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1 Introduction

The ‘Tunable Q-Factor Wavelet Transform’ (TQWT) is a flexible fully-discrete wavelet transform [5]. The

TQWT toolbox is a set of Matlab programs implementing and illustrating the TQWT. The programs validate

the properties of the transform, clarify how the transform can be implemented, and show how it can be used.

The TQWT is similar to the rational-dilation wavelet transform (RADWT) [2], but the TQWT does not

require that the dilation-factor be rational.

2 Parameters

The main parameters for the TQWT are the Q-factor, the redundancy, and the number of stages (or levels),

as listed in Table 1.

The Q-factor, denoted Q, affects the oscillatory behavior the wavelet; specifically, Q affects the extent to

which the oscillations of the wavelet are sustained. Roughly, Q is a measure of the number of oscillations the

wavelet exhibits. For Q, a value of 1.0 or greater can be specified. (Q can be real-valued.) The definition of

the Q-factor of an oscillatory pulse is the ratio of its center frequency to its bandwidth,

Q =
fo

BW
.

This terminology comes from the design of electronic circuits.

The parameter r is the redundancy of the TQWT when it is computed using infinitely many levels.

Here ‘redundancy’ means total over-sampling rate of the transform (the total number of wavelet coefficients

divided by the length of the signal to which the TQWT is applied.) The specified value of r must be greater

than 1.0, and a value of 3.0 or greater is recommended. (When r is close to 1.0, the wavelet will not be

well localized in time — it will have excessive ringing which is generally considered undesirable.) The actual

redundancy will be somewhat different than r because the transform can actually be computed using only

a finite number of levels. Moreover, when the radix-2 version of the TQWT is used, the redundancy will
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Figure 1: Wavelet transform with three stages (J = 3).

be greater than the specified r due to zero-padding performed within the radix-2 TQWT. Therefore, the

parameter r affects the redundancy of the TQWT but it is not exactly equal to its redundancy.

The number of stages (or levels) of the wavelet transform is denoted by J . The transform consists of a

sequence of two-channel filter banks, with the low-pass output of each filter bank being used as the input

to the successive filter bank. The parameter J denotes the number of filter banks. Each output signal

constitutes one subband of the wavelet transform. There will be J + 1 subbands: the high-pass filter output

signal of each filter bank, and the low-pass filter output signal of the final filter bank. For example, a 3-stage

wavelet transform is illustrated in Fig. 1.

3 Functions

The main toolbox functions are listed in Table 2. The main functions for the TQWT are tqwt_radix2

and itqwt_radix2. These functions compute the forward and inverse of the radix-2 version of the TQWT.

The radix-2 version of the transform uses FFTs which are powers of 2 in length. The functions tqwt and

itqwt also compute the forward and inverse TQWT, but use FFTs of various lengths and are therefore less

computationally efficient.

In practice, the radix-2 version of the TQWT should be used because of its relative computationally

efficiency. The non-radix-2 functions, tqwt and itqwt, are provided in the toolbox primarily for completeness:

to illustrate an implementation of the TQWT as it is described in [5] on which the radix-2 version is based.

4 Notes

So as to keep the programs minimal, there is almost no error checking of function input parameters. The

user of these functions must keep careful track of parameters.

Send comments/questions to selesi@poly.edu

Website:

http://eeweb.poly.edu/iselesni/TQWT/index.html

The former URL (http://taco.poly.edu/selesi/TQWT/index.html) is no longer functional.
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Table 1: TQWT Parameters.

Parameter Description note

Q Q-factor Q ∈ R, Q ≥ 1

Use Q = 1 for non-oscillatory signals. A higher value of Q

is appropriate for oscillatory signals.

r Redundancy r ∈ R, r > 1

The total over-sampling rate when the TQWT is computed

over many levels. It is recommended to select r ≥ 3 in

order that the analysis/synthesis functions (wavelets) be

well localized.

J Number of stages (levels) of the TQWT J ∈ Z, J ≥ 1

J is the number of times the two-channel filter bank is

iterated. There will be a total of J + 1 subbands. (The

last subband will be the low-pass subband.)
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Table 2: List of functions.

Function Description

tqwt_radix2.m Radix-2 TQWT

itqwt_radix2.m Inverse radix-2 TQWT

tqwt.m TQWT (less efficient than radix-2 version)

itqwt.m Inverse TQWT

Utility functions

PlotSubbands.m Plot subbands of TQWT

PlotEnergy Plot distribution of signal energy across subbands

MaxLevels Maximum number of levels

PlotFreqResps.m Plot frequency responses of the TQWT

PlotWavelets.m Plot wavelets

ComputeWavelets.m Compute wavelets

ComputeNow.m Compute norms of wavelets

tqwt_fc.m Center frequencies

Sparsity functions

tqwt_bp.m Sparse representation using basis pursuit (BP)

tqwt_bpd.m Sparse approximation using basis pursuit denoising (BPD)

dualQ Resonance decomposition (BP with dual Q-factors)

dualQd Resonance decomposition (BPD with dual Q-factors)

Demo functions

demo1.m Illustrate the use of functions and syntax

demo1_radix2.m Illustrate the use of functions and syntax

sparsity_demo.m Reproduces Example 2 in [5]

resonance_demo.m Demonstration of resonance decomposition

Sub-functions

afb.m Analysis filter bank

sfb.m Synthesis filter bank

lps.m Low-pass scaling

next.m Next power of two

uDFT.m unitary DFT (normalized DFT)

uDFTinv.m unitary inverse DFT (normalized inverse DFT)
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5 Examples

The following Matlab code snippet creates a test signal x, and calls the forward and inverse TQWT (radix-2

version) and verifies its perfect reconstruction property.

% Verify perfect reconstruction property

Q = 1; r = 3; J = 8; % TQWT parameters

x = test_signal(4); % Make test signal

N = length(x); % Length of test signal

w = tqwt_radix2(x,Q,r,J); % TQWT

y = itqwt_radix2(w,Q,r,N); % Inverse TQWT

recon_err = max(abs(x - y)) % Reconstruction error

% recon_err =

% 3.8858e-16

The function tqwt_radix2 returns a cell array w of wavelet coefficients. The first subband (the high-frequency

subband) is given by w{1}. As eight stages of the TQWT are computed in this example, there are a total

of nine subbands. The last subband, w{9}, being the low-pass subband. The length of each subband can be

seen as follows:

>> w’

ans =

[1x256 double]

[1x256 double]

[1x128 double]

[1x128 double]

[1x64 double]

[1x64 double]

[1x32 double]

[1x16 double]

[1x16 double]

>> length(w) % number of subbands

ans =

9

>> size(w{4}) % length of subband w{4}

ans =

1 128

>> length(x) % length of test signal x

ans =

256
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In this case, there is a total of 960 wavelet coefficients. So the actual redundancy is 960/256 = 3.75 which is

more than the parameter r which was set to 3.0 above. The higher redundancy is due primarily to the use

of the radix-2 version of the TQWT here.

Subbands: The subbands can be displayed with the function PlotSubbands. This syntax is

PlotSubbands(x,w,Q,r,J1,J2,fs). This function displays subbands J1 through J2 as illustrated in the

code snippet below. The parameter fs refers to the sampling frequency of the signal, which is set to 1

sample/second here. Below, subbands 1 through 9 are displayed, although a smaller range of subbands can

be displayed if desired (for example, if some subbands are negligible). In the figure, the signal x is shown at

the top.

fs = 1;

figure(1), clf

PlotSubbands(x,w,Q,r,1,J+1,fs);
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Q = 1.00, r = 3.00, Levels = 8

The function PlotSubbands has an option, ’E’, that displays the energy in each subband as a percentage

of the total energy. In addition, the subbands can be displayed with a ‘stem’-style with the option ’stem’.

figure(1), clf

PlotSubbands(x,w,Q,r,1,J+1,fs,’E’,’stem’);
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Energy: The TQWT satisfies Parseval’s theorem, meaning that the total energy of the wavelet coefficients

equals the energy of the signal. This is illustrated in the following code snippet.

% Verify Parseval’s theorem

E = sum(x.^2); % Energy of signal

Ew = 0; % Energy in wavelet domain

for j = 1:J+1

Ew = Ew + sum(abs(w{j}).^2);

end

fprintf(’Signal energy = %f\n’,E)

fprintf(’Energy in wavelet domain = %f\n’, Ew)

% >> Signal energy = 20.728991

% >> Energy in wavelet domain = 20.728991

It can also be useful to know how the energy of a signal is distributed across the subbands. The function

PlotEnergy computes the energy in each subband and displays it as a bar graph.

% Plot distribution of energy across subbands

figure(1), clf

subplot(3,1,1:2)

e = PlotEnergy(w);
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Note that subband 1 corresponds to high-frequencies, while subband 9 corresponds to the low-pass band.

Wavelets: The wavelets may be displayed for a specified set of subbands using the function PlotWavelets.

The syntax is PlotWavelets(N,Q,r,J1,J2) where N is the length of the wavelets (in samples), Q and r

are the Q-factor and redundancy parameters, and J1 and J2 are the first and last subbands for which the

wavelet is to be computed. The syntax PlotWavelets(...,’radix2’) specifies that the wavelets should

be computed using the radix-2 version of the TQWT. For example, the following code snippet displays the

wavelets for subbands 3 through 8 (using Q and r previously set).

% Display wavelets for subband 3 through 8

Q = 1; r = 3; J = 8; % TQWT parameters

PlotWavelets(250,Q,r,3,8,’radix2’);
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Frequency Responses: The frequency decomposition performed by the TQWT can be displayed using

the function PlotFreqResps.

% Plot frequency response of the TQWT

Q = 1; r = 3; J = 8; % TQWT parameters

subplot(2,1,1)

PlotFreqResps(Q, r, J)
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The low Q-factor (Q = 1.0) can be recognized in both the shape of the wavelets and in the plot of the

frequency responses: The wavelets have a low-oscillation behavior and the frequency responses are wide

relative to their center frequencies.

Due to the constant-Q property, the frequency responses have equal width on a log frequency axis. The

following Matlab commands change the frequency axis to a log scale.

% Plot frequency response of the TQWT on log frequency axis

Q = 1; r = 3; J = 8; % TQWT parameters

PlotFreqResps(Q, r, J)

set(gca,’xscale’,’log’)

set(gca,’xtick’,0.5*2.^(-6:0))

xlim([0.01 0.5])
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Effect of parameter r: Increasing r, while keeping Q unchanged, has the effect of increasing the overlap

between adjacent frequency responses. The parameter r does not effect the general shape of the wavelet of

frequency response (they are controlled by Q). With a larger r, the number of levels J should be increased

in order to cover the same frequency range, because of the increased overlap. The following figure shows

the frequency responses (on log frequency scale) with an r of 6. This is twice the r used above, so twice the
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number of frequency bands are needed to cover the same frequency range. Comparing the two figures, it can

be seen that adjacent bands overlap more when r is larger.
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This figure was generated by the following Matlab code.

PlotFreqResps(Q, 2*r, 2*J)

set(gca,’xscale’,’log’)

set(gca,’xtick’,0.5*2.^(-6:0))

xlim([0.01 0.5])

5.1 Sparse signal representation

As the TQWT is over-sampled (redundant), the wavelet coefficients that yield a given signal are not unique.

In the examples above, the redundancy parameter r was set to 3.0 (the actual redundancy is greater than

this).

In some applications, it is useful to find a sparse set of wavelet coefficients for a given signal x. One approach

is basis pursuit (BP) [3], the idea of which is to find a set of coefficients with minimal `1-norm. Given a

signal x, one needs to solve the optimization problem:

argmin
w

‖w‖1

such that TQWT−1(w) = x.

For the radix-2 TQWT, the synthesis functions (wavelets) do not all have the same energy (l2-norm squared).

Specifically, the energy is different in different subbands. Therefore, a suitable modification of the above

problem is:

argmin
w

J+1∑
j=1

λj‖wj‖1

such that TQWT−1(w) = x

(1)

where wj represents subband j, and λj are regularization parameters. The vector λ = (λ1, . . . , λJ+1) can

be used to take into account the fact that the `2-norm of the wavelet is different in different subbands. For

example, it is appropriate that each λj be set proportional to the `2-norm of the wavelet at subband j.

The program tqwt_bp solves problem (1) using a variation of SALSA [1]. As shown in the code snippet

below, tqwt_bp requires several parameters. First: the signal x, the Q-factor Q, the redundancy parameter

r, and the number of stages J . The function also requires three additional parameters:
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lambda: a vector of length J + 1 of regularization parameters λj .

mu: parameter related to the SALSA algorithm (affects convergence speed).

Nit: number of iterations of the SALSA algorithm.

We will set λj to be proportional the `2-norm of the wavelet at level j. The vector now in the code snippet

below stands for ‘norm of wavelets’. The choice of mu can be selected by ‘trial and error’. Generally, mu may

be roughly proportional to the signal energy.

The basis pursuit function tqwt_bp returns a sparse set of wavelet coefficients and, optionally, a vector of

the cost function values per iteration.

The following code snippet illustrates the use of tqwt_bp.

% Sparse signal representation (Basis pursuit)

now = ComputeNow(N,Q,r,J,’radix2’); % Compute norms of wavelets

mu = 2.0; % SALSA parameter

Nit = 100; % Number of iterations

lambda = now; % Regularization parameters

[w2, costfn] = tqwt_bp(x, Q, r, J, lambda, mu, Nit); % Basis pursuit

y = itqwt_radix2(w2, Q, r, N); % Signal reconstruction

err = x - y; % Reconstruction error

max(abs(err))

% -> 3.3307e-16

Note that in the code snippet it is verified that the returned wavelet coefficients w2 correctly reconstructs

the signal x.

The following code snippet shows how the cost function is computed. This is the cost function that tqwt_bp

minimizes.

cost = 0;

for j = 1:J+1

cost = cost + lambda(j)*sum(abs(w2{j}));

end

cost

% -> 11.1948

It can be useful to plot the cost function versus iteration as in the code snippet below. This plot verifies

that the iterative minimization algorithm is converging.

% Display cost function

figure(2), clf

subplot(3,1,1:2)

plot(costfn);

title(’COST FUNCTION (BASIS PURSUIT)’)

xlabel(’ITERATION’)

box off
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Does ‘basis pursuit’ actually produce a sparse set of wavelet coefficients? The function PlotSubbands can be

used as above, to display of the subbands. The resulting figure demonstrates the enhanced sparsity obtained

by `1 norm minimization. (Compare the subbands illustrated below to the subbands obtained above for the

same signal.)

% Plot sparse subbands

figure(3), clf

PlotSubbands(x,w2,Q,r,1,J+1,fs,’E’,’stem’);

title(’SPARSE SUBBANDS (BASIS PURSUIT)’)
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Sparsification of the subbands can also lead to a different distribution of signal energy across subbands. The

function PlotEnergy can be used as above. The resulting plot shows that sparsification can have the effect

of compressing the energy of the wavelet representation into fewer subbands. The plot below shows that

much of the energy is now concentrated in subbands 2, 4, and 6, in contrast to the broad distribution of
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energy previously seen. In the previous bar graph of energy distribution, note that no subband had more

than 25% of the total energy; while for the sparsified wavelet representation a single subband (subband 6)

accounts for more than half the total energy (57%).

figure(3), clf

subplot(3,1,1:2)

e = PlotEnergy(w2);
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5.2 Higher Q-factor

The TQWT allows the user to specify the Q-factor. By increasing Q, the wavelets become more oscillatory

(due to the higher Q-factor). The following code snippet displays the wavelets and the frequency responses

when Q is set to 4.0. Note that the frequency responses are more narrow now, compared to above where Q

was set to 1.0. With Q increased from 1.0 to 4.0, more stages are needed in order to span the same frequency

range because each frequency response is narrower. Here we have used 17 stages instead of 8 above.

Q = 4; r = 3; J = 17; % TQWT parameters

figure(1), clf

N = 256;

PlotWavelets(N, Q, r, 5, J, ’radix2’);

figure(2),clf

subplot(2,1,1)

PlotFreqResps(Q, r, J);
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The following code snippet creates a new test signal, applies the TQWT, displays the subbands, and displays

the distribution of energy across subbands. This test signal has a more oscillatory behavior than the test

signal used above. Note that sufficiently many stages are specified (22 stages) so that the low-pass subband

(subband 23) has negligible energy. Because the first eight subbands have essential zero energy, it is chosen

in the code snippet not to display them by setting J1 in PlotSubbands to 9.

x = test_signal(2); % Make test signal

N = length(x);

Q = 4; r = 3; J = 22; % TQWT parameters

w = tqwt_radix2(x, Q, r, J);

% Plot energy distribution

figure(1), clf

subplot(2,1,1)

PlotEnergy(w);
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% Plot subbands

figure(2), clf

PlotSubbands(x, w, Q, r, 9, J+1, 1, ’E’, ’stem’)
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As above, we can apply basis pursuit (tqwt_bp) to find a sparse set of wavelet coefficients.

% Sparse signal representation (Basis pursuit)

now = ComputeNow(N,Q,r,J,’radix2’); % Compute norms of wavelets

mu = 2.0; % SALSA parameter

Nit = 100; % Number of iterations

lambda = now; % Regularization parameters

[w2, costfn] = tqwt_bp(x, Q, r, J, lambda, mu, Nit); % Basis pursuit

% Plot sparse subbands

figure(1), clf

PlotSubbands(x,w2,Q,r,9,J+1,fs,’E’,’stem’);
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title(’SPARSE SUBBANDS (BASIS PURSUIT)’)

% Plot energy distribution

figure(2), clf

subplot(2,1,1)

e = PlotEnergy(w2);
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Note that the wavelet coefficients w2 obtained by basis pursuit are indeed substantially more sparse than

the wavelet coefficients w, even though both sets of wavelet coefficients exactly represents the signal x. As

above, basis pursuit also leads to a compression of the energy into fewer subbands.

5.3 Sparse signal approximation

Previously, we saw that a sparse representation of a signal can be obtained by solving the basis pursuit

problem. A related approach can be used for signal denoising, where the observed signal y has been corrupted

by additive noise,

y = x + n.
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The problem is to estimate x from the observed signal y. If it is known that x has a sparse representation with

respect to a wavelet transform (or other transform), then it can be estimated via sparsity-based methods.

One approach is basis pursuit denoising (BPD) [3] which minimizes the sum of the `1-norm of the transform

coefficients and the energy of the residual:

argmin
w

‖y − TQWT−1(w)‖22 +

J+1∑
j=1

λj‖wj‖1 (2)

Then x can be estimated as TQWT−1(w).

Basis pursuit denoising does not find an exact representation for y — instead the resulting wavelet coefficients

give an approximation to the given signal y. It is appropriate when noise (or general stochastic component)

is present in the observed signal y. The function tqwt_bpd solves the BPD problem with the TQWT. It is

based again on a variant of SALSA.

The following code snippet illustrates the use of BPD for signal denoising with the TQWT.

% Basis pursuit denoising example

y = test_signal(2); % Make test signal

N = length(y); % Signal length

y = y + 0.1*randn(1,N); % Noisy test signal

% Call basis pursuit denoising function

now = ComputeNow(N,Q,r,J,’radix2’); % Compute norms of wavelets

Q = 4; r = 3; J = 22; % TQWT parameters

lambda = 0.5*now; % Regularization parameters

mu = 2.0; % SALSA parameter

Nit = 100; % Number of iterations

[w, costfn] = tqwt_bpd(y,Q,r,J,lambda,mu,Nit); % Basis pursuit denoising

x = itqwt_radix2(w, Q, r, N); % Denoised signal
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To clarify the cost function minimized by the function tqwt_bpd, it is computed as shown in the following

code snippet.
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cost = sum(abs(y - x).^2);

for j = 1:J+1

cost = cost + lambda(j)*sum(abs(w{j}));

end

cost

% -> 14.7165

The convergence of tqwt_bpd can be assessed by plotting the cost function versus iteration, costfn.

0 10 20 30 40 50 60 70 80 90 100
14

16

18

20

22

24

26

28
COST FUNCTION (BASIS PURSUIT DENOISING)

ITERATION

In this example we have used lambda = 0.5*now. Using a smaller multiplier (say 0.3 instead of 0.5) will

result in less noise reduction because the sparsity of the wavelet coefficients is de-emphasized. Using a greater

multiplier (say 0.7 instead of 0.5) will result in more noise reduction but will also result in distortion of the

signal. There is a trade-off between noise reduction and signal distortion.

5.4 Speech waveform

In this section, we illustrate the use of the TQWT on a speech waveform. This signal is “I’m” spoken by an

adult male, sampled at 16, 000 samples per second. Below, this waveform is analyzed first with a Q-factor

of 4.0, then with a Q-factor of 1.0. It will be illustrated in Section 5.5 how the waveform can be sparsely

represented using both Q-factors jointly.

The following code snippet loads the waveform and produces a plot of the signal.

% Load signal

[x, fs] = test_signal(3);

N = length(x);

% Plot signal

t = (0:N-1)/fs;

figure(1), clf

subplot(4,1,1)

plot(t,x)

xlim([0 N/fs])

ylim([-0.3 0.3])
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xlabel(’TIME (SECONDS)’)

title(’SPEECH WAVEFORM’)

box off
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Q-factor = 4.0

The following snippet applies the TQWT with a Q-factor of 4.0. The parameters are denoted by Q1, r1,

and J1 to distinguish these values from the parameter values to be used subsequently. The resulting set of

wavelet coefficients is denoted by w1.

% High Q-factor TQWT

Q1 = 4; r1 = 3; J1 = 31; % TQWT parameters

w1 = tqwt_radix2(x, Q1, r1, J1);

% Plot energy distribution

figure(1), clf

subplot(2,1,1)

PlotEnergy(w1);

% Plot subbands

figure(2), clf

PlotSubbands(x, w1, Q1, r1, 11, J1+1, fs, ’E’)
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The figure above shows the distribution energy across subbands — but the frequencies are not indicated.

To make the figure more informative, we can instead plot the distribution of energy versus frequency, as

follows. Note that in the plot below, the frequency axis is logarithmic, low frequencies are to the left, and

the low-pass subband is omitted from the plot.

% Plot energy versus frequency

figure(1), clf

subplot(2,1,1)

PlotEnergy(w1, Q1, r1, fs);
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As illustrated previously, the function PlotFreqResps displays the frequency response of the TQWT. Op-

tionally, using the command syntax:

PlotFreqResps(Q1, r1, J1, fs);

the sampling frequency fs can be specified. Note, fs is the sampling frequency of the signal to which

the TQWT is applied. Here fs is 16,000 samples/second, so the Nyquist frequency fs/2 is 8,000 Hz, as

illustrated in the plot.
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The constant-Q property of the TQWT means that the frequency responses appear as equal width on a

log-frequency axis. By changing the scaling property of the axis in Matlab, the frequency responses can be

viewed on a loglog scale as illustrated in the following code snippet.

PlotFreqResps(Q1, r1, J1, fs);

set(gca,’Xscale’,’log’)

set(gca,’Yscale’,’log’)

set(gca,’Xtick’,fs/2*2.^(-7:0))

xlim([50 fs/2])

ylim([0.01 2])

xlabel(’FREQUENCY (Hz) - LOGARITHMIC SCALE’)
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These are the same frequency responses as immediately above, but due to the log-frequency scale, the

appearance is quite different. The constant bandwidth on the log-frequency scale is characteristic of constant-

Q transforms.

Q-factor = 1.0

The following snippet applies the TQWT with a Q-factor of 1.0. The parameters are denoted by Q2, r2,

and J2 to distinguish these values from the parameter values used previously. The resulting set of wavelet

coefficients is denoted by w2.

% Low Q-factor TQWT

Q2 = 1; r2 = 3; J2 = 10; % TQWT parameters

w2 = tqwt_radix2(x, Q2, r2, J2);

% Plot energy distribution

figure(1), clf

subplot(2,1,1)

PlotEnergy(w2, Q2, r2, fs);

% Plot subbands

figure(2), clf

PlotSubbands(x, w2, Q2, r2, 1, J2+1, fs, ’E’)
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As above, the frequency responses can be displayed on a log-frequency axis. The sampling frequency fs

is specified here, which is again reflected in the labeling of the frequency axis. Note that the frequency

responses here, with Q = 1.0, are much wider than is the case when Q = 4.0.

PlotFreqResps(Q2, r2, J2, fs);

set(gca,’Xscale’,’log’)

set(gca,’Xtick’,fs/2*2.^(-7:0))

xlim([50 fs/2])

xlabel(’FREQUENCY (Hz) - LOGARITHMIC SCALE’)
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The center frequency of each subband can be obtained using the function tqwt_fc. Recall that the first

subband is the high-pass subband, so its center frequency is half the sampling frequency, fs/2. Here it is

8,000 Hz. Hence the frequencies listed by tqwt_fc are in descending order.

fc = tqwt_fc(Q2, r2, J2, fs)

% fc =

% 1.0e+03 *

% 8.0000 2.6667 1.7778 1.1852 0.7901 0.5267 0.3512 0.2341 0.1561 0.1040

5.5 Dual Q-factor signal decomposition

This section describes the sparse representation of a signal using two Q-factors simultaneously. This problem

can be used for decomposing a signal into high and low ‘resonance components’ [4].

Consider the problem of writing a given signal x as the sum of an oscillatory signal x1 and a non-oscillatory

signal x2,

x = x1 + x2.

The signal x is a measured signal, and x1 and x2 are to be determined in such a way that x1 consists mostly

of sustained oscillations and x2 consists mostly of non-oscillatory transients. As described in [4], such a

decomposition is necessarily nonlinear in x, and it can not be accomplished using frequency-based filtering.

One approach is to model x1 and x2 as having sparse representations using high Q-factor and low Q-factor

wavelet transforms respectively [4]. In this case, a sparse representation of the signal x using both high

Q-factor and low Q-factor TQWT jointly, makes the identification of x1 and x2 feasible. This approach is

based on ‘morphological component analysis’ (MCA) [6], a general method for signal decomposition based

on sparse representations.

Denote TQWT1 and TQWT2 as the TQWT with two different Q-factors (high and low Q-factors). Then

the sought decomposition can be achieved by solving the constrained optimization problem:

argmin
w1,w2

λ1‖w1‖1 + λ2‖w2‖1

such that x = TQWT−1
1 (w1) + TQWT−1

2 (w2).

(3)

For greater flexibility, we will use subband-dependent regularization:

argmin
w1,w2

J1+1∑
j=1

λ1,j‖w1,j‖1 +

J2+1∑
j=1

λ2,j‖w2,j‖1

such that x = TQWT−1
1 (w1) + TQWT−1

2 (w2),

(4)
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where wi,j in (4) denotes subband j of TQWTi for i = 1, 2.

After w1 and w2 are obtained, we set

x1 = TQWT−1
1 (w1), x2 = TQWT−1

2 (w2).

The function dualQ solves this optimization problem, as illustrated in the following code snippet. Given the

signal x, the function returns signals x1 and x2. In addition, it returns sparse wavelet coefficients w1 and

w2 corresponding to x1 and x2 respectively; the sparse wavelet coefficients are denoted w1s and w2s in the

code.

% Signal decomposition into high-Q and low-Q components

now1 = ComputeNow(N,Q1,r1,J1,’radix2’); % Compute norms of wavelets

now2 = ComputeNow(N,Q2,r2,J2,’radix2’); % Compute norms of wavelets

lam1 = now1; % Regularization params for high Q-factor TQWT

lam2 = now2; % Regularization params for low Q-factor TQWT

mu = 2.0; % SALSA parameter

Nit = 100; % Number of iterations

[x1,x2,w1s,w2s,costfn] = dualQ(x,Q1,r1,J1,Q2,r2,J2,lam1,lam2,mu,Nit);

figure(1), clf

subplot(4,1,1)

plot(t,x)

xlim([0 N/fs])

ylim([-0.3 0.3])

title(’SPEECH WAVEFORM’)

box off

subplot(4,1,2)

plot(t,x1)

xlim([0 N/fs])

ylim([-0.3 0.3])

box off

title(’HIGH Q-FACTOR COMPONENT’)

subplot(4,1,3)

plot(t,x2)

xlim([0 N/fs])

ylim([-0.3 0.3])

box off

title(’LOW Q-FACTOR COMPONENT’)

xlabel(’TIME (SECONDS)’)

As above, we set the subband-dependent regularization parameters proportional to the `2-norms of the

wavelets.

It can be seen below that this procedure separates the given signal (the speech waveform) into two signals

that have quite different behavior. One signal (the ‘high Q-factor component’) is sparsely represented by a

high Q-factor wavelet transform (Q = 4.0). The second signal (the ‘low Q-factor component’) is sparsely
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represented by a low Q-factor wavelet transform (Q = 1.0). Note that the high Q-factor component consists

largly of sustained oscillatory behavior, while the low Q-factor component consists largely of transients and

oscillations that are not sustained.
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The distribution of energy across frequency, of both components, is illustrated below. It shows that the

components overlap in frequency. Therefore, the decomposition achieved here can not be obtained by

conventional frequency-based filtering or Fourier transforms alone. Also note that for both the high Q-factor

and low Q-factor components shown here, the energy is more concentrated than in the previous plots, due

to the sparsification.
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To clarify the cost function that is being minimized, the following code snippet illustrates how the cost

function is computed.

cost = 0;

for j = 1:J1+1

cost = cost + lam1(j)*sum(abs(w1s{j}));

end

for j = 1:J2+1

cost = cost + lam2(j)*sum(abs(w2s{j}));

end

cost

%>> 25.7048

We can also check that the two components really add to the input signal.

max(abs(x - x1 - x2))

%>> 2.9143e-16

In may be the case that the solution to the optimization problem (4) puts too much energy into one of the

two components and too little energy into the other component. In that case the relative weight between

the two components can be modified by introducing a parameter θ with 0 < θ < 1 into the optimization

problem as so:

argmin
w1,w2

θ

J1+1∑
j=1

λ1,j‖w1,j‖1 + (1− θ)
J2+1∑
j=1

λ2,j‖w2,j‖1

such that x = TQWT−1
1 (w1) + TQWT−1

2 (w2).

(5)

For example, in the code snippet above, one may use instead:

theta = 0.3;

[x1,x2,w1s,w2s] = dualQ(x,Q1,r1,J1,Q2,r2,J2,theta*lam1,(1-theta)*lam2,mu,Nit);

which will put more emphasis on sparsifying the x2 component (because it is now penalized more than x1

in the cost function).

Frequency decomposition: In the plot above, showing the energy distribution for the high Q-factor

component, note that the energy is well separated into distinct groups. Plotting the energy versus subband

produces the following plot, in which we can identify the specific subbands containing most of the energy.
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It can be seen in the plot that most of the energy lies among the five subbands groups: (12,13), (15), (17,18),

(24,25), and (30). Therefore, the high Q-factor component can itself be quite accurately written as the sum

of five distinct frequency components. To compute these frequency components, we can use the inverse

TQWT to reconstruct from specific sets of subbands. The following code snippet illustrates the procedure:

set all of the wavelet coefficient to zero, except for the wavelet coefficients in the specified subbands, then

compute the inverse TQWT.

z = zeros(size(x)); % All zero signal

w1z = tqwt_radix2(z,Q1,r1,J1); % All zero wavelet coefficients

w = w1z;

w{12} = w1s{12};

w{13} = w1s{13};

xA = itqwt_radix2(w,Q1,r1,N); % Reconstruction from subbands 12 and 13

w = w1z;

w{15} = w1s{15};

xB = itqwt_radix2(w,Q1,r1,N); % Reconstruction from subband 15

w = w1z;

w{17} = w1s{17};

w{18} = w1s{18};

xC = itqwt_radix2(w,Q1,r1,N); % Reconstruction from subbands 17 and 18

w = w1z;

w{24} = w1s{24};

w{25} = w1s{25};

xD = itqwt_radix2(w,Q1,r1,N); % Reconstruction from subbands 24 and 25

w = w1z;

w{30} = w1s{30};

xE = itqwt_radix2(w,Q1,r1,N); % Reconstruction from subband 30

f = xA + xB + xC + xD + xE; % Sum of reconstructed signals

The following figure illustrates the five reconstructed signals and their sum.
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RECONSTRUCTION FROM SPECIFIC SUBBANDS

The sum of these five reconstructed signals is not exactly equal to the high Q-factor component because

there remains some energy in the omitted subbands; however, as illustrated in the figure, it is quite accurate.

Note that the high frequency component (reconstructed from subbands 12 and 13) has finer temporal res-

olution than the low frequency components (reconstructed from subbands 24 and 25, or from subband 30).

This is due to the constant-Q property of the wavelet transform. For this reason, constant-Q signal analysis

is suitable for signals for which the envelope of the high frequency content varies over time more rapidly

than the low frequency content, as is the case for the speech waveform here (in particular, its high Q-factor

component).

Resonance components of a noisy signal

If the signal under analysis is noisy, then we should not asking for exact equality as in (4). Just as the basis

pursuit denoising (BPD) problem adapts the basis pursuit (BP) problem to the noisy signal case, we can also

apply resonance decomposition to noisy signals. Suppose y represents the noisy signal, then the problem

can be formulated as the minimization of the following cost function:

argmin
w1,w2

‖y − Φ1w1 − Φ2w2‖22 +

J1+1∑
j=1

λ1,j‖w1,j‖1 +

J2+1∑
j=1

λ2,j‖w2,j‖1 (6)

where Φ1 and Φ2 represent the inverse TQWT having high and low Q-factors respectively. The regularization

parameters λ1 and λ2 are chosen by the user according the power of the noise. After w1 and w2 are obtained,

we set

x1 = TQWT−1
1 (w1), x2 = TQWT−1

2 (w2).

The Matlab function dualQd addresses this problem, as illustrated in the following code snippet.

% Resonance decomposition of a signal with noise

[y, fs] = test_signal(3); % Load speech waveform

N = length(y);
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t = (0:N-1)/fs;

y = y + 0.02 * randn(1,N); % Add white Gaussian noise

Q1 = 4; r1 = 3; J1 = 31; % High Q-factor TQWT

Q2 = 1; r2 = 3; J2 = 10; % Low Q-factor TQWT

now1 = ComputeNow(N,Q1,r1,J1,’radix2’); % Compute norms of wavelets

now2 = ComputeNow(N,Q2,r2,J2,’radix2’); % Compute norms of wavelets

lam1 = 0.1*now1; % Regularization params for high Q-factor TQWT

lam2 = 0.1*now2; % Regularization params for low Q-factor TQWT

mu = 2.0; % SALSA parameter

Nit = 100; % Number of iterations

[x1,x2,w1s,w2s,costfn] = dualQd(y,Q1,r1,J1,Q2,r2,J2,lam1,lam2,mu,Nit);

figure(1), clf

subplot(4,1,1)

plot(t,y)

xlim([0 N/fs])

ylim([-0.3 0.3])

title(’NOISY SPEECH WAVEFORM’)

box off

subplot(4,1,2)

plot(t,x1)

xlim([0 N/fs])

ylim([-0.3 0.3])

box off

title(’HIGH Q-FACTOR COMPONENT’)

subplot(4,1,3)

plot(t,x2)

xlim([0 N/fs])

ylim([-0.3 0.3])

box off

title(’LOW Q-FACTOR COMPONENT’)

subplot(4,1,4)

plot(t, y - x1 - x2)

xlim([0 N/fs])

ylim([-0.3 0.3])

box off

title(’RESIDUAL’)

xlabel(’TIME (SECONDS)’)
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Note that the residual (y − x1 − x2) appears noise-like. For the problem formulated in (6), the residual is

the signal component that is sparsely represented in neither the high Q-factor wavelet transform nor the low

Q-factor wavelet transform. For this reason, this formulation (6) accounts for the presence of noise in the

signal of interest.

To clarify the cost function that dualQd minimizes, the following code snippet illustrates the computation

of the cost function.

cost = sum(abs(y - x1 - x2).^2);

for j = 1:J1+1

cost = cost + lam1(j)*sum(abs(w1s{j}));

end

for j = 1:J2+1

cost = cost + lam2(j)*sum(abs(w2s{j}));

end

cost

% >> 2.7207
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6 Some formulas

The center frequency of subband j is given by

fc(j) ≈ 0.25αj−1 (2− β) fs (7)

for j > 1, where fs is the sampling frequency of the input signal, and

β =
2

Q+ 1
, α = 1− β

r
. (8)

These formulas are from [5]. It should be noted that (7) is not accurate when Q is close to unity. For higher

Q, such as Q > 3, the accuracy of (7) improves. The following figure shows the frequency responses together

with the center frequencies calculated using (7).
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This plot was produced using the following code. The Matlab command tqwt_fc calculates the center

frequencies using (7).

Q = 3.5; r = 3; J = 12; fs = 1;

PlotFreqResps(Q, r, J, fs)

fc = tqwt_fc(Q, r, J, fs); % center frequencies

for j = 1:J

line(fc(j)*[1 1], [0 1], ’color’, ’r’); % indicate fc on plot

end

The frequency axis can be converted to a log scale using the command set(gca, ’xscale’, ’log’). This

gives the following figure.
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7 Implementation in C/Mex

In order to reduce the execution time of the TQWT functions we have implemented1 the main functions in

C. In the C programs, we have attempted to reduce unnecessary computation and to optimize the memory

usage so as to avoid unnecessary data shuffling. Using the mex utility in Matlab, we have compiled the C

programs so that they can be called from Matlab. As shown in the tables and graphs, the Matlab mex/C

implementations run substantially faster than the Matlab mfiles. The speed up depends on the length of

the signal. For lengths up to 4092, the mex functions run more than 20 times faster than the mfiles. The

timings were performed on a 2010 base-model Apple MacBook Pro (2.4 GHz Intel Core 2 Duo) with Matlab

version 7.8 (R2009a).

The mex files are included in the toolbox in the folder mex_functions. They have the same functionality as

the mfiles, except that they work only for real signals (the mfiles work for both real and complex signals).

In order to use the mex files, the user can move the mex files into the main TQWT toolbox folder so that

Matlab will execute the mex files instead of the mfiles (mex files have precedence over mfiles).

To determine which file Matlab will execute, use the which command. For example, which tqwt_radix2

will determine if the mfile (.m) or mex file (.mex—) will be executed.

The toolbox currently provides mex files for the following systems.

Computer Mex file extension Matlab version

pcwin mexw32 7.4 (R2007a)

pcwin64 mexw64 7.11 (R2010b) 64 bit

maci mexmaci 7.8 (R2009a)

maci64 mexmaci64 7.12 (R2011a) 64 bit

Let us know if you would like mex files for another system. The Matlab command computer returns the

operating system in use.

1Thanks to Faruk Uysal for implementing the functions in C and mex.
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tqwt_radix2 run-time (ms)

N mfile mex speed up

32 0.970 0.034 28.5

64 1.959 0.050 39.1

128 2.861 0.070 40.6

256 4.212 0.101 41.9

512 5.410 0.157 34.4

1024 7.013 0.256 27.4

2048 9.161 0.446 20.6

4096 11.805 0.836 14.1

8192 16.499 1.648 10.0

16384 25.207 3.577 7.0

32768 43.415 8.742 5.0
32 128 512 2048 8192 32768
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Figure 2: Run-times for forward TQWT (tqwt_radix2). Run-times performed using parameters Q = 4.0,

r = 3.0, and the maximum number of levels for each signal length N .

itqwt_radix2 run-time (ms)

N mfile mex speed up

32 1.069 0.034 31.2

64 1.933 0.047 41.4

128 3.050 0.062 49.6

256 4.081 0.089 45.9

512 5.588 0.142 39.4

1024 7.131 0.238 30.0

2048 9.320 0.429 21.7

4096 12.594 0.815 15.5

8192 18.023 1.612 11.2

16384 28.441 3.404 8.4

32768 53.592 7.405 7.2
32 128 512 2048 8192 32768
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Figure 3: Run-times for inverse TQWT (itqwt_radix2). Run-times performed using parameters Q = 4.0,

r = 3.0 and maximum levels.
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tqwt_bp run-time (ms)

N mfile mex speed up

32 89.307 0.334 267.6

64 211.519 0.666 317.4

128 327.122 1.394 234.6

256 454.524 2.888 157.4

512 606.455 6.044 100.3

1024 784.550 12.161 64.5

2048 1014.531 24.724 41.0

4096 1356.525 50.108 27.1

8192 1939.807 105.199 18.4

16384 3031.670 219.502 13.8

32768 5869.573 475.247 12.4
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Figure 4: Run-times for sparse signal representation (basis pursuit) using the TQWT (tqwt_bp). Run-times

performed using parameters Q = 4.0, r = 3.0, maximum levels, and 50 iterations.

dualQ run-time (ms)

N mfile mex speed up

32 178.020 0.705 252.5

64 328.269 1.340 245.0

128 463.114 2.693 172.0

256 634.967 5.401 117.6

512 824.188 10.854 75.9

1024 1021.563 22.205 46.0

2048 1337.682 44.323 30.2

4096 1871.902 92.403 20.3

8192 2742.564 190.621 14.4

16384 4565.536 409.887 11.1

32768 9299.440 936.065 9.9
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Figure 5: Run-times for dual Q-factor signal decomposition (dualQ). Run-times performed using parameters

Q1 = 3.0, r1 = 3.0, Q2 = 1.0, r2 = 3.0, maximum levels, and 50 iterations.
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