Least Squares with Examples in Signal Processing

Ivan Selesnick
selesi@nyu.edu
June 6, 2022

1 Introduction

These notes address (approximate) solutions to linear equations by least squares.\footnote{Matlab software to reproduce the examples in these notes is available at \url{http://eeweb.poly.edu/iselesni/lecture_notes/}} We deal with the ‘easy’ case wherein the system matrix is full rank. If the system matrix is rank deficient, then other methods are needed, e.g., QR decomposition, singular value decomposition, or the pseudo-inverse [2, 3, 5].

In these notes, least squares is illustrated by applying it to several basic problems in signal processing:

1. Linear prediction
2. Smoothing
3. Deconvolution
4. System identification
5. Estimating missing data

For the use of least squares in filter design, see [1].

Notation

We denote vectors in lower-case bold, i.e.,

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}. \]

(1)

We denote matrices in upper-case bold. The transpose of a vector or matrix in indicated by a superscript \(T \), i.e., \(\mathbf{x}^T \) is the transpose of \(\mathbf{x} \).

The notation \(\| \mathbf{x} \|_2 \) refers to the Euclidian length of the vector \(\mathbf{x} \), i.e.,

\[\| \mathbf{x} \|_2 = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_N|^2}. \]

(2)
The ‘sum of squares’ of x is denoted by $\|x\|_2^2$, i.e.,
\[\|x\|_2^2 = \sum_n |x(n)|^2 = x^T x.\]
(3)

The ‘energy’ of a vector x refers to $\|x\|_2^2$.

In these notes, it is assumed that all vectors and matrices are real-valued. In the complex-valued case, the conjugate transpose should be used in place of the transpose, etc.

2 Overdetermined equations

Consider the system of linear equations
\[y = Hx.\]

If there is no solution to this system of equations, then the system is ‘overdetermined’ or ‘inconsistent’. This frequently happens when H is a ‘tall’ matrix (more rows than columns) with linearly independent columns.

In this case, it is common to seek a solution x minimizing the energy of the error:
\[J(x) = \|y - Hx\|_2^2.\]

Expanding $J(x)$ gives
\[J(x) = (y - Hx)^T (y - Hx) \]
\[= (y^T - x^T H^T) (y - Hx) \]
\[= y^T y - y^T H x - x^T H^T y + x^T H^T H x \]
\[= y^T y - 2y^T H x + x^T H^T H x. \]
(5)

Note that each of the four terms in (5) are scalars. Note also that the scalar $x^T H^T y$ is the transpose of the scalar $y^T H x$, and hence $x^T H^T y = y^T H x$.

Taking the derivative (see Appendix 17), gives
\[\frac{\partial}{\partial x} J(x) = -2H^T y + 2H^T H x \]

Setting the derivative to zero,
\[\frac{\partial}{\partial x} J(x) = 0 \quad \Rightarrow \quad H^T H x = H^T y \]

Let us assume that $H^T H$ is invertible. Then the solution is given by
\[x = (H^T H)^{-1} H^T y. \]

This is the ‘least squares’ solution.

\[\min_x \|y - Hx\|_2^2 \quad \Rightarrow \quad x = (H^T H)^{-1} H^T y \]
(8)

In some situations, it is desirable to minimize the weighted square error, i.e., $\sum_n w_n r_n^2$ where r is the residual, or error, $r = y - Hx$, and w_n are positive weights. This corresponds to minimizing $\|W^{1/2} (y - Hx)\|_2^2$ where W is the diagonal matrix, $[W]_{n,n} = w_n$. Using (8) gives
\[\min_x \|W^{1/2} (y - Hx)\|_2^2 \quad \Rightarrow \quad x = (H^T W H)^{-1} H^T W y \]
(9)

where we have used the fact that W is symmetric.
3 Underdetermined equations

Consider the system of linear equations
\[y = Hx. \]

If there are many solutions, then the system is ‘underdetermined’. This frequently happens when \(H \) is a ‘wide’ matrix (more columns than rows) with linearly independent rows.

In this case, it is common to seek a solution \(x \) with minimum norm. That is, we would like to solve the optimization problem
\[
\min_x \|x\|_2^2 \quad \text{s.t.} \quad y = Hx. \tag{10}
\]

Minimization with constraints can be done with Lagrange multipliers. So, define the Lagrangian:
\[
\mathcal{L}(x, \mu) = \|x\|_2^2 + \mu^T(y - Hx)
\]

Take the derivatives of the Lagrangian:
\[
\frac{\partial}{\partial x} \mathcal{L}(x) = 2x - H^T\mu
\]
\[
\frac{\partial}{\partial \mu} \mathcal{L}(x) = y - Hx
\]

Set the derivatives to zero to get:
\[
x = \frac{1}{2}H^T\mu \tag{12}
\]
\[
y = Hx \tag{13}
\]

Plugging (12) into (13) gives
\[
y = \frac{1}{2}HH^T\mu.
\]

Let us assume \(HH^T \) is invertible. Then
\[
\mu = 2(HH^T)^{-1}y. \tag{14}
\]

Plugging (14) into (12) gives the ‘least squares’ solution:
\[
x = H^T(2HH^T)^{-1}y.
\]

We can verify that \(x \) in this formula does in fact satisfy \(y = Hx \) by plugging in:
\[
Hx = H[H^T(2HH^T)^{-1}y] = (HH^T)(2HH^T)^{-1}y = y \quad \checkmark
\]

So,
\[
\min_x \|x\|_2^2 \quad \text{s.t.} \quad y = Hx \quad \implies \quad x = H^T(2HH^T)^{-1}y. \tag{15}
\]

In some situations, it is desirable to minimize the weighted energy, i.e., \(\sum w_n x_n^2 \), where \(w_n \) are positive weights. This corresponds to minimizing \(\|W^{1/2}x\|_2^2 \) where \(W \) is the diagonal matrix, \([W]_{n,n} = w_n \). The derivation of the solution is similar, and gives
\[
\min_x \|W^{1/2}x\|_2^2 \quad \text{s.t.} \quad y = Hx \quad \implies \quad x = W^{-1}H^T(W^{-1}H^T)^{-1}y \tag{16}
\]

This solution is also derived below, see (26).
4 Regularization

In the overdetermined case, we minimized \(\| y - Hx \|_2^2 \). In the underdetermined case, we minimized \(\| x \|_2^2 \). Another approach is to minimize the weighted sum: \(c_1 \| y - Hx \|_2^2 + c_2 \| x \|_2^2 \). The solution \(x \) depends on the ratio \(c_2/c_1 \), not on \(c_1 \) and \(c_2 \) individually.

A common approach to obtain an inexact solution to a linear system is to minimize the objective function:

\[
J(x) = \| y - Hx \|_2^2 + \lambda \| x \|_2^2
\]

where \(\lambda > 0 \). Taking the derivative, we get

\[
\frac{\partial}{\partial x} J(x) = 2H^T(Hx - y) + 2\lambda x
\]

Setting the derivative to zero,

\[
\frac{\partial}{\partial x} J(x) = 0 \implies H^THx + \lambda x = H^Ty
\]

\[
\implies (H^TH + \lambda I)x = H^Ty
\]

So the solution is given by

\[
x = (H^TH + \lambda I)^{-1}H^Ty
\]

So,

\[
\min_x \| y - Hx \|_2^2 + \lambda \| x \|_2^2 \implies x = (H^TH + \lambda I)^{-1}H^Ty \quad (18)
\]

This is referred to as ‘diagonal loading’ because a constant, \(\lambda \), is added to the diagonal elements of \(H^TH \). The approach also avoids the problem of rank deficiency because \(H^TH + \lambda I \) is invertible even if \(H^TH \) is not. In addition, the solution (18) can be used in both cases: when \(H \) is tall and when \(H \) is wide.

5 Weighted regularization

A more general form of the regularized objective function (17) is:

\[
J(x) = \| y - Hx \|_2^2 + \lambda \| Ax \|_2^2
\]

where \(\lambda > 0 \). Taking the derivative, we get

\[
\frac{\partial}{\partial x} J(x) = 2H^T(Hx - y) + 2\lambda A^TAx
\]

Setting the derivative to zero,

\[
\frac{\partial}{\partial x} J(x) = 0 \implies H^THx + \lambda A^TAx = H^Ty
\]

\[
\implies (H^TH + \lambda A^TA)x = H^Ty
\]

So the solution is given by

\[
x = (H^TH + \lambda A^TA)^{-1}H^Ty
\]

So,

\[
\min_x \| y - Hx \|_2^2 + \lambda \| Ax \|_2^2 \implies x = (H^TH + \lambda A^TA)^{-1}H^Ty \quad (19)
\]

Note that if \(A \) is the identity matrix, then equation (19) becomes (18).
6 Constrained least squares

Constrained least squares refers to the problem of finding a least squares solution that exactly satisfies additional constraints. If the additional constraints are a set of linear equations, then the solution is obtained as follows.

The constrained least squares problem is of the form:

\[
\min_x \| y - Hx \|_2^2
\]

such that \(Cx = b \) \hspace{1cm} (20)

Define the Lagrangian,

\[
\mathcal{L}(x, \mu) = \| y - Hx \|_2^2 + \mu^T(Cx - b).
\]

The derivatives are:

\[
\frac{\partial}{\partial x} \mathcal{L}(x) = 2H^T(Hx - y) + C^T\mu
\]

\[
\frac{\partial}{\partial \mu} \mathcal{L}(x) = Cx - b
\]

Setting the derivatives to zero,

\[
\frac{\partial}{\partial x} \mathcal{L}(x) = 0 \implies x = (H^T H)^{-1}(H^T y - 0.5 C^T \mu) \hspace{1cm} (22)
\]

\[
\frac{\partial}{\partial \mu} \mathcal{L}(x) = 0 \implies Cx = b \hspace{1cm} (23)
\]

Multiplying (22) on the left by \(C \) gives \(Cx \), which from (23) is \(b \), so we have

\[
C(H^T H)^{-1}(H^T y - 0.5 C^T \mu) = b
\]

or, expanding,

\[
C(H^T H)^{-1}H^T y - 0.5C(H^T H)^{-1}C^T \mu = b
\]

Solving for \(\mu \) gives

\[
\mu = 2 \left(C(H^T H)^{-1}C^T \right)^{-1} (C(H^T H)^{-1}H^T y - b)
\]

Plugging \(\mu \) into (22) gives

\[
x = (H^T H)^{-1} \left(H^T y - C^T (C(H^T H)^{-1}C^T)^{-1} (C(H^T H)^{-1}H^T y - b) \right)
\]

Let us verify that \(x \) in this formula does in fact satisfy \(Cx = b \),

\[
Cx = C(H^T H)^{-1} \left(H^T y - C^T (C(H^T H)^{-1}C^T)^{-1} (C(H^T H)^{-1}H^T y - b) \right)
\]

\[
= C(H^T H)^{-1}H^T y - C(H^T H)^{-1}C^T (C(H^T H)^{-1}C^T)^{-1} (C(H^T H)^{-1}H^T y - b)
\]

\[
= C(H^T H)^{-1}H^T y - (C(H^T H)^{-1}H^T y - b)
\]

\[
= b \hspace{1cm} \checkmark
\]

So,

\[
\min_x \| y - Hx \|_2^2 \quad \text{s.t.} \quad Cx = b \quad \implies \quad x = (H^T H)^{-1} \left(H^T y - C^T (C(H^T H)^{-1}C^T)^{-1} (C(H^T H)^{-1}H^T y - b) \right)
\] \hspace{1cm} (24)
7 Special cases

Simpler forms of (24) are frequently useful. For example, if $H = I$ and $b = 0$ in (24), then we get

$$\min_x \|y - x\|_2^2 \quad \text{s.t.} \quad Cx = 0$$

$$\Rightarrow \quad x = y - C^T (CC^T)^{-1}Cy$$

(25)

If $y = 0$ in (24), then we get

$$\min_x \|Hx\|_2^2 \quad \text{s.t.} \quad Cx = b$$

$$\Rightarrow \quad x = (H^TH)^{-1}C^T (C(H^TH)^{-1}C^T)^{-1}b$$

(26)

If $y = 0$ and $H = I$ in (24), then we get

$$\min_x \|x\|_2^2 \quad \text{s.t.} \quad Cx = b \quad \Rightarrow \quad x = C^T (CC^T)^{-1}b$$

(27)

which is the same as (15).

8 Note

The expressions above involve matrix inverses. For example, (8) involves $(H^TH)^{-1}$. However, it must be emphasized that finding the least square solution does not require computing the inverse of H^TH even though the inverse appears in the formula. Instead, x in (8) should be obtained, in practice, by solving the system $Ax = b$ where $A = H^TH$ and $b = H^Ty$. The most direct way to solve a linear system of equations is by Gaussian elimination. Gaussian elimination is much faster than computing the inverse of the matrix A.

Examples

9 Polynomial approximation

An important example of least squares is fitting a low-order polynomial to data. Suppose the N-point data is of the form (t_i, y_i) for $1 \leq i \leq N$. The goal is to find a polynomial that approximates the data by minimizing the energy of the residual:

$$E = \sum_i (y_i - p(t_i))^2$$

where $p(t)$ is a polynomial, e.g.,

$$p(t) = a_0 + a_1 t + a_2 t^2.$$

The problem can be viewed as solving the overdetermined system of equations,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \approx \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ \vdots & \vdots & \vdots \\ 1 & t_N & t_N^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}.$$
which we denote as $y \approx Ha$. The energy of the residual, E, is written as

$$E = \|y - Ha\|_2^2.$$

Using (8), the least squares solution is given by $a = (H^T H)^{-1} H^T y$. An example is illustrated in Fig. 1.

10 Linear prediction

One approach to predict future values of a time-series is based on linear prediction, e.g.,

$$y(n) \approx a_1 y(n-1) + a_2 y(n-2) + a_3 y(n-3).$$

(28)

If past data $y(n)$ is available, then the problem of finding a_i can be solved using least squares. Finding $a = (a_0, a_1, a_2)^T$ can be viewed as one of solving an overdetermined system of equations. For example, if $y(n)$ is available for $0 \leq n \leq N - 1$, and we seek a third order linear predictor, then the overdetermined system of equations are given by

$$
\begin{bmatrix}
 y(3) \\
 y(4) \\
 \vdots \\
 y(N-1)
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3
\end{bmatrix}
=
\begin{bmatrix}
 y(2) & y(1) & y(0) \\
 y(3) & y(2) & y(1) \\
 \vdots & \vdots & \vdots \\
 y(N-2) & y(N-3) & y(N-4)
\end{bmatrix}.
$$
Figure 2: Least squares linear prediction.

which we can write as $\bar{y} = Ha$ where H is a matrix of size $(N - 3) \times 3$. Using (8), the least squares solution is given by $a = (H^T H)^{-1} H^T \bar{y}$. Note that $H^T H$ is small, of size 3×3 only. Hence, a is obtained by solving a small linear system of equations.

Once the coefficients a_i are found, then $y(n)$ for $n \geq N$ can be estimated using the recursive difference equation (28).

An example is illustrated in Fig. 2. One hundred samples of data are available, i.e., $y(n)$ for $0 \leq n \leq 99$. From these 100 samples, a p-order linear predictor is obtained by least squares, and the subsequent 100 samples are predicted.

11 Smoothing

One approach to smooth a noisy signal is based on least squares weighted regularization. The idea is to obtain a signal similar to the noisy one, but smoother. The smoothness of a signal can be measured by the energy of its derivative (or second-order derivative). The smoother a signal is, the smaller the energy of its derivative is.
Define the matrix \(D \) as
\[
D = \begin{bmatrix}
1 & -2 & 1 \\
1 & -2 & 1 \\
\vdots & \vdots & \vdots \\
1 & -2 & 1
\end{bmatrix}.
\] (29)

Then \(Dx \) is the second-order difference (a discrete form of the second-order derivative) of the signal \(x(n) \). See Appendix 18. If \(x \) is smooth, then \(\|Dx\|_2^2 \) is small in value.

If \(y(n) \) is a noisy signal, then a smooth signal \(x(n) \), that approximates \(y(n) \), can be obtained as the solution to the problem:
\[
\min_x \|y - x\|_2^2 + \lambda \|Dx\|_2^2
\] (30)

where \(\lambda > 0 \) is a parameter to be specified. Minimizing \(\|y - x\|_2^2 \) forces \(x \) to be similar to the noisy signal \(y \). Minimizing \(\|Dx\|_2^2 \) forces \(x \) to be smooth. Minimizing the sum in (30) forces \(x \) to be both similar to \(y \) and smooth (as far as possible, and depending on \(\lambda \)).

If \(\lambda = 0 \), then the solution will be the noisy data, i.e., \(x = y \), because this solution makes (30) equal to zero. In this case, no smoothing is achieved. On the other hand, the greater \(\lambda \) is, the smoother \(x \) will be.

Using (19), the signal \(x \) minimizing (30) is given by
\[
x = (I + \lambda D^T D)^{-1} y.
\] (31)

Note that the matrix \(I + \lambda D^T D \) is banded. (The only non-zero values are near the main diagonal). Therefore, the solution can be obtained using fast solvers for banded systems [6, Sect 2.4].

An example of least squares smoothing is illustrated in Fig. 3. A noisy ECG signal is smoothed using (31). We have used the ECG waveform generator ECGSYN [4].
12 Deconvolution

Deconvolution refers to the problem of finding the input to an LTI system when the output
signal is known. Here, we assume the impulse response of the system is known. The output,
y(n), is given by

\[y(n) = h(0) x(n) + h(1) x(n-1) + \cdots + h(N) x(n-N) \] \hspace{1cm} (32)

where \(x(n) \) is the input signal and \(h(n) \) is the impulse response. Equation (32) can be
written as \(y = Hx \) where \(H \) is a matrix of the form

\[
H = \begin{bmatrix}
h(0) & & & \\
h(1) & h(0) & & \\
h(2) & h(1) & h(0) & \\
& \ddots & \ddots & \ddots \\
\end{bmatrix}.
\]

This matrix is constant-valued along its diagonals. Such matrices are called Toeplitz matrices.

It may be expected that \(x \) can be obtained from \(y \) by solving the linear system \(y = Hx \).
In some situations, this is possible. However, the matrix \(H \) is often singular or almost
singular. In this case, Gaussian elimination encounters division by zeros.

For example, Fig. 4 illustrates an input signal, \(x(n) \), an impulse response, \(h(n) \), and
the output signal, \(y(n) \). When we attempt to obtain \(x \) by solving \(y = Hx \) in Matlab,
we receive the warning message: ‘Matrix is singular to working precision’ and we
obtain a vector of all NaNs (not a number).

Because \(H \) is singular, we must regularize the problem. Note that the input signal in
Fig. 4 is mostly zero, hence, it is reasonable to seek a solution \(x \) with small energy. The
signal \(x \) we seek should also satisfy \(y = Hx \), at least approximately. To obtain such a signal,
Figure 5: Deconvolution of noisy data by diagonal loading using three values of λ.

We define x, we solve the problem

$$\min_x \left\{ \|y - Hx\|_2^2 + \lambda\|x\|_2^2 \right\}$$

(33)

where $\lambda > 0$ is a parameter to be specified. Minimizing $\|y - Hx\|_2^2$ forces x to be consistent with the output signal y. Minimizing $\|x\|_2^2$ forces x to have low energy. Minimizing the sum in (33) forces x to be both consistent with y and to have low energy (as far as possible, and depending on λ). Using (19), the signal x minimizing (33) is given by

$$x = (H^TH + \lambda I)^{-1} H^Ty.$$

(34)

This technique is called ‘diagonal loading’ because λ is added the diagonal of H^TH. A small value of λ is sufficient to make the matrix invertible. The solution, illustrated in Fig. 4, is very similar to the original input signal, shown in the figure.

In practice, the available data is also noisy. In this case, the data y is given by $y = Hx + w$ where w is the noise. The noise is often modeled as an additive white Gaussian random signal. In this case, diagonal loading with a small λ will generally produce a noisy estimate of the input signal. In Fig. 4, we used $\lambda = 0.1$. When the same value is used with the noisy data, a noisy result is obtained, as illustrated in Fig. 5. A larger λ is needed so as to attenuate the noise. But if λ is too large, then the estimate of the input signal is distorted. Notice that with $\lambda = 1.0$, the noise is reduced but the height of the the pulses present in the original signal are somewhat attenuated. With $\lambda = 5.0$, the noise is reduced slightly more, but the pulses are substantially more attenuated.

To improve the deconvolution result in the presence of noise, we can minimize the energy of the derivative (or second-order derivative) of x instead. As in the smoothing example above, minimizing the energy of the second-order derivative forces x to be smooth. In order to make x both consistent with the data y and smooth, we solve the problem

$$\min_x \left\{ \|y - Hx\|_2^2 + \lambda\|Dx\|_2^2 \right\}$$

(35)
where D is the second-order difference matrix (29). Using (19), the signal x minimizing (35) is given by

$$x = (H^T H + \lambda D^T D)^{-1} H^T y.$$ \hspace{1cm} (36)

The solution obtained using (36) is illustrated in Fig. 6. Compared to the solutions obtained by diagonal loading, illustrated in Fig. 5, this solution is less noisy and less distorted.

This example illustrates the need for regularization even when the data is noise-free (an unrealistic ideal case). It also shows that the choice of regularizer (i.e., $\|x\|^2_2$, $\|Dx\|^2_2$, or other) affects the quality of the result.

13 System identification

System identification refers to the problem of estimating an unknown system. In its simplest form, the system is LTI and input-output data is available. Here, we assume that the output signal is noisy. We also assume that the impulse response is relatively short.

The output, $y(n)$, of the system can be written as

$$y(n) = h_0 x(n) + h_1 x(n-1) + h_2 x(n-2) + w(n)$$ \hspace{1cm} (37)

where $x(n)$ is the input signal and $w(n)$ is the noise. Here, we have assumed the impulse response h_n is of length 3. We can write this in matrix form as

$$[y_0 \ y_1 \ y_2 \ y_3 = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} + \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

which we denote as $y \approx Xh$. If y is much longer than the length of the impulse response h, then X is a tall matrix and $y \approx Xh$ is an overdetermined system of equations. In this case, h can be estimated using (8) as

$$h = (X^T X)^{-1} X^T y.$$ \hspace{1cm} (38)

An example is illustrated in Fig. 7. A binary input signal and noisy output signal are shown. When it is assumed that h is of length 10, then we obtain the impulse response shown. The residual, i.e., $r = y - Xh$, is also shown in the figure. It is informative to plot
Figure 7: Least squares system identification.
the root-mean-square-error (RMSE), i.e., $\|r\|_2$, as a function of the length of the impulse response. This is a decreasing function. If the data really is the input-output data of an LTI system with a finite impulse response, and if the noise is not too severe, then the RMSE tends to flatten out at the correct impulse response length. This provides an indication of the length of the unknown impulse response.

14 Missing sample estimation

Due to transmission errors, transient interference, or impulsive noise, some samples of a signal may be lost or so badly corrupted as to be unusable. In this case, the missing samples should be estimated based on the available uncorrupted data. To complicate the problem, the missing samples may be randomly distributed throughout the signal. Filling in missing values in order to conceal errors is called error concealment [7].

This example shows how the missing samples can be estimated by least squares. As an example, Fig. 8 shows a 200-point ECG signal wherein 100 samples are missing. The problem is to fill in the missing 100 samples.

To formulate the problem as a least squares problem, we introduce some notation. Let x be a signal of length N. Suppose K samples of x are known, where $K < N$. The K-point known signal, y, can be written as

$$y = Sx$$

where S is a ‘selection’ (or ‘sampling’) matrix of size $K \times N$. For example, if only the first,
second and last elements of a 5-point signal x are observed, then the matrix S is given by

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}. \quad (40)$$

The matrix S is the identity matrix with rows removed, corresponding to the missing samples. Note that Sx removes two samples from the signal x,

$$Sx = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(1) \\ x(3) \end{bmatrix} = y. \quad (41)$$

The vector y consists of the known samples of x. So, the vector y is shorter than x ($K < N$).

The problem can be stated as: Given the signal, y, and the matrix, S, find x such that $y = Sx$. Of course, there are infinitely many solutions. Below, it is shown how to obtain a smooth solution by least squares.

Note that $S^T y$ has the effect of setting the missing samples to zero. For example, with S in (40) we have

$$S^T y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y(0) \\ y(1) \\ y(2) \end{bmatrix} = \begin{bmatrix} y(0) \\ y(1) \\ 0 \\ 0 \end{bmatrix}. \quad (42)$$

Let us define S_c as the ‘complement’ of S. The matrix S_c consists of the rows of the identity matrix not appearing in S. Continuing the 5-point example,

$$S_c = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}. \quad (43)$$

Now, an estimate \hat{x} can be represented as

$$\hat{x} = S^T y + S_c^T v \quad (44)$$

where y is the available data and v consists of the samples to be determined. For example,

$$S^T y + S_c^T v = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y(0) \\ y(1) \\ y(2) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v(0) \\ v(1) \end{bmatrix} = \begin{bmatrix} y(0) \\ y(1) \\ v(0) \\ v(1) \end{bmatrix}. \quad (45)$$

The problem is to estimate the vector v, which is of length $N - K$.

Let us assume that the original signal, x, is smooth. Then it is reasonable to find v to optimize the smoothness of \hat{x}, i.e., to minimize the energy of the second-order derivative
of \hat{x}. Therefore, v can be obtained by minimizing $\|D\hat{x}\|_2^2$ where D is the second-order difference matrix (29). Using (44), we find v by solving the problem

$$\min_v \|D(S^T y + S_c^T v)\|_2^2,$$

i.e.,

$$\min_v \|DS^T y + DS_c^T v\|_2^2. \tag{47}$$

From (8), the solution is given by

$$v = -(S_c D^T D S_c^T)^{-1} S_c D^T D S^T y. \tag{48}$$

Once v is obtained, the estimate \hat{x} in (44) can be constructed simply by inserting entries $v(i)$ into y.

An example of least square estimation of missing data using (48) is illustrated in Fig. 8. The result is a smoothly interpolated signal.

We make several remarks.

1. All matrices in (48) are banded, so the computation of v can be implemented with very high efficiency using a fast solver for banded systems [6, Sect 2.4]. The banded property of the matrix

$$G = S_c D^T D S_c^T \tag{49}$$

arising in (48) is illustrated in Fig. 9.

2. The method does not require the pattern of missing samples to have any particular structure. The missing samples can be distributed quite randomly.
3. This method (48) does not require any regularization parameter λ be specified. However, this derivation does assume the available data, y, is noise free. If y is noisy, then simultaneous smoothing and missing sample estimation is required (see the Exercises).

Speech de-clipping: In audio recording, if the amplitude of the audio source is too high, then the recorded waveform may suffer from clipping (i.e., saturation). Figure 10 shows a speech waveform that is clipped. All values greater than 0.2 in absolute value are lost due to clipping.

To estimate the missing data, we can use the least squares approach given by (48). That is, we fill in the missing data so as to minimize the energy of the derivative of the total signal. In this example, we minimize the energy of the the third derivative. This encourages the filled in data to have the form of a parabola (second order polynomial), because the third derivative of a parabola is zero. In order to use (48) for this problem, we only need to change the matrix D to the following one. If we define the matrix D as

$$D = \begin{bmatrix} 1 & -3 & 3 & -1 \\ 1 & -3 & 3 & -1 \\ \cdots & \cdots & \cdots \\ 1 & -3 & 3 & -1 \end{bmatrix},$$

(50)

then Dx is an approximation of the third-order derivative of the signal x.

Using (48) with D defined in (50), we obtain the signal shown in the Fig. 10. The samples lost due to clipping have been smoothly filled in.
Figure 11: The available clipped speech waveform is shown in blue. The filled in signal, estimated by least squares, is shown in red.

Figure 11 shows both, the clipped signal and the estimated samples, on the same axis.

15 Exercises

1. Find the solution \(\mathbf{x} \) to the least squares problem:

\[
\min_{\mathbf{x}} \| \mathbf{y} - \mathbf{A}\mathbf{x} \|_2^2 + \lambda \| \mathbf{b} - \mathbf{x} \|_2^2
\]

2. Show that the solution \(\mathbf{x} \) to the least squares problem

\[
\min_{\mathbf{x}} \lambda_1 \| \mathbf{b}_1 - \mathbf{A}_1\mathbf{x} \|_2^2 + \lambda_2 \| \mathbf{b}_2 - \mathbf{A}_2\mathbf{x} \|_2^2 + \lambda_3 \| \mathbf{b}_3 - \mathbf{A}_3\mathbf{x} \|_2^2
\]

is

\[
\mathbf{x} = (\lambda_1\mathbf{A}_1^T\mathbf{A}_1 + \lambda_2\mathbf{A}_2^T\mathbf{A}_2 + \lambda_3\mathbf{A}_3^T\mathbf{A}_3)^{-1} \times (\lambda_1\mathbf{A}_1^T\mathbf{b}_1 + \lambda_2\mathbf{A}_2^T\mathbf{b}_2 + \lambda_3\mathbf{A}_3^T\mathbf{b}_3) \quad (51)
\]

3. In reference to (18), why is \(\mathbf{H}^T\mathbf{H} + \lambda \mathbf{I} \) with \(\lambda > 0 \) invertible even if \(\mathbf{H}^T\mathbf{H} \) is not?

4. Show (60).

5. Smoothing. Demonstrate least square smoothing of noisy data. Use various values of \(\lambda \). What behavior do you observe when \(\lambda \) is very high?

6. The second-order difference matrix (29) was used in the examples for smoothing, deconvolution, and estimating missing samples. Discuss the use of the third-order difference instead. Perform numerical experiments and compare results of 2-nd and 3-rd order difference matrices.

7. System identification. Perform a system identification experiment with varying variance of additive Gaussian noise. Plot the RMSE versus impulse response length. How does the plot of RMSE change with respect to the variance of the noise?

8. Speech de-clipping. Record your own speech and use it to artificially create a clipped signal. Perform numerical experiments to test the least square estimation of the lost samples.
9. Suppose the available data is noisy and that some samples are missing. Formulate a suitable least squares optimization problem to simultaneously smooth the data and recover the missing samples. Illustrate the effectiveness by a numerical demonstration (e.g., using Matlab).

16 Exercises in Signal Processing

The following exercises concern the interpretation of least square smoothing in terms of frequency responses of linear time-invariant (LTI) systems.

1. For smoothing a noisy signal using least squares, we obtained

\[x = (I + \lambda D^T D)^{-1} y, \quad \lambda > 0. \]

The matrix \(G = (I + \lambda D^T D)^{-1} \) can be understood as a low-pass filter. Using Matlab, compute and plot the output, \(y(n) \), when the input is an impulse, \(x(n) = \delta(n - n_o) \). This is an impulse located at index \(n_o \). Try placing the impulse at various points in the signal. For example, put the impulse around the middle of the signal. What happens when the impulse is located near the ends of the signal (\(n_o = 0 \) or \(n_o = N - 1 \))?

2. For smoothing a noisy signal using least squares, we obtained

\[x = (I + \lambda D^T D)^{-1} y, \quad \lambda > 0, \]

where \(D \) represents the \(K \)-th order derivative.

Assume \(D \) is the first-order difference and that the matrices \(I \) and \(D \) are infinite in size. Then \(I + \lambda D^T D \) is a convolution matrix and represents an LTI system.

(a) Find and sketch the frequency response of the system \(I + \lambda D^T D \).
(b) Based on (a), find the frequency response of \(G = (I + \lambda D^T D)^{-1} \). Sketch the frequency response of \(G \). What kind of filter is it (low-pass, high-pass, band-pass, etc.)? What is its dc gain? What is cut-off frequency (as a function of \(\lambda \))?

3. Consider the problem of deconvolution; i.e., finding the input signal \(x \) to an LTI system when the system transfer function \(H(z) \) and output signal \(y \) are known. Using least squares, one solution is given by

\[x = (H^T H + \lambda I)^{-1} H^T y \]

where \(H \) is the convolution matrix of the system. The matrix

\[G = (H^T H + \lambda I)^{-1} H^T \]

can be interpreted in terms of LTI systems.

(a) Express the frequency response of \(G \) in terms of \(H(e^{j\omega}) \).
(b) Suppose \(H(z) \) is the four-point moving average filter:

\[H(z) = \frac{1}{4}(1 + z^{-1} + z^{-2} + z^{-3}). \]

Sketch the magnitude response of \(G \), i.e., \(|G(e^{j\omega})| \).
17 Appendix: Vector derivatives

If \(f(x) \) is a function of \(x_1, \ldots, x_N \), then the derivative of \(f(x) \) with respect to \(x \) is the vector of derivatives,

\[
\frac{\partial f(x)}{\partial x} = \begin{bmatrix}
\frac{\partial f(x)}{\partial x_1} \\
\frac{\partial f(x)}{\partial x_2} \\
\vdots \\
\frac{\partial f(x)}{\partial x_N}
\end{bmatrix}.
\]

(52)

This is the gradient of \(f \), denoted \(\nabla f \). By direct calculation, we have

\[
\frac{\partial}{\partial x} x^T b = b.
\]

(53)

For example, if

\[
b = \begin{bmatrix} 3 \\ 5 \end{bmatrix},
\]

(54)

then

\[
x^T b = 3x_1 + 5x_2
\]

(55)

and so

\[
\frac{\partial}{\partial x} x^T b = \begin{bmatrix}
\frac{\partial}{\partial x_1} (3x_1 + 5x_2) \\
\frac{\partial}{\partial x_2} (3x_1 + 5x_2)
\end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.
\]

(56)

We also have

\[
\frac{\partial}{\partial x} b^T x = b.
\]

(57)

Suppose that \(A \) is a symmetric real matrix, \(A^T = A \). Then, by direct calculation, we also have

\[
\frac{\partial}{\partial x} x^T Ax = 2Ax.
\]

(58)

Also,

\[
\frac{\partial}{\partial x} (y - x)^T A(y - x) = 2A(x - y),
\]

(59)

and

\[
\frac{\partial}{\partial x} \|Ax - b\|_2^2 = 2A^T (Ax - b).
\]

(60)

We illustrate (58) by an example. Set \(A \) as the \(2 \times 2 \) matrix,

\[
A = \begin{bmatrix} 3 & 2 \\ 2 & 5 \end{bmatrix}.
\]

(61)
Then, by direct calculation
\[x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3x_1^2 + 4x_1x_2 + 5x_2^2 \]
so
\[\frac{\partial}{\partial x_1} (x^T A x) = 6x_1 + 4x_2 \]
and
\[\frac{\partial}{\partial x_2} (x^T A x) = 4x_1 + 10x_2 \]
Let us verify that the right-hand side of (58) gives the same:
\[2A x = 2 \begin{bmatrix} 3 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6x_1 + 4x_2 \\ 4x_1 + 10x_2 \end{bmatrix} \]

18 Appendix: The Kth-order difference

The first order difference of a discrete-time signal \(x(n) \), \(n \in \mathbb{Z} \), is defined as
\[y(n) = x(n) - x(n-1). \]
This is represented as a system with input \(x \) and output \(y \),
\[x \rightarrow D \rightarrow y \]
The second order difference is obtained by taking the first order difference twice:
\[x \rightarrow D \rightarrow D \rightarrow y \]
which give the difference equation
\[y(n) = x(n) - 2x(n-1) + x(n-2). \]
The third order difference is obtained by taking the first order difference three times:
\[x \rightarrow D \rightarrow D \rightarrow D \rightarrow y \]
which give the difference equation
\[y(n) = x(n) - 3x(n-1) + 3x(n-2) - x(n-3). \]
In terms of discrete-time linear time-invariant systems (LTI), the first order difference is an LTI system with transfer function
\[D(z) = 1 - z^{-1}. \]
The second order difference has the transfer function
\[D_2(z) = (1 - z^{-1})^2 = 1 - 2z^{-1} + z^{-2}. \]
The third order difference has the transfer function
\[D_3(z) = (1 - z^{-1})^3 = 1 - 3z^{-1} + 3z^{-2} - z^{-3}. \]
Note that the coefficients come from Pascal’s triangle:
\begin{align*}
1 & \\
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
& : & : & : & :
\end{align*}

References

