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1 Introduction

Deconvolution refers to the problem of estimating the unknown input to an LTI system when the

output signal and system response are known. In practice, the available output signal is also noisy.

For some systems, the deconvolution problem is quite straight forward; however, for systems that

are non-invertible or nearly non-invertible (e.g. narrow-band or with frequency response nulls),

the problem is more difficult. The use of an exact inverse system can greatly amplify the noise

rendering the result useless. In such cases, it is important to utilize prior knowledge regarding the

input signal so as to obtain a more accurate estimate of the input signal, even when the system is

nearly non-invertible and the observed output signal is noisy.

In some applications of deconvolution, it is known that the input signal is sparse (i.e. a spike

train, etc.) or approximately sparse. Applications of ‘sparse deconvolution’ include geophysics,

ultrasonic non-destructive evaluation, speech processing, and astronomy [11]. One approach to

sparse deconvolution involves the minimization of a cost function defined in terms of the `1 norm

[4, 6, 16]. The minimization of cost functions defined in terms of the `1 norm is useful not just for

deconvolution, but for sparse signal processing more generally. Indeed, since its early application

in geophysics, the `1 norm and sparsity have become important tools in signal processing [3]. The

tutorial [14] compares least squares and `1 norm solutions for several signal processing problems,

illustrating the advantages of a sparse signal model (when valid).

This tutorial aims to illustrate some of the principles and algorithms of sparse signal processing,

by way of considering the sparse deconvolution problem. A computationally efficient iterative algo-

rithm for sparse deconvolution is derived using the majorization-minimization (MM) optimization

method. The MM method is a simple, yet effective and widely applicable, method that replaces

a difficult minimization problem with a sequence of simpler ones [8]. Other algorithms, developed

for general `1 norm minimization, can also be used here [5,13,17]. However, the MM-derived algo-

rithm takes advantage of the banded structure of the matrices arising in the sparse deconvolution

problem. The resulting algorithm uses fast solvers for banded linear systems [1], [12, Sect 2.4].

The conditions that characterize the optimal solution are described and illustrated in Sec. 3.

With these simple conditions, the optimality of the result computed by a numerical algorithm can
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be readily verified. Moreover, as described in Sec. 4, the optimality conditions provide a straight

forward way to set the regularization parameter λ based on the noise variance (if it is known).

1.1 Problem

We assume the noisy data y(n) is of the form

y(n) = (h ∗ x)(n) + w(n), (1)

where h(n) is the impulse response of an LTI system, x(n) is a sparse signal, w(n) is white Gaussian

noise, and ‘∗’ denotes convolution. We assume here that the LTI system can be described by a

recursive difference equation,

y(n) =
∑
k

b(k)x(n− k)−
∑
k

a(k) y(n− k) (2)

where x(n) is the input signal and y(n) is the output signal.

x(n) −→ h(n) −→ y(n) = (h ∗ x)(n)

Note that the difference equation (2) can be written in matrix form as

Ay = Bx (3)

where A and B are banded matrices. For example, if the difference equation is first order,

y(n) = b(0)x(n) + b(1)x(n− 1)− a(1) y(n− 1),

then A and B have the form

A =



1

a1 1
. . .

. . .

a1 1

a1 1


, B =



b0

b1 b0
. . .

. . .

b1 b0

b1 b0


. (4)

From (3), the output y of the system can be written as

y = A−1Bx = Hx

where the system matrix H is

H = A−1B

Note that, even though A and B are banded matrices, H is not. (The inverse of a banded matrix

is not banded in general.) The data model (1) is written in matrix form as

y = Hx + w.

2



0 50 100 150 200 250 300
−0.5

0

0.5

1
Sparse Signal

0 50 100 150 200 250 300
−2

−1

0

1

2
Convolution

 

0 50 100 150 200 250 300
−1

0

1

2
Noisy data

 

Figure 1: Sparse signal x(n), output of convolution system, and observed data y(n).

Example. An example is illustrated in Fig. 1. The sparse signal x(n)

x(n) = δ(n− 50) + 0.5 δ(n− 80)− 0.3 δ(n− 100)

is the input to a convolution system. The system is second order, defined by the difference equation

coefficients:

b0 = 1, b1 = 0.8,

a0 = 1, a1 = −2r cos(ω), a2 = r2

where ω = 0.95, r = 0.9

(5)

The system has complex poles at re±jω. The output (h ∗ x)(n) exhibits decaying oscillations. The

output signal is then corrupted by additive white Gaussian noise with standard deviation σ = 0.2.

1.2 Optimization formulation

In order to estimate x(n) from the data y(n), we consider the optimization problem

arg min
x

1

2
‖y −Hx‖22 + λ‖x‖1 (6)

The use of the `1 norm as the regularization term captures the prior knowledge (or model) that x(n)

is sparse. The `1 norm is not the only way to measure sparsity, however, among convex functionals,
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it is the most natural. The regularization parameter λ > 0 should be chosen according to the level

of the noise w(n). A method for setting λ is described in Sec. 4.

Problem (6) is useful for many sparse signal processing problems, not just deconvolution. In the

general case, problem (6) is called ‘basis pursuit denoising’ (BPD) [5] or the ‘lasso’ [17]. References

[5, 17] give examples (other than deconvolution) of problems posed in this form, and motivations

for using the `1 norm.

1.3 Notation

The N -point signal x is represented by the vector

x = [x(0), . . . , x(N − 1)]T .

The `1 norm of a vector v is defined as

‖v‖1 =
∑
n

|v(n)|.

The `2 norm of a vector v is defined as

‖v‖2 =
[∑

n

|v(n)|2
] 1

2
.

2 Minimizing the cost function

The optimization problem (6) can not be solved directly — it is not differentiable. However, the

cost function is convex and therefore the theory and practice of convex optimization can be brought

to the problem. In these notes we describe an approach for solving (6), suitable whenever H has the

form A−1B where A and B are both banded. The algorithm described below converges in practice

in few iterations and is computationally efficient. It is based on the majoriziation-minimization

optimization method and exploits the availability of fast algorithms for solving banded systems of

linear equations [12, Sect 2.4]. The derivation below closely follows that in Ref. [8].

2.1 Majorization-Minimization

This section briefly describes the majorization-minimization (MM) approach [8] for minimizing a

convex cost function F (x). To minimize F (x), the majorization-minimization approach solves a

sequence of simpler optimization problems:

x(k+1) = arg min
x
Gk(x) (7)

where k is the iteration counter, k = 0, 1, 2, . . . . The function Gk(x) must be chosen as a majorizer

of F (x), i.e.

Gk(x) ≥ F (x), ∀x

Gk(x(k)) = F (x(k))
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The majorizer should be chosen so as to be relatively easy to minimize. With initialization x0, the

update (7) produces a sequence of vectors x(k), k ≥ 1, converging to the minimizer of F (x). For

more details see Ref. [8] and references therein.

In these notes, we will use a majorizer for the `1 norm. Note that

1

2
xTΛ x +

1

2
‖v‖1 ≥ ‖x‖1, [Λ]n,n =

1

|v(n)|
(8)

with equality when x = v. Therefore, the left-hand-side of (8) is a majorizer of ‖x‖1. The matrix

Λ is a diagonal matrix with elements of 1/|v| on the diagonal. The derivation of this majorizer

is illustrated in more detail in Ref. [15] where it is used to derive an algorithm for total variation

denoising.

2.2 Iterative algorithm

We will minimize the cost function

F (x) =
1

2
‖y −Hx‖22 + λ‖x‖1 (9)

using majorization-minimization (MM). A majorizer of F (x) can be obtained by majorizing just

the `1 norm using (8). In this way, a majorizer of F (x) is given by

Gk(x) =
1

2
‖y −Hx‖22 +

1

2
xTΛk x +

λ

2
‖x(k)‖1

where matrix Λk is a diagonal matrix with elements of λ/|x(k)| on the diagonal.

[Λk]n,n =
λ

|x(k)(n)|
(10)

Therefore, the MM update (7) for x(k) is

x(k+1) = arg min
x

[
1

2
‖y −Hx‖22 +

1

2
xTΛk x

]
. (11)

The last term of Gk(x) has been omitted because it does not depend on x. Note that (11) is

quadratic in x so the minimizer can be written using linear algebra. The solution to (11) can be

written explicitly as

x(k+1) =
(
HTH + Λk

)−1
HTy (12)

or in terms of A and B, as

x(k+1) =
(
BT (AAT )−1B + Λk

)−1
BTA−Ty. (13)

Although (13) is mathematically valid, there are two problems with this update. First, as

elements of x go to zero, elements of Λk go to infinity; so the update (13) may become numerically

inaccurate. (Note that, due to sparsity of x, it is expected and intended that elements of x do in fact
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go to zero!) Second, the update (13) calls for the solution to a large system of linear equations which

has a high computational cost. Moreover, the system matrix is not banded, because (AAT )−1 is

not banded; so fast solvers for banded systems can not be used here. Both issues are by-passed by

using the matrix inverse lemma as suggested in Ref. [9].

Using the matrix inverse lemma, the matrix inverse in (13) can be rewritten as(
BT (AAT )−1B + Λk︸ ︷︷ ︸

not banded . . .

)−1
= Λ−1

k −Λ−1
k BT

(
AAT + BΛ−1

k BT︸ ︷︷ ︸
banded!

)−1
BΛ−1

k (14)

The indicated matrix is banded because A, B, and Λ are all banded. For convenience, we define

Wk = Λ−1
k , i.e.,

[Wk]n,n =
|x(k)(n)|

λ
. (15)

Then, we can write(
BT (AAT )−1B + Λk︸ ︷︷ ︸

not banded . . .

)−1
= Wk −WkB

T
(
AAT + BWkB

T︸ ︷︷ ︸
banded!

)−1
BWk. (16)

Using (16), the update (13) can be implemented as

g← BTA−Ty (17)

Wk ←
1

λ
diag(|x(k)|) (18)

x(k+1) ←Wk

[
g −BT

(
AAT + BWkB

T
)−1

BWkg
]

(19)

Equations (18) and (19) constitute the loop of the algorithm. Note that all matrices arising in the

update equations are banded, hence the matrix computations can be implemented with fast high

efficiency low-memory algorithms [1]. Also note that Wk, not Λk, appears in the update equations,

so the problem of division by zero (or by very small numbers) does not arise.

The update equations (17)-(19) constitute an algorithm for solving (6). It is only necessary to

initialize x0 and set k = 1. Suitable initializations for x0 include either x0 = y or x0 = HTy.

A MATLAB program deconvL1 implementing sparse deconvolution using this algorithm is given

in Sec. 7. The program uses sparse matrix structures so that MATLAB calls fast solvers for banded

systems [1] by default.

2.3 Example

For the data shown in Fig. 1, the sparse deconvolution solution is shown in Fig. 2. The solution

was obtained using the MM algorithm described above. Due to the properties of MM algorithms,

the cost function is monotonically decreasing, as reflected by the cost function history shown in

Fig. 2. For this example, 100 iterations of the MATLAB program deconvL1 took 54 msec on a

MacBook (2.4 GHz Intel Core 2 Duo) running MATLAB version 7.8.
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Figure 2: Sparse deconvolution of the data shown in Fig. 1. The deconvolution is performed by

`1 norm minimization using the MM algorithm.

Figure 3: Animation of sparse deconvolution as a function of the regularization parameter λ. The

animation shows the effect of λ on the solution. (Animation requires Adobe Reader.)

Note that the solution depends on λ. Fig. 3 is an animation that shows the sparse deconvolution

as a function of λ.1 Each frame of the animation shows the solution for a different value of λ. The

animation illustrates how the solution depends on the regularization parameter λ. For small λ, the

solution is very noisy; for large λ, the solution is overly attenuated. The question of how to set λ

will be discussed in Section 4.

Least squares. It is informative to compare sparse deconvolution with least squares deconvolution.

A least squares version of problem (6) is:

arg min
x

1

2
‖y −Hx‖22 +

λ

2
‖x‖22 (20)

which has the solution

xLS =
(
HTH + λI

)−1
HTy.

1The animation requires Adobe Reader. (At the time of writing, other pdf viewers will not show the animation.)
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Figure 4: Least squares deconvolution.

Like the `1 norm solution, this can be rewritten using the matrix inverse lemma so as to exploit

the computational efficiency of fast solvers for banded systems.

Fig. 4 shows the least square solution for a particular value of λ. Compared to the sparse

deconvolution solution, the least square solution is both noisier and attenuated. Reducing λ leads

to an even noisier solution. Increasing λ leads to further attenuation of the solution. The sparse

solution is superior to the least square solution here, because in this example, the sparse signal

model is valid.

3 Optimality conditions

It turns out that the solution to the `1 norm optimization problem (6) must satisfy conditions that

can be readily checked [2]. Using these conditions, it can be verified if the obtained result really is

the optimal solution. In addition, the optimality conditions lead to a simple approach for setting

the regularization parameter, λ, to be discussed in Sec. 4.

If x minimizes (6), then it must satisfy:

|HT (y −Hx)| ≤ λ (21)

where the absolute value |·| is taken element-wise.

For the sparse signal x illustrated above in Fig. 2, the vector HT (y − Hx) is illustrated in

Fig. 5a. The dashed line in Fig. 5a is λ. The figure shows that x does indeed satisfy (21).

Condition (21) by itself does not guarantee that x is the solution to (6). It is necessary but not

sufficient.

Define

g = HT (y −Hx).

Then x minimizes (6) if and only if

g(n) = λ, for x(n) > 0

g(n) = −λ, for x(n) < 0

|g(n)| ≤ λ, for x(n) = 0.

(22)

This condition is illustrated in Fig. 5b as a scatter plot. Each point in the plot represents a pair

(x(n), g(n)). It can be seen that each time sample (x(n), g(n)) must lie on the graph of the sign
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(a) The signal g = HT (y −Hx) is bounded by λ.
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(b) Scatter plot of g(n) versus x(n). The points lie on graph of the sign function.

Figure 5: Optimality conditions. The solution to (6) must satisfy the constraints (22).

function. The sparsity of x can be recognized by the fact that most of the points lie on the line

given by x = 0.

The convergence of the MM algorithm to the solution of (6) can be observed by monitoring

how closely x(k) satisfies the optimality conditions (22). Figure 6 is an animation of the scatter

plot (x(n), g(n)) as the algorithm progresses through its iterations.2 Each frame shows a different

iteration of the algorithm. As the algorithm progresses, the points in the scatter plot approach the

graph of the sign function.

4 Setting the regularization parameter, λ

Note that setting λ larger (more regularization) yields an estimate with less noise, but more signal

distortion (attenuation). Setting λ smaller (less regularization) yields an estimate with more noise.

2The animation requires Adobe Reader or Adobe Acrobat. (At the time of writing, other pdf viewers will not

show the animation.)

9



Figure 6: Animation of convergence of the MM algorithm. The points in the scatter plot approach

the optimality constraints. (Animation requires Adobe Reader.)

How can a suitable value of λ be found based on the known convolution system and noise statistics?

The optimality conditions (22) suggest a simple procedure to set the regularization parameter,

λ. First, note that if λ is sufficiently large, i.e.

λ ≥ max(|HTy|),

then the solution to (6) will be be identically zero, x ≡ 0. This follows from (22). For x ≡ 0 to be

a solution, according to (22), λ ≥ |g(n)|. When x ≡ 0, then g = HTy.

One approach to set λ is based on considering the case x ≡ 0. When x ≡ 0, then the data y

is simply the noise signal w. To ensure that the solution in this case is indeed identically zero, λ

should be chosen so that

λ ≥ max |HTw|. (23)

In practice, the noise w is not known, but its statistics may be known. In many cases, it is modeled

as zero-mean white Gaussian with known variance σ2. In this case HTw will be zero-mean Gaussian

with variance σ2 ·
∑

n|h(n)|2 where h(n) is the impulse response of the convolution system. While

(23) asks that λ be greater than the largest value of the sequence HTw, this is not directly applicable

when w is a Gaussian random vector, because its pdf is not finitely supported, i.e. the maximum

is not finite. However, a practical implementation of (23) is obtained by replacing max|HTw| by,

say, three times the standard deviation of HTw. According to the ‘three-sigma rule’, a zero-mean

Gaussian random variable rarely exceeds three times its standard deviation. Hence, we get the rule

10



0 50 100 150 200 250 300

−2

0

2

4
H

T
w

 

Figure 7: Noise analysis for setting λ.

λ ≥ 3σ

√∑
n

|h(n)|2. (24)

Note that using a value λ larger than necessary will lead to more attenuation of the signal, therefore,

we should use the smallest value λ that effectively eliminates the noise. Hence, we should set λ

equal to the value shown in (24).

For the system (5) and σ = 0.2 as used in the example illustrated in Fig. 1, the rule (24) gives

λ = 2.01. In the sparse deconvolution result shown in Fig. 2, λ = 2 was used. It is informative to

note that the signal HTw, shown in Fig. 7, has a maximum absolute value of 1.85. The value of λ,

2.01, provided by the ‘3-sigma rule’, is quite close to this value. This illustrates the effectiveness of

the rule.

If the noise w is not white, or is non-Gaussian, then the same concept can be adapted to obtain

a suitable value for λ. The result will depend on the autcorrelation function or other properties of

the noise, depending on what is known.

5 Example: Sparse deconvolution of speech

As a second example, we apply sparse deconvolution to a segment of voiced speech, illustrated in

Fig. 8. The speech waveform is eight milliseconds in duration, with a sampling rate of Fs = 7418

samples/second.3

It is common to model voiced speech y(n) as the output of a filter driven by a spiky pulse-train

x(n),

x(n) −→ H(z) −→ y(n)

where the filter H(z) is an all-pole filter (AR filter). The filter H(z) is usually obtained by using

AR modeling applied to a short segment of speech. Each segment of speech is modeled using a

different filter; so the filter is effectively time-varying.

Here we use an AR model of order 12 to model the speech waveform. The all-pole filter, obtained

from the speech waveform, is shown in Fig. 8. Both the impulse response and pole-zero diagram

3The speech waveform is an extract of a person saying ‘Matlab’. In MATLAB: load mtlb; [b,a] = butter(2,

0.05, ’high’); y = filtfilt(b, a, mtlb); y = y(1000:1600); The high-pass filter removes baseline drift.
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Figure 8: AR modeling and sparse deconvolution applied to a segment of voiced speech.
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are shown. Instead of conventional AR modeling, sparse linear prediction can be used to obtain the

filter with improved results for speech analysis and coding [10]. Here we have used conventional

AR modeling to obtain the filter.

Using sparse deconvolution, with the output signal y(n) being the speech waveform, and with

impulse response h obtained from AR modeling, we obtain the input signal x(n), shown in Fig. 8.

To do the sparse deconvolution, we minimized (6) using the program deconvL1 in Sec. 7. The signal

x(n) is quite spiky and sparse. Note that the convolution r(n) = (h ∗ x)(n) is not equal to y(n)

exactly, because the cost function (6) does not enforce the equality. The cost function is intended

for the case where the observed signal is noisy, which is not the case here. Therefore, the signal

r(n) = (h ∗ x)(n), shown in Fig. 8, is only an approximate reconstruction of the original speech

waveform. The parameter λ can be used to trade-off between reconstruction error and sparsity of

x(n).

The exact deconvolution of the signal x(n) can be easily obtained because the filter h(n) is a

minimum-phase all-pole filter. The exact inverse system is therefore an FIR filter. Applying the

FIR filter 1/H(z) to the speech waveform yields the exact deconvolution, shown in Fig. 8. When

this signal is used as input to the filter H(z), then the output will be exactly the speech waveform

x(n). However, as clear in the figure, the exact deconvolution yields a signal that is not sparse

(compare with signal x(n)).

For the purpose of speech coding, the sparse input signal x(n) has an advantage compared to

the non-sparse signal: it is more readily compressed.

6 Conclusion

If it is known or expected that the unknown input signal x to an LTI system is sparse (e.g. ‘spiky’),

then sparse deconvolution is an appropriate approach for estimating x. It is assumed in these notes

that the system is known and is described by a recursive (or non-recursive) difference equation,

and that the available output signal is corrupted by additive white Gaussian noise.

Sparse deconvolution can be formulated as the minimization of a sparsity-regularized inverse

problem. Although not the only choice, the `1 norm is a common choice of regularizer due to its

being convex.

Sparse deconvolution based on `1 norm minimization can be implemented efficiently using:

1. A recursive difference equation as a model for the convolution system.

2. The majorization-minimization algorithm (with MM applied to the `1 norm).

3. Fast algorithms for the solution of banded systems of linear equations.

The regularization parameter λ can be set according to the noise variance (assuming the noise is

stationary and its variance is known).
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When both the filter and the input signal are unknown, then the problem is more difficult. This

is the blind deconvolution problem. Sparsity and related non-Gaussian-based approaches can be

effective for blind deconvolution; for example, see Refs. [7, 10,18].
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7 MATLAB program

function [x, cost] = deconvL1(y, lam, b, a, Nit)

% [x, cost] = deconvL1(y, lam, b, a, Nit)

% Sparse deconvolution by L1 norm minimization

% Cost function : 0.5 * sum(abs(y-H(x)).^2) + lam * sum(abs(x));

%

% INPUT

% y - noisy data

% b, a - filter coefficients for LTI convolution system H

% lam - regularization parameter

% Nit - number of iterations

%

% OUTPUT

% x - deconvolved sparse signal

% cost - cost function history

% Ivan Selesnick, selesi@poly.edu, 2012

% Algorithm: majorization-minimization with banded system solver.

y = y(:); % convert column vector

cost = zeros(1, Nit); % cost function history

N = length(y);

Nb = length(b);

Na = length(a);

B = spdiags(b(ones(N,1), :), 0:-1:1-Nb, N, N); % create sparse matrices

A = spdiags(a(ones(N,1), :), 0:-1:1-Na, N, N);

H = @(x) A\(B*x); % filter

AAT = A*A’; % A*A’ : sparse matrix

x = y; % initialization

g = B’*(A’\y); % H’*y

for k = 1:Nit

W = (1/lam) * spdiags(abs(x), 0, N, N); % W : diag(abs(x)) (sparse)

F = AAT + B*W*B’; % F : banded matrix (sparse)

x = W * (g - (B’*(F\(B*(W*g))))); % update

cost(k) = 0.5*sum(abs(y-H(x)).^2) + lam*sum(abs(x)); % cost function value

end
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