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ABSTRACT

In this paper we discuss the designs of 2-channel orthogonal near symmetric wavelets 
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SYMMETRIC NEARLY ORTHOGONAL, AND ORTHOGONAL NEARLY
SYMMETRIC WAVELETS

1. INTRODUCTION

Wavelets based on 2-channel filterbanks have experienced wide use in the signal processing community. They
have been used in such applications as noise removal and data compression. However, such filterbanks cannot
be made both symmetric and orthogonal, except for the case of the Haar wavelet [1]. Symmetric wavelets can
be designed once the requirement of orthogonality is dropped. Such wavelets have proved to be popular and
have witnessed applications in image processing [2–6] as well as applications in the medical field, see for example
[7–9]. In [10] Fujii and Hoefer explore the use of interpolating biorthogonal wavelets for solving time-dependent
Maxwell’s equations.

One desired property in image processing applications is energy conservation. Such a property is satisfied
by orthogonal but not by biorthogonal filterbanks. However, it turns out to be possible to obtain symmetric
filterbanks which are nearly orthogonal, as will be seen further in the paper. Another desirable property involves
uncorrelated input x(n) whereby we have

∑
n x(n)x(k + n) = δ(k). In the case of orthogonal filterbanks

the resulting outputs remain uncorrelated, which in general is not the case with biorthogonal filterbanks [3].
By approximating orthogonality of symmetric filterbanks the input signal x(n) remains nearly uncorrelated.

A large pool of papers has been dedicated to the theory and design of 2-channel biorthogonal wavelets.
We mention only a few of the published papers in this section. In [11] and [4], biorthogonal filters with rational
coefficients, and thus simpler to implement, are proposed. In [12], a class of 2-channel biorthogonal coiflets is
designed with the wavelet and scaling function having different vanishing moments, and where a lowpass filter
H0(ω) is assumed to be given. The paper addresses the design of odd length as well as even length filters.
The algorithm in [1] seeks to minimize the quantity

∫ π

−π
[2 − |H0(ω)|2 − |H0(ω + π)|2] dω using one degree

of freedom, where H0(ω) is a lowpass biorthogonal filter. In [3], a biorthogonal pair of filters is suggested as
symmetric filters approximating orthogonality. In [13] Saint-Martin et al. investigate the near-orthogonality of
various symmetric filters.

Additionally, we address the issue of designing 2-band orthogonal near symmetric wavelets. The idea of
2-band orthogonal filters made almost symmetric has been investigated in [1, 14–16]. None of the coefficients
of the proposed filters are strictly symmetric; rather, they are approximately so. In [1] I. Daubechies designs
filters with vanishing moments not only for the wavelet ψ(·), but also for the scaling function φ(·). The resulting
filters possess a degree of asymmetry which decreases as the number of moments increases. In the more recent
paper by Monzón and Beylkin [17], nearly interpolating properties in coiflet-like filters are sought in addition to
approximate symmetry.

In this paper, we discuss symmetric biorthogonal wavelets with very nearly orthogonal behavior, where the
lowpass filters h0 and g0 obey the properties

∑
k

h0(k)h0(k − 2n) ≈ δ(n), (1.1)

∑
k

g0(k)g0(k − 2n) ≈ δ(n). (1.2)

To this end, we design symmetric filters using Gröbner bases [18–20]. It will be shown that the resulting
symmetric filters are significantly close to orthogonality. In addition, we consider the design of nearly symmetric
orthogonal filters where we have a subset of exactly symmetric coefficients as an alternative to the published



A. Farras Abdelnour  and  Ivan W. Selesnick

The Arabian Journal for Science and Engineering, Volume 29, Number 2C.December 2004 5

results. In this paper, by nearly symmetric we mean a filter h0 with a subset of its coefficients being exactly
symmetric, for example a filter of the form h0 = [a b b a c d ] where the subset [a b b a] is symmetric.

2. PROPERTIES AND CONDITIONS

We start by defining spaces Vj and Ṽj having the following telescopic property

· · · ⊂ V−1 ⊂ V0 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ,

· · · ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ · · · ⊂ Ṽj ⊂ Ṽj+1 ⊂ · · · .

Similarly, we define the spaces Wj and W̃j as follows:

Vj+1 = Vj ∪Wj ,

Ṽj+1 = Ṽj ∪ W̃j .

We now can define the above mentioned spaces as follows:

Vj = Span
k

{φ(2jt − k)}, Ṽj = Span
k

{φ̃(2jt − k)},

Wj = Span
k

{ψ(2jt − k)}, W̃j = Span
k

{ψ̃(2jt − k)}.

From the nesting property of the spaces discussed above we obtain

φ(t) =
√

2
∑

n

h0(n)φ(2t − n), φ̃(t) =
√

2
∑

n

g0(n)φ̃(2t − n),

ψ(t) =
√

2
∑

n

h1(n)ψ(2t − n), ψ̃(t) =
√

2
∑

n

g1(n)ψ̃(2t − n).

In addition, we impose biorthogonality condition whereby the spaces Vj and W̃j are orthogonal, as are the spaces
Ṽj and Wj . Or we have

Vj ⊥ W̃j , (2.1)

Ṽj ⊥ Wj . (2.2)

It can be shown that in order to obtain lowpass filters h0 and g0 satisfying perfect reconstruction condition the
following equations need to be satisfied [21]:

G0(z)H0(z) + G1(z)H1(z) = 2z−m, (2.3)

G0(z)H0(−z) + G1(z)H1(−z) = 0. (2.4)

where the term z−m accounts for the filters’ causality. One can show that Equations (2.3) and (2.4) lead to
g1(n) = (−1)nh0(Nh − n − 1) and h1(n) = (−1)ng0(Ng − n − 1), where Nh = lengthh0 and Ng = length g0, or
we obtain the following biorthogonality condition:

∑
k

g0(k) h0(2n − k) = δ(n).
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Orthogonality then becomes a special case of the filters described in Equations (2.3) and (2.4), resulting in the
orthogonality condition

∑
k

h0(k)h0(k − 2n) = δ(n).

The corresponding highpass filter h1 is then given by

h1(n) = (−1)nh0(N − 1 − n)

where N = lengthh0.

2.1. Coifman Properties

A lowpass filter h0 satisfies Coifman properties if its z-transform evaluated on the unit circle
H0(ω) =

∑
n h0(n)e−jωn possesses the following property:

H
(p)
0 (0) = δ(p), p : 0 . . . P (2.5)

or equivalently ∫ ∞

−∞
tpφh(t) dt = δ(p), p : 0 . . . P.

In this paper we assume that both biorthogonal filters G0(z) and H0(z) have the same number P of zero
derivatives at ω = 0, as well as the same number of wavelet vanishing moments K.

3. FILTERS LENGTHS

It will be shown that the lengths of the various filters discussed in this paper depend directly on the properties
being imposed. We consider separately the lengths of the symmetric filters resulting from two distinct approaches,
as well as the lengths of the orthogonal filters approximating symmetry.

3.1. Symmetric Coiflets

Given lowpass filters h0 and g0 satisfying the biorthogonality conditions, we look for the filter supports Nh

and Ng as functions of K and L, where we have a total of Nh + Ng degrees of freedom. Thus, in addition to
K zeros at z = 1 for each of h0 and g0, we require that the first L derivatives of H0(z) and G0(z) be zero at
z = 1. Due to symmetry, the latter condition is automatically satisfied for odd derivatives. This can be seen
from the general form of the odd length symmetric filter H0(ω) =

∑
n bn cos(ωn) (H0(ω) =

∑
n cn cos(ω(n− 1

2 ))
for even length case). Clearly, the odd derivatives of H0(ω) with respect to ω are given only in terms of sin(ωn)
(sin(ω(n − 1

2 )) for the case of even length), resulting in H
(k)
0 (0) = 0, k odd. In addition, imposing L zero

derivatives at z = 1 (ω = 0) on H0(z) results in L zero derivatives at z = 1 for G0(z) as well. Therefore we
need just L/2 equations to guarantee the zero derivative condition. In addition, the biorthogonality conditions
require (Nh + Ng)/4 equations. And, finally, symmetry requires (Nh + Ng − 2K)/2. Or, we obtain

2K + L/2 + (Nh + Ng)/4 + (Nh + Ng − 2K)/2 = Nh + Ng,

resulting in

4K + 2L = Nh + Ng. (3.1)
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Now, biorthogonality requires that both filters be either of even length, or of odd length, or we have

Nh − Ng = 2l, l ∈ Z

and substituting Nh = Ng + 2l in Equation (3.1) we obtain

Ng = 2K + L − l,

Nh = 2K + L + l.

For the case K is odd, the filters’ lengths are necessarily odd, due to symmetry requirement. Then in this case
we have l odd. Similarly, when K is even l takes on even values.

3.2. Equal Coefficients Subsets

As an alternative to Coifman filters, we consider the case where h0 and g0 have subsets of exactly equal coeffi-
cients, thus approximating orthogonality while maintaining symmetry. In other words, we look for biorthogonal
filters h0 and g0 such that

h0(n) = g0(n), n : 0 < l ≤ n ≤ N − l. (3.2)

For example, one possibility is h0 and g0 being of even lengths with a coefficient arrangement as follows:

h0 = [h0(0) h0(1) a b b a h0(1) h0(0)] ,

g0 = [g0(0) g0(1) a b b a g0(1) g0(0)] , (3.3)

with l = 2, and clearly the filters h0 and g0 share four coefficients. Now, if we consider the case L even, then
the problem is similar to the preceding Coifman case, except that now instead of L zero derivatives at z = 1, we
look for L coefficients shared by both h0 and g0. For L even, this results in L/2 equations. Or we now have

2K + L/2 + (Nh + Ng)/4 + (Nh + Ng − 2K)/2 = Nh + Ng

and

4K + 2L = Nh + Ng,

or we have

Ng = 2K + L − l,

Nh = 2K + L + l.

The case L odd results in similar equations, with

Ng = 2K + L − l + 1,

Nh = 2K + L + l − 1.

Notice that in this case even value of K implies odd value of L and thus l itself must take on odd values. Likewise,
odd value of K entails even value of L, with l taking on even values so as to maintain an overall even length.
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3.3. Orthogonal Near Symmetric

For a near symmetric lowpass filter with K zeros at z = −1 and an overall length of N coefficients and
L symmetric coefficients we consider the minimum length of a filter satisfying orthogonality as well as near
symmetry. We need N

2 coefficients to satisfy orthogonality condition for the 2-channel case and K coefficients
for regularity condition [22]. This leaves us with N − N/2 − K = N/2 − K degrees of freedom for symmetric
coefficients.

For L ∈ 2N we have

N − N/2 − L/2 − K = (N − L)/2 − K,

and we have

N = 2K + L, L ∈ 2N. (3.4)

Similarly, for L ∈ 2N + 1 we have

N = 2K + L − 1, L ∈ 2N + 1. (3.5)

Therefore, the support of h0(n) depends directly on the regularity K and the number of symmetric coefficients
in h0. However, one exception to the above equations stands out for the case of K = 2, lengthh0 = 8, and L = 6.
In theory, the filter can be made as symmetric as one wishes but always with 2K non-symmetric coefficients
when L is even, and 2K − 1 non-symmetric coefficients when L is odd.

We have found that, in general, for L ≤ K the symmetric coefficients have little effect on the overall shape of
the filter frequency response, as will be shown below. It is only when L exceeds K that one begins to see some
symmetry. This partly explains the rather large population of near-symmetric filters for K = 2 and the more
limited one for K = 4.

3.4. Scaling Functions Smoothness

One desirable property of scaling functions is a high degree of smoothness ν2 for a given K. It is shown in
[23] that the highest possible derivative for a scaling function φ(·), given the corresponding h0(n), is bounded by
ν2 < K. Smoothness is measured using the Sobolev exponent of a scaling function φ defined as [24, 25]:

ν2(φ) := sup{ν2 :
∫ ∞

−∞
|Φ(ω)|2(1 + |ω|2)ν2dω < ∞}.

The actual computation of ν2 is found using [26], and for the normalization
∑

n h0(n) =
√

2 we have

ν2 = −1
2

log2 λmax

where λmax is the largest eigenvalue of a matrix generated by (c2i−j)−N≤i,j≤N with c(z) = Q0(z)Q0(z−1) and
Q0(z) is known from H0(z) = (1 + z−1)K0Q0(z).

3.5. Near Orthogonality Criterion

We will be addressing how closely the designed symmetric filters are to being exactly orthogonal. It will be
seen that there is an extent of near orthogonality to the filters’ even shifts with respect to themselves as well as
to other filters. This in turn reflects the degree of orthogonality between the scaling function φ and the wavelets
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ψi and their integer shifts. We will use θ(hi, hj ,m) to indicate the angle between two vectors hi and hj shifted
with respect to each other by m, defined as

θ(hi, hj ,m) = arccos
(

< hi(n), hj(n − m) >

‖hi‖ · ‖hj‖
)

.

The results are to be tabulated for various filters hi and their relative shifts.

3.6. Measure of Symmetry

Exploiting the fact that symmetric filters are associated with linear phase, we look at the group delay as a
measure of symmetry approximation for the case of orthogonal filterbanks. A filter H0(ω) group delay is given
by

τ(ω) = −dθ(ω)
dω

where θ(ω) is the phase of H0(ω). Various definitions of phase distortion have been used in [1, 16, 27]. Define
the group delay error e as follows:

e =
∫ π/2

0

|τ(ω) − τ0| dω (3.6)

where τ0 is the mean group delay over the interval [0, π
2 ]. The integral is evaluated only over the passband

as the group delay behavior over the stopband is of little relevance. Equation (3.6) can be approximated as a
summation,

e 
 1
2N

N−1∑
n=0

∣∣∣τ ( πn

2N

)
− τ0

∣∣∣ (3.7)

where we have N points equally distributed over
[
0, π

2

]
and τ0 is the mean value defined as 1

2N

∑N−1
n=0 τ( πn

2N ).
Obviously, given a dyadic nontrivial orthogonal filter h0, the more symmetric coefficients we have, the closer e

is to zero, with e = 0 achieved only when the filter h0 is exactly symmetric. This of course cannot be achieved
with the 2-band orthogonal filterbanks. Thus, for such filterbanks we seek h0 with e ≈ 0.

4. EXAMPLES

In this section we discuss filters generating wavelets and scaling functions of various properties. We discuss
two examples illustrating the two design approaches resulting in symmetric and approximately orthogonal filters,
as well as an example of an orthogonal filterbank approximating symmetry.

4.1. Example 1

Consider the case of symmetric near orthogonal filter design where we impose the following constraints: both
filters h0 and g0 have K = 5, and both filters have the first eight derivatives equal to zero at ω = 0, or we need
to satisfy the following conditions:

- (1 + z−1)5 | H0(z),

- (1 + z−1)5 | G0(z),

- G(k)(ω)|ω=0 = H(k)(ω)|ω=0 = 0, 1 ≤ k ≤ 8.
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We thus obtain filters of identical lengths with the coefficients as given in Table 1. Notice in Figure 1 the high
degree of similarity of the resulting filters and the associated scaling functions. Additionally, the filters span
spaces which are largely orthogonal, as can be seen in Table 2 where the angles are close to 90 degrees, and
where the angle between h0 and g0 is small, reflecting the similarity of the filters. The resulting scaling functions
{φh, φg} are differentiable at least twice, with ν2(φh) ≈ 2.3472 and ν2(φg) ≈ 2.0338.

Table 1. The Coefficients for Example 4.1, with K = 5, L = 8.

n h0(n) g0(n)

0,17 0.0001605988 0.0002809102

1,16 0.0002633873 –0.0004607019

2,15 –0.0028105671 –0.0014760379

3,14 –0.0022669755 –0.0016765216

4,13 0.0246782363 0.0192309116

5,12 –0.0061453735 –0.0001723898

6,11 –0.1137025792 –0.1099707039

7,10 0.1226794070 0.1091804942

8,9 0.6842506470 0.6921708203

Table 2. Angles Between Spaces Generated by Filters

in Table 1, with K = 5, L = 8.

shift h0, h0 h1, h1 h0, h1 h0, g0 h0, g1

0 0 0 90 1.41 90

2 89.70 89.69 89.22 90 90

4 89.85 89.86 89.46 90 90

6 89.96 89.98 89.94 90 90

8 89.99 89.98 89.96 90 90

10 89.99 89.99 89.99 90 90

12 89.99 89.99 89.99 90 90

14 89.99 90 89.99 90 90
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Figure 1. Case K = 5, L = 8, with filter coefficients listed in Table 1.

4.2. Example 2

In this example we address the design of K = 3 symmetric nearly orthogonal filterbanks by requiring that the
filters h0 and g0 share six coefficients, or we impose the following conditions:

- (1 + z−1)3 | H0(z),

- (1 + z−1)3 | G0(z),

- h0(n) = g0(n), 3 ≤ n ≤ 8.

The resulting filters are of length N = 12 for both h0 and g0. Two distinct sets of filters result, with one solution
offering near orthogonality, and the resulting coefficients tabulated in Table 3. The filters, depicted in Figure 2,
along with the resulting scaling functions, are highly orthogonal, as suggested in Table 4. From the table, it is
clear that h0 and g0 are separated by a very small angle, namely 0.5853, suggesting how similar the filters are.
The angles made by the filters and their even shifts are tabulated in Table 4. Clearly, the angles are very close
to 90 degrees, indicating how close to orthogonality the filters are. The smoothness coefficients are given by
ν2(φh) ≈ 1.4843 and ν2(φg) ≈ 1.4412.
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4.3. Example 3

An orthogonal 2-channel filterbank with a lowpass filter with K = 2 and the first six coefficients to be exactly
symmetric is sought, or we design an orthogonal lowpass filter h0 with the following properties:

- (1 + z−1)2 | H0(z),

- h0(n) = h0(5 − n), 0 ≤ n ≤ 5.

The relevant equations describing the filter’s behavior are given in Table 5, where we list the equations following
the tradition of dropping the right hand side, which is implicitly understood to be zero. It is clear from the table

Table 3. Symmetric Lowpass Filters with K = 3.

n h0(n) g0(n)

0 −0.0019128844 0.0025454063

1 0.0033707110 0.0044852837

2 0.0092762126 0.0037033492

3 −0.0855138167 −0.0855138167

4 0.0851905285 0.0851905285

5 0.6966960301 0.6966960301

6 0.6966960301 0.6966960301

7 0.0851905285 0.0851905285

8 −0.0855138167 −0.0855138167

9 0.0092762126 0.0037033492

10 0.0033707110 0.0044852837

11 −0.0019128844 0.0025454063

Table 4. Angles Between Spaces Generated by Filters h0 and g0.

shift h0, h0 g0, g0 h0, h1 h0, g0 h0, g1

0 0 0 90 0.58 90

2 89.97 89.96 89.98 90 90

4 89.84 89.84 89.75 90 90

6 89.78 89.78 89.80 90 90

8 89.97 89.97 89.97 90 90

10 89.99 89.99 89.99 90 90



A. Farras Abdelnour  and  Ivan W. Selesnick

The Arabian Journal for Science and Engineering, Volume 29, Number 2C.December 2004 13

Filter H0 Magnitude Filter G0 Magnitude

0 2 4 6 8 10 0 2 4 6 8 10

0

0.5

1

1.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Scaling Function φh Scaling Function φg

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2. K = 3, length h0 = length g0 = 12, ν2(φh) ≈ 1.4843, ν2(φg) ≈ 1.4412.

that the nonlinearity of the equations arises from the orthogonality condition. The resulting Gröbner basis is
listed in Table 6. Clearly, we have one nonlinear equation in one unknown A, and the remaining equations being
linear in the unknown. Then it is straightforward to solve the resulting system of equations. To this end two
filters have resulted with six symmetric coefficients. The filter in question has the following coefficients, with
A = −

√
2

4 ±
√

30
16 :

h0 =

⎡
⎢⎣ −

√
2

16

√
2

16
A +

√
2

2
A +

√
2

2

√
2

16
−

√
2

16︸ ︷︷ ︸
Symmetric coefficients

−A −A

⎤
⎥⎦ . (4.1)

We consider the case A = −
√

2
4 +

√
30

16 . To this end, Figure 3 indicates an extent of symmetry of the resulting
scaling function. The group delay of the corresponding filter h0 reveals a degree of flatness, showing an extent
of symmetry. The scaling function possesses a smoothness coefficient of ν2(φh) ≈ 1.5094. The zero located at
z ≈ −0.9004 appears to contribute to the scaling function’s smoothness. As for the symmetry error parameter,
e, we obtain e ≈ 0.0191. It is possible to reduce the error by increasing the number of symmetric coefficients of
h0. Indeed, by making more symmetric coefficients available, the error e can be made arbitrarily close to zero.
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Table 5. Equations Describing an Orthogonal Nearly Symmetric Lowpass Filter

with K = 2 and Length h0 = 8.

Partial Symmetry

h0(0) − h0(5)

h0(1) − h0(4)

h0(2) − h0(3)

2-Regularity

h0(0) − h0(2) − 3h0(4) − 5h0(6) + 6h0(7) + 4h0(5) + 2h0(3)

h0(1) + 3h0(3) + 5h0(5) + 7h0(7) − 6h0(6) − 4h0(4) − 2h0(2)

Orthogonality

h0(1)h0(3) + h0(5)h0(7) + h0(3)h0(5) + h0(0)h0(2) + h0(2)h0(4) + h0(4)h0(6)

h0(3)h0(7) + h0(1)h0(5) + h0(0)h0(4) + h0(2)h0(6)

h0(0)h0(6) + h0(1)h0(7)

Normalization

M2 − 2

h0(0) + h0(1) + h0(2) + h0(3) + h0(4) + h0(5) + h0(6) + h0(7) − M

Table 6. Gröbner Basis of Lowpass Filter

with K = 2, M =
√

2, and A = h0(7).

128A2 − 64AM + 1

h0(6) − A

16h0(5) + M

16h0(4) − M

2h0(3) + 2A − M

2h0(2) + 2A − M

16h0(1) − M

16h0(0) + M
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Figure 3. K = 2, L = 6, e ≈ 0.0191, and ν2(φh) ≈ 1.5094

5. CONCLUSION

Using Gröbner bases method, it was possible to design two types of 2-channel wavelets. In one case we have
designed symmetric filters approximating orthogonality, and in the other we have designed orthogonal filters
approximating symmetry. The resulting symmetric filters can be made to approximate orthogonality arbitrarily,
while the orthogonal filters can be as close to symmetry as is wished. Indeed, the flexibility offered by the design
method allows the construction of filterbanks with various properties with relative ease.
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