [18], .. ) . .
their uses in multirate filtering, filterbanks, notch filteringgXhlblts approximately linear phase in the passbands [17], [31].

recursive phase splitters, and Hilbert transformers have a&%e frequency selectivity is then obtained by appropriately

been described [30], [35], [37], [38]. Of particular interest ha: esigning the remaining all-pass branch. Interestingly, by

. : . : ing the number of delay elements used and the degrees of
been the design of frequency selective filters realizable adyyng . . :
parallel combination of two all passes A1 (z) and A3(z), the phase linearity can be affected. Simulta-

neous approximation of the phase and magnitude is a difficult
1 blem in general, so the ability to structurally incorporate
H(2) = Z[A:(2) + Aol 1) Pro g ) y y p
(2) 2[ 1(2) + A:(2)] @) this aspect of the approximation problem is attractive.
illustrated in Fig. 1. This structure, the all-pass sum, has itsVhile general procedures for all-pass design [4], [10], [15],
history in analog lattice circuitry [45] and wave-digital filterd 16l [21], [24], [26]-[28], [36], [46] are applicable to the
9. design of frequency selective all-pass sums, several publica-
It is interesting to note that digital filters of odd degredions have addressed, in addition to the general problem, the
obtained from the classical analog (Butterworth, Chebyshéigtails specific to all-pass sums [1], [2], [13], [22], [31], [33],
and elliptic) prototypes via the bilinear transformation, can Jé3]- Several authors have also described iterative Remez-like
realized as all-pass sumgs4], [42]-[44]. As all-pass sums, exchange algorithms for the design of all-pass filters and all-

such filters can be realized with low complexity structure@@SS Sums according to the Chebyshev criterion [11], [14],

that are robust to finite precision effects [43]. However, thig0l; .[38]- ) ) _
This paper considers the design of maximally flat low-pass
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allpole filter, where the degrees of flatnessuat= 0 and TABLE |
w = 7 need not be equal. Also, by developing a method by MA;'_MﬁLLg ELA_T 3‘?ELAY_13J7;TA;NDALLF’SLE E%ER'
which the cutoff frequency can be continuously varied, it is T -
found that the classical Butterworth digital filter is retrieved an n, (T1=17/2) an,(r=-3/2)
a special case of the class of low-pass filters described in 1 1 1
this paper. Various examples are provided and simple Matlab _ 37 2z 9
programs are given in the Appendix. The solution given is ;’ 12 277
applicable to the approximately linear phase case and the :;2:1161)(15:7) ;g Z
(16 74+116)(147)7 602 23
general case. 3 TG+ 325 FH3
4 i 64+67)(27-3)T _ 84 3
2r411)(547)(6+T 323 14
I (o —3% ~ 151
S+ 27+11)(74T7)(64T 323 154
II. FLAT DELAY FILTER 6 (16 7428)(2 £ 7)(1b7)7 154 N
Let G(w) denote the group delay, the negative derivative, e e s o
of the phase with respect to. This section examines the ErH1LE+7)(T+7)(6+7)(547) 7429 2002
. g . AT+ _ 1001 _.3
transfer function ErFIDEET) (A7) (6+T)(547) 7429 2002
9 T (2747 (4+7)(3+7)(2+7)(1+7) 1001 1
bO bO ( ) CT+H1DE+7)E+T)(7T+7)(6+7)(5+7) 37145 6006
; = 2
Zﬁ_o anz—  D(z) :
= the solution was found to be
where a; = 1 and the dc gain is normalized to unity:
N - : : (—1)» K+L\ &
bo = > ,—0an- The goal is to design the transfer function, _ < ) Z(_4)i
so that its group delay possesses a specified degree of flatness (27 + K + L + 1), n e
atw = 0 andw = 7, where the degree of flatness at each L\ (M)i(n — i+ 1)i(27 4+ 20)n_s
point is not necessarily equal. There a¥efree parameters b - ©)
: ) . i (K+L+1-1)
ai,---,an. K will denote the number of constraints assigned
tow = 0, andL will denote the number of constraints assignefbr 0 < » < N. The Pochhammer symbok),, denotes the
to w = 7. The problem is formulated as follows. rising factorial(z), = (z)- (z + 1) - (x +2)--- (z +n — 1).

Given 7 (the desired group delay)(, L, and N, with e define(z),, as 1 forn < 0. Although (5) looks rather
K + L =N, find N real coefficientsz,, such that the group cumbersome, the coefficients can be efficiently calculated.
delay of (2) satisfies the following derivative constraints: A method for doing so is described in the appendix, where a

1) Glw =0) = 7. (If K > 0); Matlab program for this calt_:ulation is also giver_w. _
2) Gw =7) =1 (f L > 0); Note that for some negative valuesoho solution exists.
4 ' ’ These are values for which the denominator in (5) vanishes:
3) GPNw=10)=0,fori=1,---,K -1 T = —(1/2)(K + L +n) for n = 1,---,N. These values
4) G¥(w=m7)=0,fori=1,---,L—1. of 7 are more negative than will be needed later on. It is

Because the group delay is an even functiorwofthe odd expected that there should Bé values ofr for which no
indexed derivatives of3(w) are automatically zero, so theysolution exists, since the determinant of the system matrix is
need not be specified. The solution has the property tiaPolynomial int of degreeV. Except for thoseV values,r
GO (w=0)=0fori=1,---,2K—1,andGP(w =) =0 Can be any real number, positive or negative, althaygh(z)
fori— 1. oL —1 will be unstable for sufficiently negative values of

Following the derivation given in [41], the four group delay 'N€ use of (5) for negative valuesofs not purely for theo-
conditions are equivalent to the following system of equation@t'cal interest. In fact, for the design of stable causal low-pass

linear in the coefficientss,,: filters re_alizablg as aII—pgss sums, the use of unstable solutions
(5) obtained with negative values efwill be necessary, as

N illustrated in Section Ill. Properties of the zeros BfD(z)

Z(” + 1) g, = = fork=0,1,-- K —1 that will later be relevant are discussed in Appendix A.

n=1 Example 1: To illustrate the maximally flat delay filter, a

(3)  ninth degree example is provided. For this example= 9,
K = 6, and L = 3. The coefficientss,, as rational functions
of r are given in Table |, as well as the solution foe= 7/2

N
S (=D (n+71) e, = -, fori=0,1,---,L—1.

n=1

4 andr = —3/2. The group delay and the pole—zero diagram
(4) for those two filters are shown in Figs. 2 and 3. Foe 7/2,
The system matrix is comprised of two Vandermonde-likt@e solution is stable. For = —3/2, the solution possesses

matrices, corresponding to (3) and (4), respectively. Vanddpo poles outside the unit circle.

monde matrices arise in polynomial interpolation problems i

and, accordingly, become ill-conditioned in cases where mafty A Special Case

derivatives at a few points are specified, as is the case herelThe allpole filter possessing a flat delay characteristic only
With some assistance from the computer algebra system [&],dc(L = 0) is well established in the literature. In this case,
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Fig. 2. Maximally flat delay filter &’ = 6, L = 3, 7 = 7/2; group delay Fig. 3. Maximally flat delay filter /' = 6, L = 3, 7 = —3/2; group delay
and pole—zero diagram. and pole—zero diagram.

the solution (5) specializes to the previously reported solutialeveloped and used for the design of biorthogonal filterbanks
N (27) and wavelet bases in [29] (see also [3]).
ap = (—1)"< )—" (6) It should be noted that the bilinear transformation (BLT)
n/)@2r+ N+, does not preserve the flat delay characteristic. Therefore, the
This solution has been described in various forms, see f3essel filter (the analog filter with a maximally flat delay
example [8], [12], [40], [41]. For example, in [41] this formulacharacteristic at dc) does not provide, via the BLT, the digital

is written as filter (6) having that characteristic.
N .
N 27+ 1
n = (=" _ 7 .
an = (1) <n>1:[02'r+n+z (7) lIl. THE ALL-PASS SUM
= It will be useful to write the all-pass sum as

which is the same as (6) after simplification (cancelling the 1
N + 1 —n terms common to the numerator and denominator —[Z_dAQ(Z) + Ap(2)] (8)
of the N + 1 term product). It should also be noted that the 2
solution of [40] is the same when it is understood that [4Q)here A, (z) and A,(z) are both stable causal all passes and
considers the transfer functioa"/D(z); the appropriate 4 is a nonnegative integer. Note that the all-pass sum
change of variables is straightforward.

Various uses of the special case (6) have been described. l[v—d Al(z)} 9)
One application of (6) is the design of all-pass fractional 2 Aa(7)
delay filters [18]. It is also used in one of several approach
described in [23] for the design of negative group del
systems. It should also be noted that if one d&ts= L in
(5), thenD(z) is an even function of. In this case, one can
write D(z) = E(2*), where E(z) can be obtained using (6).
Hence, with the substitution — 22, the special casé = 0
is mapped to the special cagé = L. That solution is also 1y
useful for the design of halfband filters [37] and has been §[Z + A=) (10)

fids the same magnitude response as (8), but has a different
"’P{hase response and has poles outside the unit circle. In the
design of all-pass sums for magnitude approximation, it is
therefore sufficient, as noted in [11], to consider only the
design of an all-pass sum of the form
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where A(z) may possess poles outside the unit circle in gedisparate. Note that, for fixed values &f and L, d can take
eral. The factorization afi(z) into A;(z)/A2(z), whereA;(z) on (K + L —|K — L|)/2+ 1 different values. Similarly, for a
and A;(z) are both stable causal all passes, is straightforwafiked value ofd, there arel different permissiblé K, L) pairs.
With such a factorization, the transfer function (8) will be As noted previously, the all pasd(z) will in general
stable causal. For this reason, stability4(fz) is unimportant possess poles lying outside the unit circle, thus requiring the
during the design phase—a causal stable low-pass filter fa€torization A(z) = A;(z)/A2(z) where A;(z) and A;(z)

the form (8) can be simply obtained even wheliz) is are both stable causal. The degreef() is equal to the
unstable. IfA(z) is itself stable causal, then the total respongtumber of poles ofA(z) outside the unit circle, while the
has approximately linear phase, as previously mentioned. Thegree of4, (=) is N minus this number. Denote the degrees

degree of phase linearity of the total response depends, in paft.A;(z) and Ay(z) by n; and ns, respectively. From the
on the relative degrees of; (») and A2 (z). For greater values gbservations in Appendix A, one has
of d the phase will be more linear but the overall delay will

be greater. As will be illustrated by examples, this tradeoff N—-d+1
between phase linearity and overall delay can be controlled 2= { 4 J (12)
by appropriate selection af and design ofA(>). N—d+1
Consider the design of an all-pass sum of the form (10) ny=N-— %TJ (13)
where A(z) is an all-pass filter of degre& with real coeffi-
cients. Being all passd(z) is of the form The important special casé= N — 1 yields a low-pass filter
> ND(1/2) with approximately linear phase at= 0; for d = N — 1, one
A(z) = W (11) hasny = 0 and no factorization ofd(z) is necessary. In this

case,H(z) = (»~¢ 4+ A(z))/2 is stable causal. Although the
where D(z) is a real polynomial inz=! of degreeN. In Same is true fotl = N + 1, the corresponding low-pass filters
addition, if A(z) satisfies the following approximations, therhave a significantly poorer magnitude response.

the total response of (10) will clearly be low pass. To be explicit, the stable causHl(z) is obtained as follows.
1) A(z) ~ 2~ in the passband. Letz;, fori=1,---, N, denote the zeros db(z). ThenD; (z)
2) A(z) ~ —z— in the stopband. and D,(z) are, respectively, formed from the zeros ofz)

It follows that the group delay of(z) should approximaté in that lie inside and outside the unit circle

both the passband and the stopband. Consequently, the group

—1 —1
delay of the transfer functioi/D(z) should approximate Dy(z) = H (= ==7) (14)
(d — N)/2 in both the passband and the stopband. (Note that Izl <1
if the group delay ofl/D(z) is 7, then the group delay of Dy(z) = H (z71 = z). (15)
A(z) = 2N D(1/2)/D(z) is 27 + N. Therefore, if the group l21>1

delay of A(z) is to be X, then the group delay df/D(z) is _ _
to be (X — N)/2. Various useful expressions for the groughen the all-pass subfilters are given by

delay are provided in [34]. —m D (1/2)
FARSEY D2 z

The solution sought in this paper depends upon the transfer Ay(z) = (16)
function 1/D(z), the group delay of which approximates Dy (2)
(d—N)/2 in the maximally flat sense. This solution is obtained Aa(#) = 2™ Do(1/) %) (17)
N2 ) = —————V— -

by setting derivatives of the group delay equal to zero at 0
andw = w, and was introduced in Section Il. The low-pass
filters described herein are maximally flat in the followingefine D, (z) = »~™ D;(1/z) and Da(z) = 22 Dy(1/z).
sense. Given the all-pass sum structure (8) whkand N The all-pass sum is then

are specified, the coefficients are chosen so that as many

DQ(Z)

derivatives of the magnitude response as possible vanish at 1| _yDs(2)  Di(2)
w = 0 andw = 7. As in Section I,k will denote the number H(z)= 5|25 B +5 ) (18)
of constraints assigned to= 0, andL will denote the number ~2 i H !
of constraints assigned o= . The relative values ok and 1] 27%Dy(2)D1(2) + D1(2)Da() 19
L determine the location of the transition region. As above T2 Ds(2)D1(2) - (19
N =K+ L.

Some restrictions apply to the selection &f K, and L. From (19), it is evident that the numerator &f(z) is

Leaving the details in Appendix BJ, K, and L. must be symmetric and of degre&’ + d. It is worth noting thatH (=)
selected so that they satisfy the following two conditions: ¢an pe implemented as an all-pass sum witmultiplications
1) |[K-L+1<d< K+ L+1; per sample andV + d delay elements. (An all pass of degree
2) d must have the same parity &5+ L + 1. n can be implemented with multiplications per sample and
It follows that - = (d — N)/2 must be an odd multiple n delay elements [25].)
of one half. Also, whenkK and L are approximately equal, Example 2: To illustrate the design of a low-pass filter
more choices ford are available than whe& and L are realizable as an all-pass sum, consider an example where
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6 , : : ~ where A(¢’*) = /%), the square magnitude response of
’ H(z) will be denoted byF(w)
5t L
F(w) = [H(™)P (20)
| = H(c)H () @)
= » AZ) 1 . . . .
%3» z _ Z(e_]dw + e]&(w)) (egdw + 6—]0(4«:)) (22)
I 1 1 1

2 = 5+ 5 cos(dw + 6(w)). (23)

b Consider first the pointe = 0. With the flat behavior

o ‘ . . of G(w), the group delay ofA(w) at w = 0, G(w) can

0 02 04 m °° 08 ! be written asG(w) = d + cow?® + O(w?%5+1). Therefore

@) O(w) = —dw + cw? X+ + O(w?5+2) nearw = 0. Note that

. 1/2 +cos(x)/2 =1 — 2% /4 + O(z*) nearx = 0, and hence

. - 1 . .

T 7oA Flw)y=1- Zc2w4l‘+2 + O(w*+3)

o .

o p nearw = 0. ThereforeF'(w =0) =0fori=1,--- 4K +1.
& oo A Now consider the point: = x. With the flat behavior
g of G(w) at w = =, G(w) can be written as(w) =

at 1 d+ colw — m)* + O((w — 7)*t+1) nearw = 7. Therefore

Al ] f(w) = co —dw+c(w—m)* I + O((w — 7)?L+2). Because

dm + 6(w) must be an odd multiple of (so thatl'(w) = 0),
i co is equal tolr wherel is some odd integer. Note that
0 0o o2 05 o8 y 1/2 4+ cos(z)/2 = (z — I7)? /4 + O((z — I7)*) nearz = I,
wm hence,
(b) 1
Fig. 4. The unwrapped phase responses©of and A(z) gives rise to the Fw) = ZCQ(W - W)4L+2 + O((w — W)4L+3)

desired low-pass behavior of the sum ¢ + A(z))/2. The factorization
A(z) = Ai(2)/A2(z) into stable causal all passes yields a stable causal ; .
filter (=% A5(z) 4+ A1 (2))/2 with the same magnitude response. hearw = . ThereforeF(w = 7) = 0fori =0,---,4L+1.
It follows that the transfer functio® (=) in (18) possesses a
zero atz = —1 of multiplicity 2L + 1.

K=6L=3(N " 9), andd = 6. Thent = —3/2, and the T flamess properties df(w) correspond to the flatness
all passA(_z) =2z ‘D(l/z)/.D(z). is to be formed from the properties ofG(w). Summarizing, WithF(w) = | H(c/)[?
flat delay filterl/D(z) shown in Fig. 3. The unwrapped phase
responsesdo;fh—d an;A(z) Ere sho:lvn ianig. 4. Note that the Flw=0)=1 (24)
unwrapped phase of(z) takes on the valugl—1)r atw = 7. i .
The IO\F/)vF-)pasps behavi(or)of their sum foIIowe;l fro)m this behavior F(‘)(w =0)=0 fori=1,. - 4K +1 (25)
of the phase difference. However, afz) has two poles FOw=m)=0 fori=0,---,4L+1. (26)
outside the unit circle, the factorizatiof z) = A;(z)/A>(z), . . .
where 4;(z) and A;(z) are stable cc:):fjs)al, is %gc{essfazy. I, Example 3: By varying K gnd L, while keepingV =
this example, A, (z) is of degreen, = 7 and As(z) is of K+L gndd constant, the Iocat!on ofthe cutoff frequengy can
degreens = 2. The unwrapped phase responses of A, (») be vgned. ForN = 9, d = 8, Fig. 6 illustrates the solutions
and A,(z) are shown in Fig. 4, where the phase differenc@t@ined by varyingi from 1 to 8. _
remains unchanged. The magnitude response, group delay, arfd*@mple 4: By varying d, while keepingk" and L con-
pole—zero plot of 24 A5(z) + A1(2))/2 are shown in Fig. 5. stant, the de_Iay response H(z) can_be varleq. Fok =5 _
Note that some of the poles and zeros inside the unit cird@dL = 4, Fig. 7 illustrates the solutions obtained by varying
almost cancel, a behavior which has been noted before m_cj_from 2 to 8 in increments of 2. Note that for larger values
We have formed low-pass filters from flat delay filters whos@f d. the overall delay is greater, but that the phase is more
group de'ay derivatives vanish at= 0 andw = 7. In the Iinear. Note that the fi|terS in F|g 7 dO not a” pOSSE‘S the
following, it is shown to be the case that the low-pass filteg@me cutoff frequency.. That is to be expected because
obtained in this way have magnitude response derivatives tiafiot part of the problem formulated. The cutoff frequency is
vanish atw = 0 andw = . determined by the parameteks and L. However, in Section
Beginning with the transfer function IV, it will be shown how to fine-tunev,. so that the filters
achieve prescribed values af..
The design method suffers from the drawback that there

1
H(z)= (4 A(» . : . .
(%) 2(7 +A()) is no simple formula for selectind(, L, and d to obtain
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Fig. 5. Sum of two all-pass filterdy = 6, L = 3, d = 6. The zeros that lie outside the unit circle are not shown. Since the numerator is symmetric
real, for each zero:; inside the unit circle, another zero lies &fz;.

12 g ; ; ; IV. CONTINUOUS VARIATION OF THE CUTOFF FREQUENCY

For a fixed value ofl, the design approach described above
produces a discrete setdfilters. For these filters, the location
of the cutoff frequency is entirely determined By K, and
L. However, by giving up a single derivative constraint, the
location of the cutoff frequency can be continuously varied.
In this way, the cutoff frequency can be precisely specified, if
desired. The method begins with the flat delay filter described
in Section Il. Let us make the dependenceagfon K and
L in (5) explicit by the notations,,( K, L). Similarly, we will
: ; . : use the notatioD(z; K, L), etc. The ability to vary the cutoff
() 02 04 06 08 1 frequency is obtained by forming a weighted average of two

filters

Magnitude

Fig. 6. Sum of two all-pass filtersV¥ = 9, d = 8, K is varied from 1 to
8, L =N — K. (It follows thatr = — 1 D(# K, L, «)

v =o- DK, L+1)+(1—«) Dz K+1,L) 27)

a filter having a prescribed cutoff frequenay.. However, KLyl B
3 (@ an(K, L+ 1)+ (1—a) - a,(K +1,1))

the relationship between these three parameters and the filter™

characteristics, such as and the DC group delag/(0), can n=0 o8
be investigated by plottingw., G(0)) as a coordinate in a (28)
plane. In this way, the qualitative behaviorwf andG(0) as where « lies in the real interval0, 1]. The group delay of
a function of K, I, andd can be examined. 1/D(z; K, L, «) has a flat characteristic at= 0 andw = ,

For N = K + L =9, Fig. 8 illustrates this for various but the total number of contiguous vanishing derivatives is
low-pass filtersH (z) obtained from degree 9 allpole filters.one less than the maximum number achievable. The reason
The parameter§d, K, L) are indicated in the figure faV = this linear combination of coefficients retains the flatness
K + L = 9; the frequencyw, is that frequency at which parameterd< andZ, is that (3), (4) are linear equations. Note
|H (/)| = 1/2. that D(z; K, L, «) is of degreeK + L + 1.
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Fig. 8. Locations in thev.-G(0) plane of maximally flat all-pass sums (8)
for which the sum of the degrees df; (=) and A»(z) is 9. The parameters
(d, K, L) are indicated in the figure.

Samples

d=2

Dot SOUURRIN _ ................ 4 %
: : 2
: : : ‘E0.
0 i . L . k4
0 0.2 0.4 0.6 0.8 1 =
/T
(b)
Fig. 7. Sum of two all-pass filterd{ = 5, L = 4, d is varied from 2 to
8 in increments of two. (It follows that is varied from—3.5 to —0.5 in
increments of 1.) 0 i i 23 i
0 0.2 0.4 0.6 0.8 1

w/n

By continuously varyinga in [0,1], the cutoff frequency Fig. 9. Variation of cutoff frequency. For each of the filters showns: 8,

; ; and N, the degree of the all-pass filtet(z) is nine. The flatness parameters
can be continuously v_arled. The all pad$z) and the low of the three filters are: (ak = 3. L = 6. (b) K = 3. L = 5, (0) && = 4,
passH(z) are now written as L = 5. The filter shown as a dashed line, (b), is obtained by using a weighted
(K+L41) average as described in the text with= 0.5.
2z~ D(1/z K, L
Az K, La) ="~ (/2K L) g
D(z K, L, «) o i . S
1 generalization of the Butterworth filter described in this paper
H(z;a) = Q(z_d + A(z; K, L, ). (30) is quite different from the generalization described in [39]. The

filters described in this paper are realizable as all-pass sums,
Certainly there is no simple functional form for the way irwhile those in [39] did not have that constraint imposed.
which the zeros vary withw. Therefore, the formation of Example 5: As an example, withk’ = 3, L = 5, and
D1 (z) and D»(z) for a specific value ofv requires computing d = 8, we obtain a degree 9 all-pass filter. Fer= 0.5, the
the zeros ofD(z; K, L, «) for that value. magnitude response of the all-pass sum is shown as a dashed

When a weighted average is used, as described in thige in Fig. 9.

section, the conditions whickl, K, and L must satisfy,  Fig. 10 illustrates some of the achievable points in ¢he
given in Section Ill, are to be modified. Because one af(0) plane whemd(~) is of degree 9, obtained by continuously
the derivative conditions is given up, the conditions becomrying the cutoff frequency.. This figure indicates how to
somewhat looser. The less restrictive conditions{p&’, and choose the parametets, K, L) to obtain a filter having a

L are: desired bandwidth and delay. It is interesting to note that at
) | K-L £d< K+ L+2; the vertices, the curves are slightly cusped.
2) d must have the same parity &+ L. How does one chooser to satisfy a prescribed cutoff

Note that whenkK and L are chosen to be equal, may frequencyw,.? First, one should check that the desired cutoff
be selected to be zero. In this case, the weighted averdigggluencyw, lies between the cutoff frequencies Hf(z; o =
filter is the classical digital Butterworth filter of odd degree0) and H(z; o = 1). Otherwise, the following formula for
Hence, the filters described in this paper can be interpretedcannot be expected to yield a meaningful solution. Given
as a generalization of the Butterworth filter. Note that the., the method to calculate the appropriate vatuean be
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Magnitude

DC group delay
(]

o/n

@

32 03 0.4 0.5 0.6 07 08 0.9
cut-off frequency

Fig. 10. Locations in theo.-G(0) plane of all-pass sums (8) for which the
sum of the degrees of;(z) and 4> (=) is nine, obtained by the continuous
variation of the the cutoff frequency..

derived by beginning with the equatiod (¢/“<)| = 1/2.
Using the expression for the square magnitude (23), one then
gets1/2 + 1/2cos(dw, + O(w.)) = 1/4 where A(e?*) =
¢/%) Using (11) one obtaing(w) = —28(w) — Nw where
D(e’*) = |D(e7)|e??), In turn, this gives

11 1 : : : :
5 + 5 cos(dw. — 2B(w.) — Nw,) = e 0 0.2 04 08 0.8 1

. . b
Solving for B(w.), the desired value of the phase of (_) _ _
Fig. 11. Sum of two all-pass filters, with prescribed cutoff frequency

. —_ Ljwe i
D(z,K,L,a) atz = e’*, gives we = 0567, K =4, L =4, N = 9, d is varied from zero to eight
i We in increments of two. (It follows that is varied from—4.5 to —0.5 in
Blwe) = ig ) +n (31) increments of one.)

where! is some integer. From the desired phgXe.), the

desired value ofx can be determined. Let us defirg, 1, V. CONCLUSION

Bo, B1 by This paper presents two main results: 1) the design and
o 3 closed-form solution of an allpole filter (or all-pass filter), the
D(GJ' SE+1L) = 7’06{' ’ (32) group delay of which approximates any value with prescribed
D(&7*; KL +1) =: 18P, (33) flatnessK and L atw = 0 andw = 7, respectively; and 2)
o ) i the application of this result to the design of low-pass filters
The“%g(z = ¢/* K, L, o) can be written aswie’™ + (1~ reqiizaple as all-pass sums, whose magnitude response is flat
a)roc/™. The sought value of is such that atw = 0 andw = =, accordingly. This new class of maximally
ared® 4+ (1 — a)roel® = X . ¢1P flat low-pass recursive digital filters can be made to have

approximately linear phase in the passband fer N — 1),
where X is some positive real number anyl is the desired and the tradeoff between delay and phase-linearity can be
phase (31). After some geometry, the solution is found to hsontrolled by appropriate selection of the delay parameéter

rosin(fBo — Bu) — rocos(Bo — Au) tan(Be — B1) In addition', the gontingous variation of the cutoff frequency
= rosin(Bo — o) + (1 — rocos(Bo — 1)) van(Be — Br) was described, in which case, for special valueshof L,
0=V AL Lo oM ¢~ P andd (K = L, d = 0), the classical Butterworth digital
wherej, = +7/3 — w./2. The additive multiple ofr in (31) filter of odd degree is retrieved. Note that, with the classical
can be dropped because tangent is periodic withhis leaves Butterworth filter of degreéV, it is not possible to adjust the
two candidate values af. It was found in practice that only delay (or phase-linearity). However, with the more general
one of those two values will lie if0, 1]. class of filters described in this paper, the adjustment of the
Example 6: Fig. 11 illustrates a set of low-pass filtersdelay becomes possible, and the tradeoff between the delay and
where thew, is prescribed to b&.567. Compare tdExample the phase-linearity can be chosen. Matlab programs for the the
4. The filter with least delay is the classical Butterworth filterconstruction of the low-pass filters described in this paper, and
The figure shows that with this approach, the tradeoff betwetire new maximally flat delay allpole filter on which it depends,
the delay and the phase linearity can be managed with @ué also provided. Additional programs are available at URL
affecting the magnitude response significantly. http://taco.poly.edu/selesi/.
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APPENDIX A The last restriction ig < N+1. For values ofi greater than
THE ZEROS OF D(z) this, the unwrapped phase 4f ») differs from the unwrapped

As noted in Section Ill, for the design of low-pass filter®1@se ofz™¢ by @ in (0, 7). Consequently, the magnitude
realizable as all-pass sumswill be of the form(d — )/2. response of the all-pass sum will posses zerofim), and
It is therefore useful to examine the propertiesiafz) when POINtS Of unity gain between these zeros and . Therefore,

7 is an integer multiple of one half. Of particular interest i€€ Mmagnitude response when> NV + 1 is hardly low pass.
the location of the zeros db(z) with respect to the unit circle Taken together, these considerations yield the requirements

2| = 1. While poles ofl/D(z) outside the unit circle do not € =Ll +1 < d < K + L + 1 andd must have the same
pose a problem [recall the factorization as in (9)], zeoos Party asf& + L + 1.
the unit circle will not give rise to useful solutions. Because
d > 0, it is not necessary to consider integer multiples of one APPENDIX C
half that are more negative than/2. PROGRAMS
It was found empirically that forr > 0, all the zeros
of D(z) lie inside the unit circle. The remaining valued. Calculating the Flat Delay Filter

of 7 to be considered are-¢/2 for ¢ = 1,.--,N. Let  Although (5) appears rather cumbersome, the coefficients

¢ = 2min(K, L) + 1. Three ranges of will be considered: are very simple to compute because a recursive relationship
l1<i<qg-1li=g andg+1<: < N.The following exists. Let us begin with (6). Note that in (6)

observations were made, based on numerical observation.

1) 7 = —i/2 with 1 < i < ¢ — 1. For these values of, Ontl _ ("]J\rl) @D (27 + N+ 1), (34)
2| (i + 1)/4| zeros of D(z) lie outside the unit circle. an (M) @2+ N+ Dy
In addition, if ¢ = 2 mod 4, then two zeros lie on the N—n 2r+n
unit circle. T+l 2+ N+1+n (35)
2) 7 = —g/2. For this value ofr, D(z) = (1+ ap = 1, and the ratio (35)a,41 can be computed

zh)ay =Nt . L ; .
from a,, by simply multiplying «,, by this ratio. The Matlab

3) gf:l)—l/zli;lvgttgi—i&el tSheL En]i;f.cii(:)lrel :X(jnt;/t//ozz—eiozselri(e)}soncommand for the cumulative producumprod makes it
(Z.) . ; ! ; . possible to write (6) in two lines, shown at the bottom of
the unit circle. For odd, s — g zeros ofD(z) lie outside

o ! . the page.
the unit circle and + ¢ — 1 zeros lie atz = —1. The procedure for computing, in (5) is similar. Writea,,

Note.that, of thg negatiye values ﬁfc‘onsidered, only those 44 a, = Eih:o ¢i.n Where
solutions for whichl < i < ¢ — 1 andi # 2 mod 4, are free

from zeros on the unit circle. S (=)' (=D)™(r)iln — i+ 1)i(27 + 20) s
o 2r+K+L+1),(K+L+1—14);
APPENDIX B % <K+L) <L> (36)
RESTRICTIONS n t
As noted in Section Ill, some restrictions apply to thdhen
selection ofd, K, and L. Although, as stated above, the Cint1 _ K+L-—n 2r+n+i 37
group delay ofA(z) in (10) should approximaté in both the Cin  mn—idtl 2r+K+L+14n (37)

passband and the stopband, this alone is not sufficient to enSLhrgrefore can be computed by multiplying; , by
yCin+1 T,

that the all-pass sum (10) is low pass. It is also necessary t : ) .
A(z) ~ —2=9 nearz — —1. That means that for the aII-passt IS ratio. Note, however, that; ,, is zero forn < ¢, so the
sum (10),A(—1) should be—(—1)% On the other hand, (11) cumulative product operation must begin with the first nonzero

immediately yieldsA(~1) = (—1)". It follows thatd must ~ M 'lt turns out that these jerms can also be Co.mplute‘j by
have the same parity & + 1. Note that, in this casel — N € cumulative product operation; the ratiQ,i+1/c;,i is also

is odd; therefore, the relevant valuesrofnamely(d — N)/2, ﬁ?'m%le ratlgnsl func.tlon.r:'he simple Matla: prc_)lgr:am mlz'il';ble
are of the formi/2 wherei is an odd integer. is obtained by putting these ratios together. The variable

Two more conditions, in addition to the parity conditiongenOteS the;,; term, and it is updated dsis incremented.

are necessary. Recall that in Appendix A it was noted that, for )

7 = —i/2 with ¢ < i < N, the solution (5) possesses zeroB- Calculating the All-Pass Sum

on the unit circle. Since this precludes the utility of (5), we The programmfaps, for “maximally flat all-pass sum,” in
need only consider < ¢ — 1. It follows thatd must satisfy the Table Ill, implements the design procedure described in this
inequality N —d < ¢—1; thatis,K + L —2min(K,L) < d, paper. Given the flatness paramet&fsand L, and the delay

or equivalently,|K — L| < d. In combination with the parity d in (8), the program returns the all-pass filteds(z) and
condition, the conditioK — L| + 1 < d follows. Az(z), so that the all-pass sum (8) is low pass. The sum of the

n=0:N—1;
a= Cumprod([l,(n—N).*(Q*t +n)./(n+1)./(2*t+N+ 1+n)])
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TABLE I
MATLAB PROGRAM FOR THE FLAT DELAY FILTER

function [b,al] = flatdelay(X,L,t)
% K, L :
% t : group delay

% b/a : digital allpole filter of degree K+L
[b,a] = flatdelay(6,4,3.2); % example

number of conditiomns at w=0, w=pi

=

= K+L;
= zeros(1,N+1);
c =1;
for i = O:L
n = i:N-1;
v = (n-N) ./ (n-i+1) .* (2*t+n+i) ./ (2*t+N+1i+n);
a = a + [zeros(1,i), cumprod([c, v1)];
c=c* 4 * (t+4i) * (L-1i) / (2*t+N+1+1) / (i+1);

end

b = sum(a);

TABLE Il
MATLAB PROGRAM FOR THE DESIGN OF A
Low-Pass FILTER REALIZABLE AS AN ALL-PAsSS Sum

function [al,a2,p,q] = mfaps(X,L,d)

% Design of a maximally flat lowpass filter H(z) as the

% sum of two allpass filters: H(z) = z"(-d) A2(z) + Al(z).
AEK, L:
%, Note: two conditions must be satisfied
% (1) abs(K-L)+1 <= d <= K+L+1

% (2) d must be same parity as K+L+1

% a1, a2 :
% p/q : overall transfer function

number of conditions at w=0, w=pi

% check input for validity:

bl = (abs(K-L)+1 <= d) & (d <= K+L+1);
b2 = rem(K+L+1-d,2)==0;

if “(b1l & b2)

disp(’For this K and L, d must be one of the following:');

disp((abs(K-L)+1):2: (K+L+1));
break
end

[tmp,a] = flatdelay(K,L,(d-K-L)/2);
rts = roots(a);

v = abs(rts)<1;

al = real(poly(rts(v)));

a2 = real(poly(1./rts("v)));

% roots inside unit circle

% roots outside unit circle

==

compute overall tramsfer function p/q
p = [zeros(1,d), a] + [a(K+L+1:-1:1) zeros(1,d)];
= conv(al,a2);

% normalize

Lo BN}

= p*sum(q)/sum(p);

the denominators of the allpass filters A1(z), A2(z)
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