
L1-NORM PENALIZED LEAST SQUARES WITH SALSA

IVAN SELESNICK

Abstract. This lecture note describes an iterative optimization algorithm, ‘SALSA’, for solving L1-norm

penalized least squares problems. We describe the use of SALSA for sparse signal representation and

approximation, especially with overcomplete Parseval transforms. We also illustrate the use of SALSA to

perform basis pursuit (BP), basis pursuit denoising (BPD), and morphological component analysis (MCA).

The algorithm, ‘SALSA’, was developed by Afonso, Bioucas-Dias, and Figueiredo.

1. Introduction

Numerous sparsity-based signal processing methods are based on `1-norm penalized least squares. This

approach has been used for denoising, deconvolution, missing data estimation, signal separation, and other

problems. It has been demonstrated that combining the augmented Lagrangian approach and the variable

splitting technique is an effective algorithmic approach for solving linear inverse problems with sparse regu-

larization [1]. An algorithm, called SALSA, developed in Ref. [1], is based on this approach. This algorithm

is notable due to (i) its flexibility in handling various problems, and (ii) its fast convergence in practice.

More generally, the alternating direction method of multipliers (ADMM) has been shown lately to be highly

effective for large scale non-smooth optimization [3].

This note is intended to complement the tutorial [7] which intentionally omitted detailed descriptions of

algorithms for solving the `1-norm optimization problems described therein. In particular, this note describes

the derivation of SALSA to solve two problems. The first problem is `1-norm penalized least squares; i.e.,

xopt = arg min
x

1

2
‖y −Ax‖22 + λ‖x‖1. (BPD)

The second problem is that of finding the solution to a system of linear equations with minimal `1-norm;

i.e.,

xopt = arg min
x
‖x‖1 (BP)

such that Ax = y.

These problems are sometimes referred to as basis pursuit denoising (BPD) and basis pursuit (BP), respec-

tively [4].

For a vector x ∈ CN , the `1 and `2 norms are defined by

‖x‖1 :=

N−1∑
n=0

|xn|, ‖x‖22 :=

N−1∑
n=0

|xn|2. (1)

Sections 2 and 3 derive iterative algorithms to solve BPD and BP, respectively. Based on these algorithms,

Section 4 derives iterative algorithms for ‘dual BPD’ and ‘dual BP’. These algorithms can be used to

implement morphological component analysis (MCA) for nonlinear signal decomposition. Section 5 describes
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transforms, A, useful for sparse signal representation and approximation. Section 6 presents examples of

BP, BPD, dual BP, and dual BPD applied to simple signals.

1.1. The Augmented Lagrangian. For the constrained optimization problem,

arg min
z

E(z) (2)

such that Cz− b = 0,

the augmented Lagrangian is defined as

LA(z,α, µ) = E(z) + αT(Cz− b) + µ‖Cz− b‖22. (3)

The vector, α, are Lagrange multipliers. Version-2 of the augmented Lagrangian method (ALM) [1], to solve

the constrained problem is given by

initialize: µ > 0, d

repeat

z← arg min
z

E(z) + µ‖Cz− d‖22 (4a)

d← d− (Cz− b) (4b)

end

The indented assignment operations are iterated until convergence. This method is also known as the method

of multipliers (MM); so this iterative algorithm is referred to as ALM/MM in [1].

The ALM/MM algorithm calls for a positive scalar, µ, which is like a step-size parameter. Its value can

affect the convergence speed of the algorithm. But it does not affect the solution to which it converges.

2. L1 norm regularized least squares (BPD)

Given an observed vector y and matrix A, consider the problem of finding a sparse vector x such that

y ≈ Ax. Using the `1 norm as a measure of sparsity, the problem can be formulated as

xopt = arg min
x

1

2
‖y −Ax‖22 + ‖λ� x‖1 (5)

The notation λ�x denotes element-wise multiplication of the equal-size vectors λ and x; i.e., [λ�x]i = λixi.

When all elements of vector λ are the same value (i.e., λi = λ ∈ R+), then (5) can be written as

arg min
x

1

2
‖y −Ax‖22 + λ‖x‖1 (6)

which is the more common form. However, it will sometimes be useful to allow non-uniform regularization

of x, so we will use the form (5).

Applying variable splitting to (5) yields

arg min
x,u

1

2
‖y −Ax‖22 + ‖λ� u‖1 (7)

such that u− x = 0

Variable splitting introduces an auxiliary variable, but it also decouples the terms of the objective function.

(Actually, it moves the coupling into the constraint, which is handled subsequently through alternating

minimization.)

Problem (7) can be put written in the form of (2) by setting

z1 = x, z2 = u, z =

[
z1

z2

]
, C =

[
I, −I

]
, b = 0, (8)
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and

E(z) =
1

2
‖y −Az1‖22 + ‖λ� z2‖1. (9)

Now that the problem is expressed in the form of (2), the ALM/MM algorithm (4) can be applied. Using

ALM/MM to solve problem (7), we obtain the iterative algorithm:

initialize: µ > 0, d

repeat

x,u← arg min
x,u

1

2
‖y −Ax‖22 + ‖λ� u‖1 +

µ

2
‖u− x− d‖22 (10a)

d← d− (u− x) (10b)

end

The vector d must be initialized prior to the iteration. We usually initialize d to the zero vector.

As proven by Eckstein and Bertsekas, in a more general setting, if the minimization in (10a) is performed

alternately between x and u, the algorithm will still converge to the global minimum [5]. This technique

is known as alternating direction method of multipliers (ADMM). Alternating between minimization with

respect to each of x and u, we obtain the algorithm:

initialize: µ > 0, d

repeat

u← arg min
u
‖λ� u‖1 +

µ

2
‖u− x− d‖22 (11a)

x← arg min
x

1

2
‖y −Ax‖22 +

µ

2
‖u− x− d‖22 (11b)

d← d− (u− x) (11c)

end

This algorithm is called SALSA (split augmented Lagrangian shrinkage algorithm) in Ref. [1]. In fact,

SALSA is more general, as it allows a general regularizer, φ(x), not just the `1 norm.

The minimizations (11a) and (11b) can be performed in explicit form. The minimization problem in (11a)

is separable in ui. Its solution is expressed explicitly in terms of the soft-thresholding rule (see Appendix A).

The minimization problem in (11b) is a constrained least squares problem; hence, its solution is available in

explicit form (in terms of a matrix inverse). Utilizing the explicit forms for the two minimization problems,

we obtain the following algorithm.

initialize: µ > 0, d

repeat

u← soft(x + d, λ/µ) (12a)

x←
(
AHA + µ I

)−1 (
AHy + µ (u− d)

)
(12b)

d← d− u + x (12c)

end

The operator AH is the complex conjugate (Hermitian) transpose of A.

With a change of variables, v = u− d, the arithmetic operations can be slightly reduced.
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Algorithm 1: Algorithm for basis pursuit denoising (5).

initialize: µ > 0, d

repeat

v← soft(x + d, λ/µ)− d (13a)

x←
(
AHA + µ I

)−1 (
AHy + µv

)
(13b)

d← x− v (13c)

end

Sometimes, in (13b) it can be useful to use the matrix inverse lemma (see Appendix B) to write(
µ I + AHA

)−1
=

1

µ
I− 1

µ
AH

(
µ I + AAH

)−1
A, (14)

because in certain cases, µ I + AAH is easier to invert than µ I + AHA.

2.1. When A is a Tight Frame. In some signal processing applications, A is a ‘wide’ matrix satisfying

AAH = p I, p > 0. (15)

In this case, it is sometimes said that the columns of A form a tight frame. The matrix AH can also be

considered an overcomplete Parseval transform. For example, the columns of A may be an overcomplete set

of a complex sinusoids with closely spaced frequencies.

In many cases, we will have p = 1 in (15). However, for some problems (e.g., dual BPD in Sect. 4) we

will have p 6= 1.

Using (15) in (14), we obtain:(
µ I + AHA

)−1
=

1

µ
I− 1

µ(µ+ p)
AHA. (16)

Then the update equation for x in (13b) becomes:

x← 1

µ

(
AHy + µv

)
− 1

µ(µ+ p)
AH A

(
AHy + µv

)
(17)

which simplifies to

x← 1

µ
AHy + v − p

µ(µ+ p)
AHy − 1

µ+ p
AH Av (18a)

=
1

µ+ p
AHy + v − 1

µ+ p
AHAv (18b)

= v +
1

µ+ p
AH (y −Av) (18c)

Therefore, Algorithm 1 can be written as follows.

initialize: µ > 0,d

repeat

v← soft(x + d, λ/µ)− d (19a)

x← v +
1

µ+ p
AH (y −Av) (19b)

d← x− v (19c)

end

The algorithm can be simplified by a slight rearrangement of operations, as follows.
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Algorithm 2: Algorithm for basis pursuit denoising (5) with AAH = p I.

initialize: µ > 0, d

repeat

v← soft(x + d, λ/µ)− d (20a)

d← 1

µ+ p
AH (y −Av) (20b)

x← d + v (20c)

end

Note that this algorithm does not involve any matrix inverse. If fast implementations are available for A

and AH, then each iteration of the algorithm is fast.

3. L1 Norm Regularized Solutions to Linear Systems (BP)

Given an observed signal y, consider the problem of finding a sparse vector x that solves Ax = y. Using

the `1 norm as a measure of sparsity, the problem can be formulated as:

arg min
x

‖λ� x‖1 (21)

such that Ax = y

This problem is known as basis pursuit [4]. By applying the variable splitting technique, we obtain an

equivalent optimization problem:

arg min
x,u

‖λ� u‖1 (22)

such that Ax = y

u− x = 0

We will use the ‘partly’ augmented Lagrangian:

LA(x,u,λ, µ) = ‖λ� u‖1 + λT(u− x) + 0.5µ‖u− x‖22 + λ2(Ax− y) (23)

Using ALM/MM so solve the problem, we obtain the algorithm:

initialize: µ > 0, d

repeat

x,u←

arg min
x,u
‖λ� u‖1 + 0.5µ‖u− x− d‖22

such that Ax = y
(24a)

d← d− (u− x) (24b)

end

By alternately minimizing with respect to x and u (as in Sec. 2), we obtain the algorithm:

initialize: µ > 0, d

repeat

u← arg min
u
‖λ� u‖1 + 0.5µ‖u− x− d‖22 (25a)

x←

arg min
x
‖u− x− d‖22

such that Ax = y
(25b)
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d← d− (u− x) (25c)

end

The minimization with respect to u in (25a) can be expressed explicitly in terms of soft-thresholding. The

minimization with respect to x in (25b) is a constrained least squares problem which admits an explicit

solution in terms of matrix inverses. Using the explicit solution to each of the two minimization problems,

we obtain the algorithm:

initialize: µ > 0, d

repeat

u← soft(x + d, λ/µ) (26a)

x← (u− d) + AH(AAH)−1(y −A(u− d)) (26b)

d← d− (u− x) (26c)

end

With a change of variables, v = u− d, the arithmetic operations can be slightly reduced, as follows.

initialize: µ > 0, d

repeat

v← soft(x + d, λ/µ)− d (27a)

x← v + AH(AAH)−1(y −Av) (27b)

d← x− v (27c)

end

The algorithm can be further simplified by a slight rearrangement of operations, as follows.

Algorithm 3: Algorithm for basis pursuit (21).

initialize: µ > 0, d

repeat

v← soft(x + d, λ/µ)− d (28a)

d← AH(AAH)−1(y −Av) (28b)

x← d + v (28c)

end

Note that at every iteration, x satisfies Ax = y. This is because

A(d + v) = A
[
AH(AAH)−1(y −Av) + v

]
(29a)

= AAH(AAH)−1(y −Av) + Av (29b)

= (y −Av) + Av (29c)

= y (29d)

3.1. When A is a Tight Frame. Consider the BP problem (21) when the columns of A form a tight

frame; i.e., when A satisfies (15). Then Algorithm 3 can be written as follows.

Algorithm 4: Algorithm for basis pursuit (21) with AAH = p I.

initialize: µ > 0, d
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repeat

v← soft(x + d, λ/µ)− d (30a)

d← 1

p
AH(y −Av) (30b)

x← d + v (30c)

end

Note that this is very similar to Algorithm 2; only the constant in (20b) is different. Likewise, if A and AH

are fast, then then the algorithm as a whole is fast.

4. Dual BP and dual BPD

In several signal processing applications, it is useful to to model a signal y as

y ≈ A1x1 + A2x2. (31)

In particular, this model is used in morphological component analysis (MCA) for the nonlinear separation

of signal components [11, 10]. There are several ways to formulate the MCA problem. Two approaches for

MCA are based on forms of BP and BPD.

In the following, we assume that Ai are tight frames with frame constant p = 1; i.e.,

A1A
H
1 = I, A2A

H
2 = I. (32)

4.1. Dual BPD. If the signal, y, is noisy, then it is appropriate to allow a residual. In this case, MCA may

be formulated as,

arg min
x1,x2

1

2
‖y −A1x1 −A2x2‖22 + ‖λ1 � x1‖1 + ‖λ2 � x2‖1. (33)

This is a special case of BPD (5) with

A =
[
A1 A2

]
, x =

[
x1

x2

]
, λ =

[
λ1

λ2

]
. (34)

Since Ai are tight frames (32), we have:

AAH =
[
A1 A2

] [AH
1

AH
2

]
= A1A

H
1 + A2A

H
2 = 2 I. (35)

Therefore, we can use Algorithm 2 in Sect. 2.1 with p = 2. Hence, we obtain the following algorithm for

dual BPD.

initialize: µ > 0, d

repeat[
v1

v2

]
← soft

([
x1

x2

]
+

[
d1

d2

]
,

[
λ1/µ

λ2/µ

])
−

[
d1

d2

]
(36a)[

d1

d2

]
← 1

µ+ 2

[
AH

1

AH
2

](
y −

[
A1 A2

] [v1

v2

])
(36b)[

x1

x2

]
←

[
d1

d2

]
+

[
v1

v2

]
(36c)

end

This algorithm can be expressed as follows.
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Algorithm 5: Algorithm for dual BPD (33) with AiA
H
i = I.

initialize: µ > 0, di

repeat

vi ← soft(xi + di, λi/µ)− di, i = 1, 2 (37a)

c← y −A1v1 −A2v2 (37b)

di ←
1

µ+ 2
AH

i c, i = 1, 2 (37c)

xi ← di + vi, i = 1, 2 (37d)

end

4.2. Dual Basis Pursuit. If the signal, y, is noise-free, then it is appropriate to use an equality constraint.

In this case MCA may be formulated as,

arg min
x1,x2

‖λ1 � x1‖1 + ‖λ2 � x2‖1 (38)

such that y = A1x1 + A2x2.

This is a special case of BP (21) with

A =
[
A1 A2

]
, x =

[
x1

x2

]
, λ =

[
λ1

λ2

]
. (39)

Since we assume that Ai are tight frames (32), we have (35). Therefore, we can use Algorithm 4 with p = 2.

Hence, we obtain the following algorithm for dual BP.

initialize: µ > 0, d

repeat[
v1

v2

]
← soft

([
x1

x2

]
+

[
d1

d2

]
,

[
λ1/µ

λ2/µ

])
−

[
d1

d2

]
(40a)[

d1

d2

]
← 1

2

[
AH

1

AH
2

](
y −

[
A1 A2

] [v1

v2

])
(40b)[

x1

x2

]
←

[
d1

d2

]
+

[
v1

v2

]
(40c)

end

This algorithm can be expressed as follows.

Algorithm 6: Algorithm for dual BP (38) with AiA
H
i = I.

initialize: µ > 0, di

repeat

vi ← soft(xi + di, λi/µ)− di, i = 1, 2 (41a)

c← y −A1 v1 −A2 v2 (41b)

di ←
1

2
AH

i c, i = 1, 2 (41c)

xi ← di + vi, i = 1, 2 (41d)

end



L1-NORM PENALIZED LEAST SQUARES WITH SALSA 9

Note that this is the same as Algorithm 5 except for a constant in (37c).

Note that Algorithms 5 and 6 involve no matrix inverses. If Ai and AH
i are fast, then these algorithms as

a whole are fast. For example, if the Ai are FFTs and/or short-time Fourier transforms, then they have low

implementation complexity and can be admit high parallelism. Such a combination of transforms is useful

for decomposing a signal into narrow-band and wide-band signal components, even when the components

overlap in both time and frequency [9]. Alternately, by taking the Ai as wavelet transforms with different

Q-factors, a signal can be decomposed into low and high resonance components [8].

5. Transforms for Sparse Signal Representation

In order to apply BP and BPD, a transform, A, is need for the sparse representation of the signal of

interest. In dual BP and dual BPD, two transforms, A1 and A2, are needed. The transforms should be

chosen such that they enables a sparse representation (or approximation) of the signals of interest.

To emphasize that the representation of a signal y is in terms of transform coefficients, we use the letter

‘c’ for coefficients. For example, we write y = Ac as a representation of signal y with respect to transform

A where c is the vector of transform coefficients.

5.1. Zero-padded DFT. To sparsely represent a real or complex set of sinusoids, we take A to be the

normalized inverse of an K-point DFT with K ≥ N . Specifically, A : CK → CN is defined by

[Ac]n =
√
K [DFT−1

K {c}]n, c ∈ CK , n ∈ ZN . (42)

where DFTK is the discrete Fourier transform (DFT) with zero-padding up to a total length of K. The

multiplication by
√
K normalizes A so that AAH = IN . Note that, when K > N , the matrix A is ‘wide’

rather than square. Accordingly, in the definition of A, the inverse K-point DFT is truncated down to N

samples. The matrix A is a sub-matrix of the the inverse K-point DFT matrix (the first N rows of the

K ×K inverse DFT matrix). Consequently, AH : CN → CK is defined by

[AHx]k =
1√
K

[DFTK{x}]k, x ∈ CN , k ∈ ZK (43)

where the N -point vector x is zero-padded to length K prior to the DFT computation.

The `2 norm of all the columns of A are equal, specifically,

‖a‖2 =

√
N

K
. (44)

This value can be used for setting regularization parameters, λ, in BPD and dual BPD. When the DFT is

critically sampled (i.e., K = N), then A is simply the conventional DFT, normalized so as to be unitary, in

which case (44) gives unity, as expected.

The DFT operator A can be implemented in MATLAB as

truncate = @(c, N) c(1:N);

A = @(c) sqrt(K) * truncate(ifft(c), N);

and AH as

AH = @(x) fft(x, K)/sqrt(K);

These fast matrix-free implementations of A and AH can be used for dual BP and dual BPD only if the

utilized optimization algorithms are also ‘matrix-free’, as are the SALSA algorithms.
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5.2. STFT. To sparsely represent a signal composed of oscillatory pulses, we take A to be the normalized

inverse of a short-time Fourier transform (STFT). The STFT has several parameters: the frame length,

overlapping factor, and DFT length. We typically use 50% overlapping and a DFT length equal to at least

the frame length. Consequently, the STFT is at least two-times over-sampled. If the time-frequency array

of STFT coefficients is of size M ×K, for a signal of length N , then A : CM×K → CN is defined as

[Ac]n = [STFT−1{c}]n, n ∈ ZN (45)

and AH : CN → CM×K is defined as

[AHx](m,k) = [STFT{x}](m,k), m ∈ ZM , k ∈ ZK . (46)

With a suitably implemented STFT, we have AAH = IN .

The `2 norm of all the columns of A are equal. Specifically, when 50% overlapping is used, the norm is

given by

‖a‖2 =

√
R

2K
. (47)

This value can be used for setting regularization parameters, λ, in BPD and dual BPD.

We implement the STFT operators A and AH in MATLAB as

A = @(c) ipSTFT(c, R, N);

AH = @(x) pSTFT(x, R, K);

where pSTFT and ipSTFT are our implementations of the STFT, and its inverse, designed to satisfy AAH =

IN . The ‘p’ stands for ‘Parseval’. The parameter R is the frame length. The parameter K is the DFT

length, with K ≥ R. (The function pSTFT is not the built-in MATLAB spectrogram function, which is not

designed to ensure invertibility.) The implementation of the STFT, so as to satisfy AAH = I, is described

in [6].

6. Examples

Example 1 (BP). This example illustrates the sparse representation of complex sinusoids in white complex

noise using BP with a zero-padded DFT. We assume that the signal y admits a sparse representation of the

form

y = Ac, y ∈ CN , c ∈ CK , A ∈ CN×K (48)

where A is a zero-padded DFT and c is a sparse set of DFT coefficients. Given y, we find a sparse c by

solving the basis pursuit problem,

copt = arg min
c
‖c‖1 (49)

such that Ac = y.

Figure 1 shows the (real part of the) complex signal, y, in (a); the DFT coefficients, AHy in (b); and the

BPD-optimized coefficients, copt, in (c). In this example, the signal y is of length N = 100 samples. In Fig. 1

(and subsequent figures), the sampling rate is taken to be one sample/sec. in the axis labeling.

Example 2 (BPD). This example illustrates the estimation of real-valued sinusoids in white noise using

basis pursuit denoising (BPD). We assume the noisy data, y, is given by

y = Ac + w, y,w ∈ CN , c ∈ CK , A ∈ CN×K (50)
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Figure 1. Example 1. Sparse representation of complex sinusoids in white complex noise

using BP with a zero-padded DFT. (a) Complex sinusoids, y. (b) DFT of data, AHy. (c)

Sparse DFT coefficients, copt, obtained by solving the BP problem.

where c is a sparse set of DFT coefficients and w is a white Gaussian vector. This example uses real-valued

sinusoids and noise, but we may still assume complex-valued signals to solve the problem. Due to conjugate

symmetry properties of the DFT, the denoised signal will be real-valued.

Given y, we estimate the sinusoids by solving the BPD problem,

copt = arg min
c

1

2
‖y −Ac‖22 + λ‖c‖1. (51)

For the transform, A, we use the zero-padded DFT (100 signal samples in the time domain, 256 DFT

coefficients in the frequency domain). The optimal coefficients, copt, are obtained using Algorithm 2. Figure 2

shows the noisy data, y, in (a); the noisy DFT coefficients, AHy in (b); the BPD-optimized coefficients, copt,

in (c); and the denoised signal, Acopt, in (d). In the figure, only the positive frequency axis (0 ≤ f ≤ 0.5) is

shown because the DFT coefficients are conjugate symmetric.

Example 3 (BPD). This example illustrates the estimation of a real-valued pulse in white noise using basis

pursuit denoising (BPD). We assume the noisy data, y, is given by

y = Ac + w, y,w ∈ CN , (52)

where c is a sparse set of STFT coefficients and w is a white Gaussian vector.
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Figure 2. Example 2. Estimation of sinusoids in white noise using BPD with a zero-

padded DFT. (a) Sinusoids in white noise, y. (b) DFT of noisy data, AHy. (c) Sparse DFT

coefficients, copt, obtained by solving the BPD problem. (d) Denoised signal, Acopt.

Given y, we estimate the pulse by solving the dual BP problem,

copt = arg min
c

1

2
‖y −Ac‖22 + λ‖c‖1. (53)

For the transform, A, we use the STFT. The optimal coefficients, copt, are obtained using Algorithm 2.

Figure 3 shows the noisy data, y, in (a); the noisy STFT coefficients, AHy in (b); the BPD-optimized

coefficients, copt, in (c); and the denoised signal, ŝ = Acopt, in (d).

Example 4 (dual-BP). We illustrate the separation of a sinusoid and a pulse in the noise-free case. The

data is given by

y = s1 + s2, y, s1, s2 ∈ RN . (54)
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Figure 3. Example 3. Estimation of a pulse in white noise using BPD with a STFT. (a)

Pulse in white noise, y. (b) STFT of noisy data, AHy. (c) Sparse STFT coefficients, copt,

obtained by solving the BPD problem. (d) Denoised signal, Acopt.

Given y, we estimate s1 and s2 by solving the dual BP problem,

{copt1 , copt2 } = arg min
c1,c2

λ1‖c1‖1 + λ2‖c2‖1 (55)

such that y = A1c1 + A2c2.

The optimal coefficients, ci, are found using Algorithm 6. We then set ŝi = Aic
opt
i for i = 1, 2.

The example is illustrated in Fig. 4. For transform A1, we use a zero-padded DFT with two-times

oversampling; i.e., N = 100 and K = 200 in (42) and (43). For transform A2, we use the STFT with frame
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length R = 16, DFT length K = 16, and 50% overlapping. Hence, both A1 and A2 are oversampled by two,

and ‖a1‖2 = ‖a1‖2 = 1/
√

2.

In the dual BP problem, we set λ1 = λ2 = 0.5. To solve the dual BP problem, we run Algorithm 6. As a

result, we obtain sparse coefficients, copti , as illustrated in Fig. 4. The coefficient vector, copt1 , is a sparse set

of DFT coefficients. The coefficient array, copt2 , is a sparse set of STFT coefficients, displayed as an image

in a time-frequency plane. From the coefficients, we construct the two signals, x1 and x2 as xi = Aici, for

i = 1, 2.

Example 5 (dual-BPD). We illustrate the separation and estimation of a sinusoid and a pulse in the case

of additive white Gaussian noise. The data is given by

y = s1 + s2 + w, y, s1, s2,w ∈ RN (56)

where w is a zero-mean white Gaussian vector with variance σ2. Figure 5 shows the noisy signal, y.

Given y, we estimate s1 and s2 by solving the dual BPD problem,

{copt1 , copt2 } = arg min
c1,c2

1

2
‖y −A1c1 −A2c2‖22 + λ1‖c1‖1 + λ2‖c2‖1. (57)

The components si are then estimated as,

ŝi = Aic
opt
i , i = 1, 2. (58)

For transform A1, we use a zero-padded DFT; i.e., N = 100 and K = 256 in (42) and (43) (100 signal

samples in the time domain, 256 DFT coefficients in the frequency domain). Hence, the dual BPD algorithm

can be run using radix-2 FFTs exclusively. For this A1, we have ‖a1‖2 =
√

100/256 = 5/8. For transform

A2, we use the STFT with frame length R = 16, DFT length K = 16, and 50% overlapping. For this A2,

we have ‖a2‖2 = 1/
√

2.

In the dual BPD problem, we set λ1 = β‖a1‖2σ, and λ2 = β‖a2‖2σ where β = 2.5. This choice of λi is

discussed in [other notes]. Generically, one may set β ∈ [2.5, 3]. To solve the dual BPD problem, we run

Algorithm 5. As a result, we obtain sparse coefficients, copt1 and copt2 , as illustrated in Fig. 5. (c1 is a sparse

vector of DFT coefficients, c2 is a sparse two-dimensional array of STFT coefficients). From the coefficients,

we obtain the two signals, x1 and x2 as xi = Aici, for i = 1, 2.

Example 6 (dual-BP). This example illustrates dual BPD with a speech waveform.

To be completed . . . .

7. Conclusion

This note has described the algorithm, SALSA, for standard `1 norm minimization problems arising in

sparse signal processing. SALSA can also be used for more general problems (not only the quadratic data

fidelity) and more general regularization terms (not only the `1 norm penalty); see Ref. [1] for more details.

An extension of SALSA to the constrained formulation of the sparsity-penalized least squares problem, called

CSALSA, is developed in Ref. [2].

In this note, we emphasize that when Ai are tight frames, then the presented algorithms for BP, BPD,

dual BP, and dual BPD are:

(1) Matrix-free: The Ai and AH
i appear only at operators. No elements of Ai need to be individually

accessed. Hence, Ai do not need to be stored as matrices. It is sufficient to implement the operators

as algorithms. Fast algorithm for Ai and Ai can be exploited.

(2) Low complexity: The main computation is Ai and AH
i .

(3) Globally convergent: Any initialization leads to an optimal solution (the objective functions are

convex).



L1-NORM PENALIZED LEAST SQUARES WITH SALSA 15

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4
y = s

1
 + s

2

Time (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
DFT coefficients (c

1
) [Output of dual−BP]

Frequency (Hz)

a
b

s
( 

c
1
 )

STFT coefficients (c
2
) [Output of dual−BP]

Time (sec)

F
re

q
u
e
n
c
y
 (

H
z
)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4
Sinusoid component (reconstructed from c

1
)

re
a
l(
A

1
 c

)1
)

Time (sec)

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4
Pulse component (reconstructed from c

2
)

re
a
l(
A

2
 c

2
)

Time (sec)

Figure 4. Example 4. Separation of a sinusoid and pulse using dual-BP with a zero-padded

DFT and STFT. (a) Data, x. (b) Sparse DFT coefficients, copt1 . (c) Sparse STFT coefficients,

copt2 . (b) Estimated sinusoid, A1c
opt
1 . (c) Estimated pulse, A2c

opt
2 . The coefficients, copt1 and

copt2 , are obtained by solving the dual-BP problem.
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Figure 5. Example 5. Estimation of a sinusoid and pulse in white noise using dual-BPD

with a zero-padded DFT and STFT. (a) Nois-free data. (b) Noisy data, x. (c) Sparse

DFT coefficients, copt1 . (d) Estimated sinusoid, A1c
opt
1 . (e) Sparse STFT coefficients, copt2 .

(f) Estimated pulse, A2c
opt
2 . The coefficients, copt1 and copt2 , are obtained by solving the

dual-BPD problem.

If Ai and AH
i are fast, then these algorithms as a whole are fast. For example, if the Ai are FFTs

and/or short-time Fourier transforms, then they have low implementation complexity and can admit high

parallelism. Such a combination of transforms is useful for decomposing a signal into narrow-band and wide-

band signal components, even when the components overlap in both time and frequency. An application

of this method to radar signal processing is described in Ref. [9]. Alternately, by taking the Ai as wavelet

transforms with different Q-factors, a signal can be decomposed into low and high resonance components

[8].

Appendix A. Soft Threshold Function

The soft-thresholding function, soft : C× R+ → C, is defined as

soft(x, T ) = max
(
1− T/|x|, 0

)
· x. (59)
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Figure 6. The soft threshold function on the real line.

The soft-threshold function on the real-line is illustrated in Fig. 6.

When we apply soft-thresholding to a vector, x ∈ CN , we apply it component-wise; i.e.

[soft(x, T )]i = soft(xi, T ). (60)

If both x and T are vectors of equal length, then

[soft(x,T)]i = soft(xi, Ti). (61)

Appendix B. Matrix Inverse Lemma

The matrix inverse lemma is given by

(A + BCdD)
−1

= A−1 −A−1B
(
C−1 + DA−1B

)−1
DA−1. (62)

From (62), we obtain(
µ I + AHA

)−1
=

1

µ
I− 1

µ
AH

(
µ I + AAH

)−1
A. (63)
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