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Group-Sparse Signal Denoising: Non-Convex
Regularization, Convex Optimization

Po-Yu Chen and Ivan W. Selesnick

Abstract—Convex optimization with sparsity-promoting con-
vex regularization is a standard approach for estimating sparse
signals in noise. In order to promote sparsity more strongly than
convex regularization, it is also standard practice to employ non-
convex optimization. In this paper, we take a third approach. We
utilize a non-convex regularization term chosen such that the total
cost function (consisting of data consistency and regularization
terms) is convex. Therefore, sparsity is more strongly promoted
than in the standard convex formulation, but without sacrificing
the attractive aspects of convex optimization (unique minimum,
robust algorithms, etc.). We use this idea to improve the recently
developed ‘overlapping group shrinkage’ (OGS) algorithm for
the denoising of group-sparse signals. The algorithm is applied
to the problem of speech enhancement with favorable results in
terms of both SNR and perceptual quality.

Index Terms—group sparse model; convex optimization; non-
convex optimization; sparse optimization; translation-invariant
denoising; denoising; speech enhancement

I. INTRODUCTION

In this work, we address the problem of estimating a vector,
x, from an observation, y,

y(i) = x(i) + w(i), i ∈ ZN = {0, . . . , N − 1}, (1)

where w is additive white Gaussian noise (AWGN). We
assume that x is a group-sparse vector. By group-sparse, we
mean that large magnitude values of x tend not to be isolated.
Rather, large magnitude values tend to form clusters (groups).
Furthermore, we do not assume that the group locations are
known, nor that the group boundaries are known. In fact, we
do not assume that the groups have well defined boundaries.
An example of such a vector (in 2D) is the spectrogram of
a speech waveform. The spectrogram of a speech waveform
exhibits areas and ridges of large magnitude, but not isolated
large values. The method proposed in this work will be
demonstrated on the problem of speech filtering.

Convex and non-convex optimization are both common
practice for the estimation of sparse vectors from noisy data
[1]. In both cases one often seeks the solution x∗ ∈ RN to
the problem

x∗ = arg min
x

{
F (x) =

1

2
‖y − x‖22 + λR(x)

}
where R(x) : RN → R is the regularization (or penalty)
term and λ > 0. Convex formulations are advantageous in

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Department of Electrical and Computer En-
gineering, Polytechnic School of Engineering, New York University, 6
Metrotech Center, Brooklyn, NY 11201. Email: poyupaulchen@gmail.com,
selesi@poly.edu, phone: 718 260-3416.

This research was supported by the NSF under Grant No. CCF-1018020.

that a wealth of convex optimization theory can be lever-
aged and robust algorithms with guaranteed convergence are
available [8]. On the other hand, non-convex approaches are
advantageous in that they usually yield sparser solutions for
a given residual energy. However, non-convex formulations
are generally more difficult to solve (due to suboptimal local
minima, initialization issues, etc.). Also, solutions produced by
non-convex formulations are generally discontinuous functions
of input data (e.g., the discontinuity of the hard-threshold
function).

Generally, convex approaches are based on sparsity-
promoting convex penalty functions (e.g., the `1 norm), while
non-convex approaches are based on non-convex penalty func-
tions (e.g., the `p pseudo-norm with p < 1 [39], re-weighted
`2/`1 [10], [63]). Other non-convex algorithms seek sparse
solutions directly (e.g., OMP [40], iterative hard thresholding
[6], [25], [34], [51], and greedy `1 [37]).

In this work, we take a different approach, proposed by
Blake and Zimmerman [5] and by Nikolova [43]. Namely, the
use of a non-convex non-smooth penalty function chosen such
that the total cost function F (consisting of data consistency
and regularization terms) is strictly convex. This is possible
“by balancing the positive second derivatives in the [data
consistency term] against the negative second derivatives in
the [penalty] terms” [5, page 132]. This idea has been further
extended by Nikolova et al. [44], [46]–[48].

The contribution of this work relates to (1) the formu-
lation of the group-sparse denoising problem as a convex
optimization problem albeit defined in terms of a non-convex
penalty function, and (2) the derivation of a computationally
efficient iterative algorithm that monotonically reduces the
cost function value. We utilize non-convex penalty functions
(in fact, concave on the positive real line) with parametric
forms; and we identify an interval for the parameter that
ensures the strict convexity of the total cost function, F . As
the total cost function is strictly convex, the minimizer is
unique and can be obtained reliably using convex optimization
techniques. The algorithm we present is derived according to
the principle of majorization-minimization (MM) [24]. The
proposed approach:

1) does not underestimate large amplitude components of
sparse solutions to the extent that convex penalties do,

2) is translation invariant (due to groups in the proposed
method being fully overlapping),

3) is computationally efficient (O(N) per iteration) with
monotonically decreasing cost function, and

4) requires no algorithmic parameters (step-size, Lagrange,
etc.).

We demonstrate below that the proposed approach substan-
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tially improves upon our earlier work that considered only
convex regularization [13]. The fact that convex penalties yield
estimates that are biased toward zero (i.e., that underestimate
large amplitude components) is discussed, for example, in
[10], [11], [22], [26], [27]; see also Proposition 1 of [58].

A. Related Work

The estimation and reconstruction of signals with group
sparsity properties has been addressed by numerous authors.
We make a distinction between two cases: non-overlapping
groups [12], [21], [35], [36], [66] and overlapping groups [1]–
[3], [14], [19], [23], [32], [33], [41], [50], [65]. The non-
overlapping case is the easier case: when the groups are
non-overlapping, there is a decoupling of variables, which
simplifies the optimization problem. When the groups are
overlapping, the variables are coupled. In this case, it is com-
mon to define auxiliary variables (e.g., through the variable
splitting technique) and apply methods such as the alternating
direction method of multipliers (ADMM) [7]. This approach
increases the number of variables (proportional to the group
size) and hence increases memory usage and data indexing. In
previous work we describe the ‘overlapping group shrinkage’
(OGS) algorithm [13] for the overlapping-group case that does
not use auxiliary variables. The OGS algorithm exhibits favor-
able asymptotic convergence in comparison with algorithms
that use auxiliary variables [13, Fig. 5]. It was applied to
total variation denoising in [59]. In comparison with previous
work on convex optimization for overlapping group sparsity,
including [13], [59], the approach we propose here promotes
sparsity more strongly. In this paper, we extend the OGS
algorithm to the case of non-convex regularization, yet the
approach remains within the convex optimization framework.

As noted above, the balancing of the data consistency term
and the penalty term, so as to formulate a convex problem with
a non-convex penalty term, was described in Refs. [5], [43]
and extended in [44], [46]–[48]. This approach was used to
initialize a scheme named ‘graduated non-convexity’ (GNC) in
[5]. The goal of GNC is to minimize a non-convex function
F by minimizing a sequence of functions Fk, k > 1. The
first one is a convex approximation of F , and the subsequent
ones are non-convex and progressively similar to F . In order
that the initial approximation of F be convex, the penalty
function must satisfy an eigenvalue condition [5]. A looser
condition, which promotes sparsity more strongly, can be
expressed as a semidefinite program (SDP), but this incurs a
higher computational cost [58]. In the method described here,
we use the same balancing idea as in GNC; however, our goal
is to minimize a convex function, not a non-convex one as
in GNC. In particular, we use the balancing idea to construct
a convex function that maximally promotes sparsity, and we
seek to subsequently solve this convex problem. We note that
here our primary goal is to capture group sparsity behavior,
which is not considered in the GNC work. We also note that
the computationally demanding SDP arising in Ref. [58] does
not arise in the current work. The algorithm developed here
is computationally simple.

II. PRELIMINARIES

A. Notation

We will work with finite-length discrete signals which we
denote in lower case bold. The N -point signal x is written as

x = [x(0), . . . , x(N − 1)] ∈ RN .

We use the notation

xi,K = [x(i), . . . , x(i+K − 1)] ∈ RK (2)

to denote the i-th group of size K. We consistently use K (a
positive integer) to denote the group size. At the boundaries
(i.e., for i < 0 and i > N − K), some indices of xi,K fall
outside ZN , where ZN is defined in (1). We take these values
as zero; i.e., for i /∈ ZN , we take x(i) = 0. The `2 and `1
norms are defined as usual:

‖x‖1 :=
∑
i

|x(i)|, ‖x‖2 :=

[∑
i

|x(i)|2
]1/2

. (3)

We denote the non-negative real line as R+ := {x ∈ R :
x > 0} and the positive real line as R∗+ := {x ∈ R : x >
0}. Given a function f : R → R, the left-sided and right-
sided derivatives of f at x are denoted f ′(x−) and f ′(x+),
respectively. The notation A\B denotes set difference; i.e.,
A\B = {a ∈ A : a /∈ B}.

B. Penalty Functions

We will make the following assumptions on the penalty
function, φ : R→ R.

1) φ is continuous on R
2) φ is twice differentiable on R\{0}
3) φ(−x) = φ(x) (symmetric)
4) φ′(x) > 0, ∀x > 0 (increasing on R∗+)
5) φ′(0+) = 1 (unit slope at zero)
6) φ′′(x) 6 0, ∀x > 0 (concave on R∗+)
7) φ′′(0+) 6 φ′′(x), ∀x > 0
8) φ′′(0+) is finite.
We will utilize penalty functions parameterized by a scalar

parameter, a > 0. We use the notation φ(x; a) to denote the
parameterized form.

Examples of parameterized penalty functions satisfying the
assumptions above are the logarithmic penalty,

φlog(x; a) =
1

a
log(1 + a|x|), (4)

the arctangent penalty [58],

φatan(x; a) =
2

a
√

3

(
tan−1

(
1 + 2a|x|√

3

)
− π

6

)
, (5)

and the first order rational function [28]

φrat(x; a) =
|x|

1 + a|x|/2
. (6)

The rational penalty is defined for a > 0. The log and atan
penalties are defined for a > 0. Note that as a → 0, the
three penalty functions approach the absolute value function.
They are illustrated in Fig. 1. The absolute value function,
φabs(x) = |x|, also satisfies the listed assumptions.
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Fig. 1. Several sparsity promoting penalty functions satisfying the assump-
tions in Sec. II-B.

For later use, we record the value of the right-sided second
derivative of the three non-convex penalty functions:

φ′′log(0+; a) = φ′′atan(0+; a) = φ′′rat(0
+; a) = −a. (7)

Note that the `p pseudo-norm (0 < p < 1), i.e., φ(x) = |x|p,
does not satisfy the above assumptions. It does not have unit
slope at zero nor can it be normalized or scaled to do so.

C. Threshold Functions

Proximity operators are a fundamental tool in efficient
sparse signal processing [16], [17]. In the scalar case, a
proximity operator, which is defined in terms of a convex
penalty, φ, is a thresholding function when (and only when) φ
is non-smooth at zero. In this work, we utilize non-convex
penalty functions; however, we can still define a threshold
function similar to the definition of a proximity operator [56].
The following proposition is closely related to Lemma 3.1
in [42] and Theorem 3.3 in [45], both of which analyze the
behavior of θ for non-smooth, not necessarily convex, φ.

Proposition 1. Define θ : R→ R by

θ(y) = arg min
x∈R

{
G(x) =

1

2
|y − x|2 + λφ(x)

}
(8)

where G : R → R, λ > 0, and φ satisfies the assumptions
in Sec. II-B. Suppose also that G is strictly convex. If |y| 6
λ, then the unique minimizer of G is zero. That is, θ is a
threshold function and λ is the threshold value. Also, θ is an
odd function.

Proof. This is a special case of Proposition 3 wherein θ is a
multivariate threshold function, θ : RK → RK .

Figure 2 illustrates threshold functions corresponding to
several penalty functions. We use λ = 4 and a = 0.2. The
threshold function corresponding to the absolute value penalty
function is called the soft threshold function [20]. Notice
that, except for the soft threshold function, the threshold
functions approach the identity function asymptotically. The
atan threshold function approaches identity the fastest.

The fact that the soft threshold function reduces large values
by a constant amount is considered its deficiency. In the
estimation of sparse signals in AWGN, this behavior results in
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Fig. 2. Threshold functions derived from the four penalty functions given
in Sec. II-B; three of which are non-convex.

a systematic underestimation (bias) of large magnitude signal
values [22]. Hence, threshold functions that are asymptotically
unbiased are often preferred to the soft threshold function, and
the penalty functions from which they are derived promote
sparsity more strongly than the `1 norm [10], [11], [26],
[27]. The atan penalty function is derived specifically for its
favorable behavior in this regard [58].

Proposition 1 and Figs. 1 and 2 illustrate the fact that
threshold functions derived from suitable non-convex penalties
converge asymptotically to the identity function (hence, they
do not underestimate large amplitudes), and furthermore, that
the total cost function can be, at the same time, convex.

As shown in Ref. [58], if φ satisfies the assumptions in
Sec. II-B, then the right-sided derivative of θ at the threshold
λ is given by

θ′(λ+) =
1

1 + λφ′′(0+)
. (9)

Hence, with parameters λ = 4 and a = 0.2, we use (7) to
find that θ′(λ+) = 5 for φlog, φatan, and φrat. That is, each
of the threshold functions in Fig. 2 have the same right-sided
derivative at λ, but they asymptotically approach identity at
different rates.

III. OGS WITH NON-CONVEX REGULARIZATION

For denoising group-sparse signals in AWGN, we propose
to minimize the cost function, F : RN → R,

F (x) =
1

2
‖y − x‖22 + λ

∑
i∈Z

φ(‖xi,K‖2; a) (10)

where φ is a (non-convex) sparsity promoting penalty function
satisfying the assumptions in Sec. II-B, and λ > 0. The
notation xi,K , defined in (2), denotes a K-point group starting
at index i. The group size, K (a positive integer), should be
selected based roughly on the size of the groups (clusters)
arising in the data. This constitutes one’s ‘prior knowledge’
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regarding the data to be denoised and may need to be set
through some trial-and-error. We note that K does not impose
any strict constraint on the size of groups, not does it define
the boundaries of groups.

We note that the minimization of F is not so straight
forward. First, for K > 1, the variables x(i) are coupled
due to the overlapping group structure of the regularization
term. That is to say, the cost function F (x) can not be written
as F (x) = f1(x1) + f2(x2) where (x1, x2) is a partition
of x. Consequently, each component x∗(i) of the minimizer
x∗ depends in general on every data sample y(k) (albeit the
influence diminishes with distance |i−k|). Secondly, F is not
differentiable. In particular, F is generally not differentiable
at the minimizer, x∗, due to the sparsity of x∗ induced by the
regularizer. (The penalty function, φ, is non-differentiable at
zero).

In order to leverage convex optimization principles and
avoid non-convex optimization issues (local minima, sensitiv-
ity to noise, etc.), we seek to restrict a so that F is strictly
convex. In the following, we address the questions:

1) For what values of a is F strictly convex?
2) When F is strictly convex, how can the unique mini-

mizer, x∗, be efficiently computed?
First, we make a few remarks. If K = 1, then F in (10)

simplifies to

F (x) =
∑
i

[1

2
|y(i)− x(i)|2 + λφ(x(i); a)

]
, (11)

the components x(i) are not coupled, and the minimization of
F amounts to component-wise non-linear thresholding; i.e.,
x∗(i) = θ(y(i); a). In this case, the cost function F does not
promote any group structure.

If φ is the absolute value function, i.e., φ(x) = |x|,
then the cost function F in (10) is the same cost function
considered in our earlier work [13], which considers only
convex regularization.

If K = 1 and φ is the absolute value function, then the
minimizer of F is given by point-wise soft thresholding of y.

The current work addresses the case where K > 1 and φ is
a non-convex regularizer, so as to promote group sparsity more
strongly in comparison to convex regularization. The enhanced
sparsity will be illustrated in Example 1 in Sect. IV-A.

A. Group Thresholding

In order to determine the convexity of F , we first consider
a simpler cost function, H , which consists of a single group.
What values of a ensure that H is strictly convex?

Proposition 2. Consider the function H : RK → R,

H(x) =
1

2
‖ȳ − x‖22 + λφ(‖x‖2; a) (12)

where ȳ ∈ RK , λ > 0, and φ(·, a) : R → R satisfies the
assumptions in Sec. II-B. Then H is strictly convex if

φ′′(0+; a) > − 1

λ
. (13)

Proof. Define B : R→ R,

B(v) =
1

2
|v|2 + λφ(v; a). (14)

According to the assumptions on φ in Sec. II-B, B is con-
tinuous on R, twice differentiable on R\{0}, and symmetric.
Hence, by Lemma A in the appendix, the strict convexity of
B is ensured if its second derivative is positive on R\{0} and
B′(0−) < B′(0+).

Note that B′(0+) = λφ′(0+; a) = λ > 0; and by symmetry
B′(0−) = λφ′(0−; a) = −λ < 0. Hence B′(0−) < B′(0+).

To ensure B′′ is positive on R\{0}, we have the condition

B′′(v) = 1 + λφ′′(v; a) > 0, for v > 0 (15)

or
φ′′(v; a) > − 1

λ
, v > 0. (16)

Due to assumption 7 in Sec. II-B, we have (13).
Furthermore, B(v) is increasing on R > 0. Based on the

convexity of ‖x‖2 and Proposition 2.1.7 of Ref. [30, page 89],
B(‖x‖2) is strictly convex.

Expanding H(x) in (12) shows it is a linear combination of
B(‖x‖2) (strictly convex), ȳTx (convex) and ‖ȳ‖22 (constant).
Hence, H(x) is strictly convex.

The condition (13) can be used to determine values of a that
ensure strict convexity of H . For the log, atan, and rational
penalty functions (φlog, φatan, φrat), we use (7) to obtain the
following interval for a ensuring strict convexity of H .

Corollary 1. Suppose φ is one of the non-convex penalty
functions given in Sec. II-B (φlog, φatan, φrat). Then H is
strictly convex if and only if

0 < a <
1

λ
. (17)

Based on a strictly convex function H , we may define a
multivariate threshold/shrinkage function θ : RK → RK as in
the scalar case (8). It is informative to note the threshold of
the multivariate thresholding function.

Proposition 3. Define θ : RK → RK by

θ(y) = arg min
x∈RK

{
H(x) =

1

2
‖y − x‖22 + λφ(‖x‖2)

}
(18)

where λ > 0, and φ satisfies the assumptions in Sec. II-B.
Suppose also that H is strictly convex. If ‖y‖2 < λ, then
the unique minimizer of H is the zero vector. That is, θ is a
multivariate threshold function with threshold λ.

Proof. The subgradient of the convex function H is given
by ∂H(x) = x − y + λ∂φ(‖x‖2). Since φ′(0+) = 1 by
assumption 5 in Sec. II-B, we have ∂φ(‖0‖2) = ∂{‖0‖2},
which is equal to {v ∈ RK , ‖v‖2 6 1}.

This leads to

∂H(0) = {λv − y : ‖v‖2 6 1}. (19)

Since x∗ is a minimizer of H iff 0 ∈ ∂H(x∗) (see [30,
Theorem 2.2.1, page 177]), we deduce the following.



5

• Suppose ‖y‖2 6 λ. We can choose v = y/λ satisfying
‖v‖2 6 1 such that λv − y = 0. We have 0 ∈ ∂H(0),
which implies that 0 is the minimizer of H .

• Suppose ‖y‖2 > λ. There is no v satisfying ‖v‖2 6 1
such that λv− y = 0. Hence, 0 is not the minimizer of
H .

From the arguments above, we conclude that λ defines the
threshold of θ.

When φ is the absolute value function, the induced multi-
variate threshold function θ can be expressed in closed form
[60]. (Essentially, it performs soft-thresholding on the 2-norm.)
A generalization to the case where the data consistency term
in (18) is of the form ‖y−Ax‖22 has also been addressed [52].
We note that neither [52] nor [60] consider either non-convex
regularization or overlapping group sparsity.

If the penalty function, φ, is strictly concave on the posi-
tive real line (log, atan, etc.), then the induced multivariate
threshold function results in less bias of large magnitude
components; i.e., θ(y) approaches the identity function for
large y. An exploration along these lines is given in [57];
however, in that work, the non-convexity was quite mild
and not adjustable. (The non-convex regularization in [57] is
based on the multivariate Laplace probability density function,
which does not have a shape parameter, analogous to a in the
current work.) Furthermore, overlapping group sparsity is not
considered in [57].

B. Overlapping Group Thresholding

Using the results above, we can find a condition on a to
ensure F in (10) is strictly convex. The result permits the
use of non-convex regularization to strongly promote group
sparsity while preserving strict convexity of the total cost
function, F .

Theorem 1. Consider F : RN → R, defined as

F (x) =
1

2
‖y − x‖22 + λ

∑
i

φ(‖xi,K‖2; a) (20)

where y ∈ RN , K ∈ Z+, λ > 0, and φ(·, a) : R→ R satisfies
the assumptions in Sec. II-B. Then F is strictly convex if

φ′′(0+; a) > − 1

Kλ
. (21)

Proof. Write F as

F (x) =
∑
i

Fi(xi,K) (22)

where Fi : RK → R is defined as

Fi(v) =
1

2K
‖yi,K − v‖22 + λφ(‖v‖2; a) (23)

for i ∈ Z. Suppose (21) is satisfied. Then by Prop. 2 the
functions Fi are strictly convex. Since F is a sum of strictly
convex functions, F is strictly convex.

Corollary 2. Suppose φ is one of the penalty functions given
in Sec. II-B (φlog, φatan, φrat). Then F is strictly convex if

0 < a <
1

Kλ
. (24)

We give some practical comments on using (24) to set the
parameters {K,λ, a}. We suggest that K be chosen first, based
on the structural properties of the signal to be denoised. We
suggest that a then be set to a fixed fraction of its maximal
value; i.e., fix β ∈ [0, 1] and set a = β/(Kλ). So, we
consider a as a function of λ. We then set λ according to the
noise variance. In Sec. III-E, we describe two approaches for
the selection of λ. In our numerical experiments on speech
enhancement, we have found that setting a to its maximal
value of 1/(Kλ) generally yields the best results; i.e., β = 1.
Hence, in the examples in Sec. IV, we set a to its maximal
value.

Equation (24) may suggest the proposed method becomes
ineffective for large K. It can be noted from (24) that for
large K, aλ should be small (< 1/K). If λ is set so as
to achieve a desired degree of noise suppression, then (24)
implies a should be small. A small a, in turn, limits the non-
convexity of the regularizer. Hence, it appears the benefit of
the proposed non-convex regularization method is diminished
for large K. However, two considerations offset this reasoning.
First, for larger K, a smaller value of λ is needed so as to
achieve a fixed level of noise suppression (this can be seen,
for example, in Table III). Secondly, for larger K, there is
greater overlap between adjacent groups because the groups
are fully-overlapping; so, regularization may be more sensitive
to a.

C. Minimization Algorithm

To derive an algorithm minimizing the strictly convex
function F in (10), we use the majorization-minimization
(MM) procedure [24] as in [13]. The MM procedure replaces a
single minimization problem by a sequence of (simpler) ones.
Specifically, MM is based on the iteration

x(k+1) = arg min
x
Q(x,x(k)) (25)

where the function, Q : RN × RN → R, is a majorizer
(upper bound) of F and k is the iteration index. For Q to
be a majorizer of F it should satisfy

Q(x,v) > F (x), ∀x ∈ RN (26)
Q(v,v) = F (v). (27)

The MM procedure monotonically reduces the cost function
at each iteration; i.e., F (x(k)) is a decreasing sequence.

We do not know a proof that x(k) converges to the mini-
mizer of F when F is non-differentiable, as is the case here.
However, it is suggested in [24] (Sec. III) that this class of
algorithms converges with ‘probability one.’ Similar remarks
are made in [24] (Sec. V-D). We also note that F in (10) can
be approximated by a differentiable function by substituting
(‖xi,K‖22 + ε)1/2 for ‖xi,K‖2 and that in this case, the MM
algorithm is ensured to converged. However, we do not make
this differentiable approximation here because we observe
reliable convergence in practice without it.

To specify a majorizer of the cost function F in (10), we
first specify a majorizer of the penalty function, φ. To simplify
notation, we suppress the dependence of φ on a.
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Lemma 1. Assume φ : R → R satisfies the assumptions in
Sec. II-B. Then q : R× R→ R, defined by

q(x, v) =
1

2v
φ′(v)x2 + φ(v)− v

2
φ′(v), (28)

is a majorizer of φ except for v = 0, i.e.,

q(x, v) > φ(x), ∀x ∈ R, ∀v ∈ R\{0} (29)
q(v, v) = φ(v), ∀v ∈ R\{0} (30)

The majorization of φ(x) by q(x, v) is illustrated in Fig. 3.

Proof. By direct substitution, one may verify (30). We now
show (29). Let v > 0 and x > 0. Using Taylor’s Theorem [55,
Theorem 5.15], we have

φ(x) = φ(v) + φ′(v)(x− v) +
φ′′(v0)

2
(x− v)2 (31)

for some v0 between x and v. By the assumptions on φ, we
have φ′′(v0) < 0. Hence from (31),

φ(x) 6 φ(v) + φ′(v)(x− v). (32)

Note that (x− v)2 > 0 implies

x 6
1

2v
x2 +

v

2
. (33)

Using (33) for x on the left-hand side of (32) gives

φ(x) 6 φ(v) + φ′(v)
( 1

2v
x2 +

v

2
− v
)
. (34)

Recognizing that the right-hand side of (34) is q(x, v), we
obtain φ(x) 6 q(x, v) for all x > 0, v > 0. By symmetry of
q and φ, we obtain (29).

Since q is a majorizer of φ, the function

Q(x,v) =
1

2
‖y − x‖22 + λ

∑
i

q(‖xi,K‖2, ‖vi,K‖2) (35)

is a majorizer of F . Using (28), the function Q is given by

Q(x,v) =
1

2
‖y − x‖22 +

λ

2

∑
i

φ′(‖vi,K‖2)

‖vi,K‖2
‖xi,K‖22 + C

where C does not depend on x. After algebraic manipulations,
Q can be expressed as

Q(x,v) =
1

2
‖y − x‖22 +

λ

2

∑
i

r(i;v)x2(i) + C (36)

TABLE I
OVERLAPPING GROUP SHRINKAGE (OGS) WITH PENALTY φ.

input: y ∈ RN , λ > 0, K, φ
x = y (initialization)
S = {i ∈ ZN : y(i) 6= 0}
repeat

a(i) =

[
K−1∑
k=0

|x(i+ j)|2
]1/2

, i ∈ S

b(i) =
φ′(a(i))

a(i)
, i ∈ S

r(i) =

K−1∑
j=0

b(i− j), i ∈ S

x(i) =
y(i)

1 + λ r(i)
, i ∈ S

S = {i ∈ ZN : |x(i)| > ε} (∗)
until convergence
return: x

(∗) For finite precision implementations.

where r : Z× RK → R is defined as

r(i;v) =

K−1∑
j=0

φ′(‖vi−j,K‖2)

‖vi−j,K‖2
. (37)

Note that the components x(i) in (36) are uncoupled. Fur-
thermore, Q is quadratic in x(i). Hence, the minimizer of Q
with respect to x is easily obtained. The quantities r(i,v) in
(37) are readily computed; r is essentially a double K-point
convolution, with a nonlinearity between the two convolutions.

Using (36) in the MM iteration (25), we obtain

x(k+1)(i) =
y(i)

1 + λ r(i;x(k))
, i ∈ ZN , (38)

where r is given by (37). This constitutes the OGS algorithm.
The algorithm is summarized in Table I. We denote the output
of the OGS algorithm as y = ogs(x;λ,K, φ).

In case the denominator in (37) is zero, we assign positive
infinity to r(i,v). Since r(i;x(k)) arises in the denominator
of (38), a value of +∞ for this variable, in the event it occurs,
leads to a value of zero for x(k+1)(i).

Note that q in (28) is undefined if v = 0. This singularity
issue often arises when a quadratic function is used to majorize
a non-smooth function [24], [49]. This issue may manifest
itself in the OGS algorithm whenever a K-point group of x is
equal to the K-point zero vector; i.e., if x

(k)
i,K = 0 ∈ RK

for some index i and iteration k. In the event of such an
occurrence, the OGS algorithm would encounter a ‘divide-
by-zero’ error. However, such an occurrence is guaranteed not
to occur with suitable initialization, as described in [13]. For
example, it is sufficient to initialize all x(i) to non-zero values,
i.e., x(0)(i) 6= 0 for all i ∈ ZN . With such an initialization, it
is readily observed that r(i;x(k)) in the denominator of (38) is
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strictly positive and finite and that x(k)(i) 6= 0 for all i ∈ ZN

and all iterations k. When some components of the solution
x∗ are zero (as expected, due to sparse regularization), those
values x(k)(i) approach zero in the limit; i.e., x(k)(i)→ 0 as
k →∞.

We propose initializing x to y; i.e., x(0) = y, and we
exclude from the iteration (38) those i for which y(i) = 0. The
set S ⊂ ZN in Table I serves to exclude these components
from the iterative update. In this case, x(k)(i) = 0 for all
iterations k, which is justified by part 1) of Lemma B in
the appendix. As a consequence of Lemma B, initializing
x(0)(i) to zero for i /∈ S is optimal. Therefore, the algorithm
excludes these values from the update procedure because they
are already optimal.

With the initialization x(0) = y, it is readily observed, as
above, that r(i;x(k)) in the denominator of (38) is strictly
positive and finite and that x(k)(i) 6= 0 for all i ∈ S and
all iterations k. Assuming infinite precision, it is sufficient
to define S prior to the loop only; the last line in Table I,
indicated by (∗), can be omitted. It is guaranteed that a division
by zero will never occur, as discussed above.

The OGS algorithm proceeds by iteratively reducing x(i),
i ∈ S, toward their optimal values (including zero). The
attenuation is multiplicative, so the the value never equals
zero, even though it may converge to zero. But if a value
reaches ‘machine epsilon’ then a divide-by-zero error may
subsequently occur in the implementation. Hence, to avoid
possible divide-by-zero errors due to finite precision arith-
metic, the OGS algorithm updates S at the end of the loop in
Table I. The small number, ε, may be set to ‘machine epsilon’,
which for single precision floating point is about 10−16.

We do not prove the convergence of the OGS algorithm to
the minimizer of F due to the complication of the singularity
issue. However, due to its derivation based on the majorization-
minimization principle, OGS is guaranteed to decrease the
cost function at each iteration. Moreover, in practice, we have
observed through extensive numerical investigation, that the
algorithm has the same rapid convergence behavior as convex
regularized OGS [13].

Note that in the OGS algorithm, summarized in Table I, the
penalty function appears in only one place: the computation
of b(i). It can therefore be observed that the role of the
penalty is encapsulated by the function φ′(u)/u. Table II lists
this function for the penalty functions given in Sec. II-B.
The function φ′(u)/u have very similar functional forms.
The similarity of these functions reveal the close relationship
among the listed penalty functions.

D. The Multidimensional Case

The results and algorithm described in the preceding sec-
tions can be extended to the multidimensional case straight-
forwardly. In the numerical experiments below, we use a two-
dimensional version of the algorithm in order to denoise the
time-frequency spectrogram of a noisy speech waveform.

Suppose x is a 2D array of size N1 ×N2; i.e.,

x = {x(i1, i2), 0 6 i1 6 N1 − 1, 0 6 i2 6 N2 − 1}.

TABLE II
SPARSE PENALTIES AND CORRESPONDING NONLINEARITIES

penalty φ(u) φ′(u)/u

abs |u|
1

|u|

log
1

a
log(1 + a|u|)

1

|u|(1 + a|u|)

atan
2

a
√
3

(
tan−1

(
1 + 2a|u|
√
3

)
−
π

6

)
1

|u|(1 + a|u|+ a2|u|2)

rational
|u|

1 + a|u|/2
1

|u|(1 + a|u|)2

The array can be expressed using multi-indices as

x = {x(i), i ∈ ZN1
× ZN2

}.

Let K = (K1,K2) denote the size of a 2D group. Then a
sub-group of size K can be expressed as

xi,K = {x(i+ j), j ∈ ZK1
× ZK2

}.

In the two-dimensional case, the function F in (10) is

F (x) =
∑
i∈Z2

1

2
|y(i)− x(i)|2 + λφ(‖xi,K‖2; a), (39)

and conditions (21) and (24) become

φ′′(0+; a) > − 1

K1K2λ
(40)

and
0 < a <

1

K1K2λ
(41)

respectively. The algorithm in Table I is essentially the same
for the two-dimensional case. The summations become double
summations, etc. Extensions to higher dimensional signals are
similarly straightforward.

E. Regularization Parameter Selection

Noise level suppression. The regularization parameter, λ, can
be selected using existing generic techniques such as the L-
curve method. However, in [13] we described an approach
to set λ based directly on the standard deviation, σ, of the
AWGN, which we assume is known. This approach seeks
to preserve one of the concepts of scalar thresholding (e.g.,
hard or soft thresholding), namely the processing of signal
values based on relative magnitude. Consider the problem of
estimating a sparse signal in AWGN. If many of the non-
zero values of the sparse signal exceed the noise floor, then a
suitable threshold value, T , should exceed the noise floor. But
T should not be too large, or else the non-zero values of the
sparse signal will be annihilated. Hence, it is reasonable to use
the value T = 3σ. This threshold will set most of noise (about
99.7%) to zero. (If the sparse signal has non-zero values less
than T in magnitude, then those values will be lost.)

The simplicity of the ‘three-sigma’ rule can not be leveraged
so easily in the proposed OGS algorithm. However, we can
still implement the concept of setting λ so as to reduce the
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TABLE III
OGS REGULARIZATION PARAMETER WITH PENALTY φ(·) = φatan(·, 1/(K1K2λ)) AND 25 ITERATIONS

K λ, α(λ,K, φ)

1× 1 4.25, 1.00 · 10−2 4.59, 4.33 · 10−3 4.93, 1.51 · 10−3 5.27, 4.05 · 10−4 5.61, 1.00 · 10−4

1× 2 2.14, 1.00 · 10−2 2.31, 4.35 · 10−3 2.48, 1.49 · 10−3 2.64, 3.99 · 10−4 2.81, 1.00 · 10−4

1× 3 1.45, 1.00 · 10−2 1.56, 4.52 · 10−3 1.68, 1.56 · 10−3 1.79, 4.06 · 10−4 1.91, 1.00 · 10−4

1× 4 1.11, 1.00 · 10−2 1.20, 4.47 · 10−3 1.29, 1.58 · 10−3 1.38, 4.11 · 10−4 1.47, 1.00 · 10−4

1× 5 0.91, 1.00 · 10−2 0.98, 4.37 · 10−3 1.05, 1.55 · 10−3 1.13, 4.07 · 10−4 1.20, 1.00 · 10−4

2× 2 1.08, 1.00 · 10−2 1.16, 4.37 · 10−3 1.24, 1.47 · 10−3 1.33, 3.95 · 10−4 1.41, 1.00 · 10−4

2× 3 0.73, 1.00 · 10−2 0.79, 4.41 · 10−3 0.85, 1.49 · 10−3 0.90, 3.96 · 10−4 0.96, 1.00 · 10−4

2× 4 0.56, 1.00 · 10−2 0.61, 4.18 · 10−3 0.65, 1.44 · 10−3 0.70, 3.91 · 10−4 0.74, 1.00 · 10−4

2× 5 0.47, 1.00 · 10−2 0.50, 3.89 · 10−3 0.54, 1.33 · 10−3 0.58, 3.74 · 10−4 0.61, 1.00 · 10−4

3× 3 0.50, 1.00 · 10−2 0.54, 4.11 · 10−3 0.58, 1.38 · 10−3 0.62, 3.81 · 10−4 0.66, 1.00 · 10−4

3× 4 0.40, 1.00 · 10−2 0.43, 3.57 · 10−3 0.46, 1.19 · 10−3 0.49, 3.51 · 10−4 0.51, 1.00 · 10−4

3× 5 0.34, 1.00 · 10−2 0.36, 3.26 · 10−3 0.39, 1.04 · 10−3 0.41, 3.23 · 10−4 0.43, 1.00 · 10−4

4× 4 0.33, 1.00 · 10−2 0.35, 3.24 · 10−3 0.37, 1.02 · 10−3 0.39, 3.16 · 10−4 0.41, 1.00 · 10−4

4× 5 0.29, 1.00 · 10−2 0.30, 3.09 · 10−3 0.32, 9.61 · 10−4 0.33, 3.04 · 10−4 0.35, 1.00 · 10−4

5× 5 0.25, 1.00 · 10−2 0.26, 3.05 · 10−3 0.28, 9.44 · 10−4 0.29, 3.01 · 10−4 0.30, 1.00 · 10−4

2× 8 0.33, 1.00 · 10−2 0.35, 3.33 · 10−3 0.37, 1.05 · 10−3 0.39, 3.22 · 10−4 0.41, 1.00 · 10−4

noise down to a specified fraction of its original power. For this
purpose, the effect of the OGS algorithm on pure zero-mean
Gaussian noise, x(i) = N (0, σ2), can be measured through
computation. In particular, the standard deviation of the OGS
output as a function of (λ,K, φ) can be found empirically and
recorded. For example, Table III records the value

α(λ,K, φ) =
1

σ
std
{

ogs(x;λ,K, φ)
}
, x(i) = N (0, σ2)

for several λ and group sizes K. For this table we used the atan
penalty function with a set to its maximum value of 1/(Kλ);
i.e., φ(·) = φatan(·, 1/(Kλ)). The value α also depends on
the number of iterations of the OGS algorithm. In computing
Table III we have used a fixed number of 25 iterations.

We clarify how to use Table III to set the regularization
parameter: Suppose in one-dimensional signal denoising, one
seeks to set λ so that the OGS algorithm reduces σ down to
10−4σ. If one uses a group size of K = 5, the atan penalty
function with a = 1/(5λ), and 25 iterations, then according
to Table III, one should use λ = 1.2σ (see the last column of
the fifth row of the table). For each group size K, the table
records a discrete set of (λ, α) pairs for 10−4 < α < 10−2.
Linear interpolation on a α-logarithmic scale can be used to
estimate λ for other α. For example, if one seeks to set λ
so that the OGS algorithm reduces σ down to 10−3σ, then
according to the interpolation illustrated in Fig. 4, one should
use λ = 1.07σ.

To set λ by this approach for other penalty functions, other
values of a, and for complex data, it is necessary to compute
additional tables. We have precomputed a set of such tables
to be available as supplementary material. Using precomputed
tables and interpolation, a suitable value for λ can be found
very quickly. These tables assume the noise is AWGN; for
other noise models, other tables need to be precomputed. This
approach is also effective for two-dimensional denoising (e.g.,
spectrogram denoising).

Monte-Carlo SURE. Another approach to select the regular-
ization parameter, λ, is based on minimizing the mean square

10
−4

10
−3

10
−2

0.9

0.95

1

1.05

1.1

1.15

1.2

α

λ

 

 
Samples

Interpolation

Fig. 4. Solid dots indicate the values from Table III for the group size
K = 5. The circle indicates the interpolated value at α = 10−3.

error (MSE). For the problem of denoising a signal in AWGN,
the MSE is unknown in practice, due to the noise-free signal
being unknown. But, the MSE can be estimated using Stein’s
unbiased risk estimator (SURE) [62]. To estimate the MSE,
SURE requires only the observation y, noise variance σ2,
and divergence of the estimator. However, the computation
of the divergence is intractable for many estimators, including
OGS. To overcome this issue, it is proposed in Ref. [53] that
Monte-Carlo methods be used. We have applied this approach,
i.e., ‘Monte-Carlo SURE’ (MC-SURE), to estimate the MSE
for complex-valued speech spectrogram denoising using OGS.
Since the spectrogram is complex, we calculate the MS-SURE
MSE by averaging real and imaginary divergences as in [9].
Figure 5 illustrates both the MSE, as calculated by MC-
SURE, and the true MSE, as functions of λ. The estimated
MSE is quite accurate, and the MSE-optimal value of λ is
about 0.33. However, a disadvantage of MC-SURE is its high
computational complexity. It requires two OGS optimizations
for each λ to emulate the divergence.

It is noted in Ref. [53] that for non-smooth estimators, the
MSE, as calculated by MC-SURE, tends to deviate randomly
from the true MSE (see Fig. 4 in [53]). For OGS, the MSE
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Fig. 5. True MSE and MSE calculated using Monte-Carlo SURE.

TABLE IV
EXAMPLE 1. OUTPUT SNR

Estimator

Param. Hard thr. Soft thr. OGS[abs] OGS[log] OGS[atan]

max SNR 13.84 12.17 12.30 14.52 15.37
10−2σ 6.74 3.86 8.01 12.07 13.92
10−3σ 5.05 2.17 6.23 9.69 11.54

SNR is in dB; σ is the noise standard deviation.

calculated by MC-SURE closely follows the true MSE, as
illustrated in Fig 5, consistent with OGS being a continuous,
bounded estimator.

IV. EXPERIMENTAL RESULTS

A. Example 1: One-dimensional Signal Denoising

This example compares the proposed non-convex regular-
ized OGS algorithm with the earlier (convex regularized)
version of OGS and with scalar thresholding. The SNRs are
summarized in Table IV.

Figure 6a shows a synthetic group-sparse signal (same as
in [13]). The noisy signal, shown in Fig. 6b, was obtained by
adding white Gaussian noise (AWGN) with SNR of 10 dB.
For each of soft and hard thresholding, we used the threshold,
T , that maximizes the SNR. The SNR values are summarized
in the top row of Table IV.

The result obtained using the prior version of OGS [13]
is shown in Fig 6c. This is equivalent to setting φ to the
absolute value function; i.e. φ(x) = |x|. So, we denote this as
OGS[abs]. The result using the proposed non-convex regular-
ized OGS is shown in Fig. 6d. We use the arctangent penalty
function with a set to the maximum value of 1/(Kλ) that pre-
serves convexity of F ; i.e., we use φ(·) = φatan(·, 1/(Kλ)).
We denote this as OGS[atan]. We also used the logarithmic
penalty (not shown in the figure). For each version of OGS,
we used a group size of K = 5, and we set λ to maximize
the SNR.

Comparing soft thresholding and OGS[abs] (both of which
are based on convex regularization), it can be observed that
OGS[abs] gives a higher SNR, but only marginally. Both
methods leave residual noise, as can be observed for OGS[abs]
in Fig. 6c. On the other hand, comparing OGS[atan] and

OGS[abs], it can be observed that OGS[atan] (based on
non-convex regularization) is substantially superior: it has
a substantially higher SNR and almost no residual noise
is visible in the denoised signal. Comparing OGS[log] and
OGS[atan] with hard thresholding (see Table IV), it can
be observed the new non-convex regularized OGS algorithm
also yields higher SNR than hard thresholding. This example
demonstrates the effectiveness of non-convex regularization
for promoting group sparsity.

To more clearly compare the result of OGS[abs] and
OGS[atan], these two results are shown together in Fig. 7. In
Fig. 7a, the output value, x(i), is shown versus the input value,
y(i), for i ∈ ZN . Compared to OGS[abs], the OGS[atan]
algorithm better preserves the amplitude of the non-zero
values of the original signal, while better thresholding small
values. Figure 7b shows the denoising error for the two
OGS methods. It can be observed that the denoised signal
produced by OGS[atan] has much less error than OGS[abs].
(For OGS[atan], the error is essentially zero for 50% of the
signal values.)

As a second experiment, we selected T and λ for each
method, so as to reduce the noise standard deviation, σ, down
to 0.01σ, as described in Sec. III-E. The resulting SNRs, given
in the second row of Table IV, are much lower. (This method
does not maximize SNR, but it does ensure residual noise is
reduced to the specified level.) The low SNR in these cases is
due to the attenuation (bias) of large magnitude values. How-
ever, it can be observed that OGS, especially with non-convex
regularization, significantly outperforms scalar thresholding.

B. Example 2: Speech Denoising

This example evaluates the use of the proposed OGS
algorithm for the problem of speech enhancement (denoising).
We compare the OGS algorithm with several other algorithms.
For the evaluation, we use female and male speakers, multiple
sentences, two noise levels, and two sampling rates.

Let s = {s(n), n ∈ ZN} denote the noisy speech waveform
and y = {y(i), i ∈ ZN1 × ZN2} = STFT{s} denote the
complex-valued short-time Fourier transform of s. For speech
enhancement, we apply the two-dimensional form of the OGS
algorithm to y and then compute the inverse STFT; i.e.,

x = STFT−1{ogs(STFT{s};λ,K, φ)}

with K = (K1,K2) where K1 and K2 are the spectral and
temporal widths of the two-dimensional group. We implement
the STFT with 50% frame overlap and a frame duration of 32
milliseconds (e.g., 512 samples at sampling rate 16 kHz).

Throughout this example, we use the non-convex arctan-
gent penalty function with a set to its maximum value of
a = 1/(K1K2λ). In all cases, we use a fixed number of 25
iterations within the OGS algorithm.

Each sentence in the evaluation is spoken by both a male
and a female speaker. There are 15 sentences sampled at 8
kHz, and 30 sentences sampled at 16 kHz. The 8 kHz and
16 kHz signals were obtained from Ref. [38] and a Carnegie
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Fig. 6. Example 1: Group-sparse signal denoising.

Mellon University (CMU) website, respectively.1 To simulate
noisy speech, we added white Gaussian noise.

The time-frequency spectrogram of a noisy speech signal
(arctic_a0001) with an SNR of 10 dB is illustrated in
Fig. 8a. Figure 8b illustrates the result of OGS[atan] using
group size K = (8, 2); i.e., eight spectral samples by two
temporal samples. It can be observed that noise is effectively
suppressed while details are preserved.

Figure 9 compares the proposed OGS[atan] algorithm with
the prior version of OGS [13], i.e., OGS[abs]. The figure
shows a single frame of the denoised spectrograms, corre-
sponding to t = 0.79 seconds. The prior and proposed OGS
algorithms are illustrated in parts (a) and (b) respectively. In
both (a) and (b), the noise-free spectrogram, to be recovered,
is indicated in gray. (The noisy spectrogram is not illustrated).
Comparing (a) and (b), it can be observed that above 2 kHz,
OGS[atan] estimates the noise-free spectrum more accurately
than OGS[abs].

In terms of run-time, for a signal of length N = 51761 (i.e.,
3.2 seconds at sampling rate of 16 kHz), algorithms OGS[abs]
and OGS[atan] ran in 0.18 and 0.22 seconds, respectively.

1The CMU files were downloaded from http://www.speech.cs.cmu.edu/
cmu arctic/cmu us bdl arctic/wav and http://www.speech.cs.cmu.edu/cmu
arctic/cmu us clb arctic/wav. This evaluation used files arctic_a0001 -
arctic_a0030.
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Fig. 7. Example 1. Comparison of OGS[abs] and OGS[atan] in Fig. 6.

Timings were performed on a 2013 MacBook Pro (2.5 GHz
Intel Core i5) running Matlab R2011a.
Regularization parameter. We have found empirically, that
setting λ to maximize SNR yields speech with noticeable
undesirable perceptual artifacts (‘musical noise’). This known
phenomenon is due to residual noise in the STFT domain.
Therefore, we instead set the regularization parameter, λ, using
the noise suppression approach described in Sec. III-E. In
particular, we set λ so as to reduce the noise standard deviation
σ down to (3 × 10−4)σ. We have selected this value so as
to optimize the perceptual quality of the denoised speech
according to informal listening tests. In particular, this value
is effective at suppressing the ‘musical noise’ artifact. We also
note that this approach leads to greater regularization (higher
λ) than SNR-optimization of λ.
Group size. The perceptual quality of speech denoised using
OGS depends on the specified group size. As we apply OGS
to a time-frequency spectrogram, the size of the group with
respect to both the temporal and spectral dimensions must be
specified. We let K1 and K2 denote the number of spectral
and temporal samples, respectively.

One approach to select the pair of parameters, (K1,K2), is
to maximize the SNR for a set of denoising experiments. We
have performed OGS denoising for each of 30 noisy speech
signals using all pairs (K1,K2) such that 1 6 K1 6 10 and

http://www.speech.cs.cmu.edu/cmu_arctic/cmu_us_bdl_arctic/wav
http://www.speech.cs.cmu.edu/cmu_arctic/cmu_us_bdl_arctic/wav
http://www.speech.cs.cmu.edu/cmu_arctic/cmu_us_clb_arctic/wav
http://www.speech.cs.cmu.edu/cmu_arctic/cmu_us_clb_arctic/wav
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Fig. 8. Spectrograms before and after denoising (male speaker). (a) Noisy
signal. (b) OGS[atan] with group size K = (8, 2). Gray scale represents
decibels.
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Fig. 9. Frequency spectrum of denoised spectrograms at t = 0.79 seconds.
(a) OGS[abs]. (b) OGS[atan]. The group size is K = (8, 2) in both cases.
The noise-free spectrum is in gray.
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Fig. 10. Denoised spectrograms; female speaker. (a) Noisy spectrogram with
SNR = 10 dB. (b, c) Areas A and B, denoised with group size (8, 2). (d, e)
Areas A and B, denoised with group size (2, 4).

1 6 K2 6 4. In this experiment, we have used speech sampled
at 16 kHz, an SNR of 10 dB, and we have selected λ in each
case according to the preceding note [suppression of noise
down to (3 × 10−4)σ]. We found that for the male speaker,
a group size of (8, 2) maximized the SNR most frequently.
This conforms with our informal listening tests with different
group sizes. The denoised spectrum in Figure 8b was obtained
using this group size of (8, 2).

For the female speaker, the experiment reveals that a group
size of (2, 4) maximizes the SNR most frequently. However,
we found that this group size results in poor perceptual
quality. To investigate the effect of group size, the denoised
spectrograms using groups of size (8, 2) and (2, 4) are illus-
trated in Fig. 10. Fig. 10a shows the noisy spectrogram (file
arctic_a0001). We highlight two areas of the spectrogram.
The low-frequency area, denoted ‘A’, exhibits a high level of
temporal correlation. On the other hand, the high-frequency
area, denoted ‘B’, exhibits a high level of spectral correlation.
Figs. 10(b,c) show areas A and B of the spectrogram obtained
using group size (8, 2). Figs. 10(d,e) show areas A and B of
the spectrogram obtained using group size (2, 4).

It can be observed in area A that group size (2, 4) suppresses
the inter-formant noise more completely than group size (8, 2).
Conversely, in area B, group size (8, 2) recovers the original
spectrogram more accurately than group size (2, 4). Since area
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A is representative of more of the spectrogram than area B,
the SNR-optimal group size for the whole spectrogram is
(2, 4). However, due to the distortion of high frequencies, as
in area B, group size (2, 4) yields the perceptually inferior
result. Moreover, the lower inter-formant noise suppression of
group size (8, 2) appears to have a negligible adverse impact
on perceptual quality. Therefore, even though group size (2, 4)
yields a higher SNR for the female speaker, we use group size
(8, 2) in the evaluation of OGS due to its superior perceptual
quality. This points to the potential value of allowing groups
in OGS to be sized adaptively, as in Ref. [64]. However, we
do not explore such an extension of OGS in this work.

We conducted equivalent evaluations at the sampling rate
of 8 kHZ in order to determine an appropriate group size for
this case. We found that group sizes of K = (7, 2) and K =
(3, 3) were optimal in terms of SNR, for the male and female
speaker, respectively. As above, we selected the group size
K = (7, 2) for both genders for its better perceptual quality.

Algorithm comparisons. In Table V we compare the
OGS[atan] algorithm with several other speech enhancement
algorithms. The table summarizes the output SNR for two
sampling rates, male and female speakers, and two input SNR
(noise) levels. Each SNR value is averaged over 30 or 15
sentences, depending on the sampling rate. It can be observed
that the proposed algorithm, OGS[atan], achieves the highest
SNR in each case. (We also note that in all cases, OGS is used
not with SNR-optimized λ, but with the larger λ, set according
to the noise suppression method. The SNR of OGS could be
further increased, but at the cost of perceptual quality.)

The algorithms used in the comparison are: spectral sub-
traction (SS) [4], the log-MMSE algorithm (LMA) [15], the
subspace algorithm (SUB) [31], block thresholding (BT) [64],
and persistent shrinkage (PS) [61]. For SS, LMA, and SUB,
we used the MATLAB software provided in Ref. [38]. For the
BT2 and PS3 algorithms, we used the software provided by
the authors on their web pages.

Furthermore, we additionally evaluated each method with
empirical Wiener post-processing (EWP) [29]. The EWP
technique is based on mean square error minimization and
its effectiveness has been well demonstrated [13], [18], [64].
In Table V, SNR values obtained using EWP are shown in
parenthesis for each algorithm and scenario.

The proposed algorithm, OGS[atan], achieves the highest
SNR for both noise levels and genders. For example, for the
male speaker with an input SNR of 10 dB, OGS[atan] attains
the highest output SNR of 16.58 dB. BT achieves the second
highest, 15.61 dB. In terms of perceptual quality, SS and LMA
have clearly audible artifacts; BT and PS have slight audible
artifacts; OGS[atan], OGS[abs] and SUB have the least audible
artifacts. However, SUB has a high computational complexity
due to eigenvalue factorization. Compared to OGS[abs] and
SUB, OGS[atan] better preserves the perceptual quality of high
frequencies. Similar results can be observed for different noise
levels and the female speaker.

Empirical Wiener post-processing (EWP) improves the SNR

2http://www.cmap.polytechnique.fr/∼yu/research/ABT/samples.html
3http://homepage.univie.ac.at/monika.doerfler/StrucAudio.html

TABLE V
AVERAGE SNR FOR SIX SPEECH ENHANCEMENT ALGORITHMS.

(a) fs = 16 kHz (average of 30 samples)

Male / Input SNR (dB) Female / Input SNR (dB)

Method 5 10 5 10

SS 9.44 (10.96) 13.63 (14.99) 13.36 (14.59) 16.86 (17.93)
LMA 10.24 (11.64) 13.30 (15.25) 13.30 (15.16) 15.71 (18.13)
SUB 11.28 (12.31) 13.94 (16.11) 13.39 (15.31) 15.05 (18.48)
BT 12.00 (12.49) 15.61 (16.10) 15.09 (15.69) 18.18 (18.78)
PS 10.75 (12.00) 14.17 (15.73) 12.67 (14.71) 16.39 (18.13)
OGS[abs] 10.48 (12.36) 13.92 (16.00) 12.91 (15.53) 16.24 (18.60)
OGS[atan] 12.93 (12.98) 16.58 (16.58) 15.37 (15.83) 18.68 (19.02)

(b) fs = 8 kHz (average of 15 samples)

Male / Input SNR (dB) Female / Input SNR (dB)

Method 5 10 5 10

SS 10.73 (11.75) 14.57 (15.54) 10.45 (11.59) 14.38 (15.47)
LMA 10.66 (12.00) 13.75 (15.61) 9.34 (11.05) 12.51 (14.85)
SUB 10.83 (12.29) 14.03 (16.06) 9.57 (11.53) 13.25 (15.55)
BT 11.80 (12.48) 15.45 (16.10) 11.54 (12.40) 15.12 (16.00)
PS 10.45 (12.20) 13.64 (15.75) 9.11 (11.20) 13.52 (15.47)
OGS[abs] 9.96 (12.25) 13.42 (15.87) 9.34 (11.91) 12.81 (15.70)
OGS[atan] 12.80 (12.97) 16.41 (16.53) 12.10 (12.62) 15.84 (16.31)

for all methods at all noise levels, but least for OGS[atan].
EWP is effective for increasing SNR because it effectively
rescales large-amplitude STFT coefficients that are unneces-
sarily attenuated by these algorithms (the results of which
are biased toward zero). The fact that EWP yields the least
improvement for OGS[atan] demonstrates that this algorithm
inherently induces less bias than the other algorithms.

According to informal listening tests (conducted at input
SNR of 10 dB and sampling rate of fs = 16 kHz), the effect of
EWP on audible artifacts depends on the algorithm. Although
EWP improves the SNR of SS and LMA, denoising artifacts
are still clearly perceptible. EWP improves the perceptual
quality of BT and PS slightly. EWP also improves perceptual
quality of OGS[abs] and SUB, which already had good
perceptual quality. The effect of EWP on OGS[atan] is almost
imperceptible; its good perceptual quality is maintained.

Figure 11 illustrates the individual SNRs of the 30 sentences
denoised using each of the utilized algorithms (male, input
SNR of 10 dB, fs of 16 kHz). It can be observed that EWP im-
proves each algorithm, except OGS[atan]. However, as shown
in Fig. 11b, OGS[atan] outperforms the other algorithms in
terms of SNR irrespective of EWP.

V. REMARKS

Several aspects of the non-convex regularized OGS algo-
rithm are sufficiently similar to those of the convex regularized
OGS algorithm [13] that we refer the reader to Ref. [13].
In particular, remarks in Ref. [13] regarding the convergence
behavior, implementation issues, computational complexity,
and relationship of OGS to FOCUSS [54], apply also to the
version of OGS presented here.

The proximal framework has proven effective for convex
optimization problems arising in sparse signal estimation and
reconstruction [16], [17]. The proposed non-convex regular-
ized OGS algorithm resembles a proximity operator; however,

http://www.cmap.polytechnique.fr/~yu/research/ABT/samples.html
http://homepage.univie.ac.at/monika.doerfler/StrucAudio.html
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Fig. 11. SNR comparison of speech enhancement algorithms (30 male
sentences, input SNR of 10 dB). Each algorithm is used without EWP (a) and
with EWP (b). The sentences are ordered according the SNR of OGS[atan].

a proximity operator is defined in terms of a convex penalty
function [17]. Hence, the proposed approach appears to fall
outside the proximal framework. Due to the effectiveness of
the proximal framework for solving inverse problems much
more general than denoising (e.g. deconvolution), it will be
of interest in future work to explore the extent to which
the proposed method can be used for more general inverse
problems by using proximal-like techniques.

VI. CONCLUSION

This paper formulates group-sparse signal denoising as a
convex optimization problem with a non-convex regularization
term. The regularizer is based on overlapping groups so as to
promote group-sparsity. The regularizer, being concave on the
positive real line, promotes sparsity more strongly than any
convex regularizer can. For several non-convex penalty func-
tions, parameterized by a variable, a, it has been shown how
to constrain a to ensure the optimization problem is strictly
convex. We also develop a fast iterative algorithm for the
proposed approach. Numerical experiments demonstrate the
effectiveness of the proposed method for speech enhancement.

APPENDIX

Proposition 2 uses the following result.

Lemma A. Suppose G : R→ R is continuous, and the second
derivative of G exists satisfying G′′(x) > 0 on R\{0}. If
G′(0−) < G′(0+), then G is strictly convex on R.

Proof. From Theorem 6.4 of [30], if a function f is continuous
on an open interval I and possesses a strictly increasing right-
derivative, or a strictly increasing left-derivative, on I , then f
is strictly convex on I .

Hence, it is sufficient to prove the right derivative of G is
strictly increasing on R. Let x1 < x2. Case 1: If x2 < 0 or
x1 > 0, then G′(x+

1 ) < G′(x+
2 ) because G′′(x) is positive on

R\{0}. Case 2: If x1 < 0 and x2 > 0, then G′(x+
1 ) < G(0−) <

G(0+) 6 G(x+
2 ). Hence G′(x+) is strictly increasing and G

is strictly convex.

The following result is similar to Lemma 1 of Ref. [65]
which considered only convex regularizers. We use this lemma
to justify the initialization of the set S in Sec. III-C.

Lemma B. Let φ(·, a) : R → R satisfy the assumptions in
Sec. II-B and define F as in (10). Suppose F is strictly convex
and that x∗ is the minimizer of F .

1) If y(i) = 0 for some i, then x∗(i) = 0.
2) If y(i) > 0 for some i, then x∗(i) > 0.
3) If y(i) < 0 for some i, then x∗(i) 6 0.
4) |x∗(i)| 6 |y(i)|, ∀i ∈ ZN .

Proof. 1) Define S = {i ∈ ZN : y(i) 6= 0} and S̄ = ZN \S.
Given x ∈ RN , define x̃ ∈ RN as x̃(i) = x(i) for i ∈ S,
and x̃(i) = 0 for i ∈ S̄. For each group i ∈ ZN , we have
‖xi,K‖2 > ‖x̃i,K‖2. Since φ(t) is increasing for t > 0, we
have φ(‖xi,K‖2) > φ(‖x̃i,K‖2). Therefore, for all x ∈ RN ,

F (x) =
1

2
‖y − x‖22 +

∑
i

λφ(‖xi,K‖2; a)

=
1

2
‖y − x̃‖22 +

1

2

∑
i∈S̄

|x(i)|2 +
∑
i

λφ(‖xi,K‖2; a)

>
1

2
‖y − x̃‖22 +

∑
i

λφ(‖x̃i,K‖2; a)

= F (x̃).

This implies x∗(i) = 0 for i ∈ S̄.
2) Proof by contradiction. Suppose y(i) > 0, but x∗(i) < 0

for some i. Define x̃ by x̃(i) = 0, and x̃(n) = x∗(n) for
n 6= i. It can be shown as in 1) that F (x∗) > F (x̃). This
contradicts the optimality of x∗.

3) The proof is like 2).
4) Proof by contradiction. Suppose y(i) > 0, but x∗(i) >

y(i) for some i. Define x̃ by x̃(i) = y(i), and x̃(n) = x∗(n)
for n 6= i. It can shown as in 1) that F (x∗) > F (x̃). This
contradicts the optimality of x∗. Together with 2), it follows
that if y(i) > 0, then 0 6 x∗(i) 6 y(i). Similarly, if y(i) 6 0,
then y(i) 6 x∗(i) 6 0.
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function [x, cost] = ogs1(y, K, lam, pen, rho, Nit)

% [x, cost] = ogs1(y, K, lam, pen, rho, Nit)
% Overlapping Group Shrinkage/Thresholding (1D)
%
% Input
% y : input signal (1D array)
% lam : regularization parameter
% K : group size
% pen : penalty (’abs’, ’log’, ’atan’, ’rat’)
% rho : normalized non-convexity parameter, 0 <= rho <= 1
% Nit : number of iterations
%
% Output
% x : output signal
% cost : cost function history
%
% Note: for the L1 penalty (’abs’), ’rho’ must be 0.

% Po-Yu Chen and Ivan Selesnick
% NYU-Poly, 2013

% Perform some error checking
if strcmp(pen, ’abs’)

if rho ˜= 0
error(’Error: need rho = 0 for abs penalty’)

end
end
if rho == 0

pen = ’abs’;
elseif (rho < 0) || (rho > 1)

error(’Error: need 0 <= rho <= 1.’)
end

a_max = 1/(lam*K);
a = rho * a_max;

switch pen
case ’abs’

phi = @(x) abs(x);
wfun = @(x) abs(x);
a = 0;

case ’rat’
phi = @(x) abs(x)./(1+a*abs(x)/2);
wfun = @(x) abs(x) .* (1 + a*abs(x)/2).ˆ2;

case ’log’
phi = @(x) 1/a * log(1 + a*abs(x));
wfun = @(x) abs(x) .* (1 + a*abs(x));

case ’atan’
phi = @(x) 2/(a*sqrt(3)) * (atan((1+2*a*abs(x))/sqrt(3)) - pi/6);
wfun = @(x) abs(x) .* (1 + a*abs(x) + aˆ2.*abs(x).ˆ2);

otherwise
error(’penalty must be ’’abs’’, ’’log’’, ’’atan’’, or ’’rat’’’)

end

y = y(:);
h = ones(K, 1);
x = y;
cost = zeros(1, Nit);

for it = 1 : Nit
r = sqrt( conv(abs(x).ˆ2, h, ’full’) );
cost(it) = 0.5 * sum(abs(x-y).ˆ2) + lam * sum(phi(r));
v = 1 + lam*conv( 1./( wfun(r) ), h, ’valid’);
x = y./v;

end
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function [x, cost] = ogs2(y, K1, K2, lam, pen, rho, Nit)

% [x, cost] = ogs2(y, K1, K2, lam, pen, rho, Nit)
% Overlapping Group Shrinkage/Thresholding (2D)
%
% Input
% y : observed signal (2D array)
% lam : regularization parameter
% K1, K2 : group size
% pen : ’abs’, ’log’, ’atan’ or ’rat’
% rho : normalized non-convexity parameter, 0 <= rho <= 1
% Nit : number of iterations
%
% Output
% x : output signal
% cost : cost function history
%
% Note: for the L1 penalty (’abs’), ’rho’ must be 0.

% Po-Yu Chen and Ivan Selesnick
% NYU-Poly, 2013

% Perform some error checking
if strcmp(pen, ’abs’)

if rho ˜= 0
error(’Error: need rho = 0 for abs penalty’)

end
end
if rho == 0

pen = ’abs’;
elseif (rho < 0) || (rho > 1)

error(’Error: need 0 <= rho <= 1.’)
end

a_max = 1/(lam*K1*K2);
a = rho * a_max;

switch pen
case ’abs’

phi = @(x) abs(x);
wfun = @(x) abs(x);
a = 0;

case ’rat’
phi = @(x) abs(x)./(1+a*abs(x)/2);
wfun = @(x) abs(x) .* (1 + a*abs(x)/2).ˆ2;

case ’log’
phi = @(x) 1/a * log(1 + a*abs(x));
wfun = @(x) abs(x) .* (1 + a*abs(x));

case ’atan’
phi = @(x) 2/(a*sqrt(3)) * (atan((1+2*a*abs(x))/sqrt(3)) - pi/6);
wfun = @(x) abs(x) .* (1 + a*abs(x) + aˆ2.*abs(x).ˆ2);

otherwise
disp(’penalty must be abs, log, atan, or rat’)
x = []; cost = [];
return

end

h1 = ones(K1, 1);
h2 = ones(K2, 1);
x = y;
cost = zeros(1, Nit);

for it = 1 : Nit
r = sqrt( conv2(h1, h2, abs(x).ˆ2, ’full’) );
cost(it) = 0.5 * sum(sum(abs(x-y).ˆ2)) + lam * sum(sum(phi(r)));
v = 1 + lam*conv2(h1, h2, 1./wfun(r), ’valid’);
x = y./v;

end
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