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Convex or non-convex: which is better?

(for sparse-regularized linear inverse problems)

Benefits of convex optimization:

1. Absence of suboptimal local minima

2. Continuity of solution as a function of input data

3. Algorithms guaranteed to converge to a global optimum

4. Regularization parameters easier to set

But convex regularization tends to under-estimate signal values.

Non-convex regularization often performs better!

Can we design non-convex sparsity-inducing

penalties that maintain the convexity of the

cost function to be minimized?
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An alternative
Conventional sparse-regularized least squares:

J(x) =
1

2
‖y − Ax‖22 + λ‖x‖1

Alternatively, use non-convex penalty ψ that maintains convexity of

cost function F

F (x) =
1

2
‖y − Ax‖22 + λψ(x)
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MC penalty

The minimax-concave (MC) penalty φ : R→ R is defined as

φ(x) :=

|x | − 1
2x

2, |x | 6 1

1
2 , |x | > 1
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C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of

Statistics:894–942, 2010.

4 / 24



Huber function

The MC penalty can be expressed as

φ(x) = |x | − s(x)

where s is the Huber function.
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Huber function

The Huber function s : R→ R is defined as

s(x) :=

 1
2x

2, |x | 6 1

|x | − 1
2 , |x | > 1.

The Huber function can be written as

s(x) = min
v∈R
{|v |+ 1

2 (x − v)2},

equivalently

s = | · | � 1
2 ( · )2

where � denotes infimal convolution.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. Springer, 2011.
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Huber function
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The Huber function as the pointwise minimum of three functions.
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Scaled functions

Let b ∈ R. The scaled Huber function sb : R→ R is defined as

sb(x) := s(b2x)/b2, b 6= 0.

For b = 0, the function is defined as

s0(x) := 0.

The scaled MC penalty function φb : R→ R is defined as

φb(x) := |x | − sb(x)

where sb is the scaled Huber function.
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Scaled functions
Scaled Huber function and MC penalty for several values of the scaling

parameter.
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Convexity condition

Let λ > 0 and a ∈ R.

Define f : R→ R,

f (x) =
1

2
(y − ax)2 + λφb(x)

where φb is the scaled MC penalty.

If

b2 6 a2/λ,

then

1. f is convex

2. the minimizer is given by firm thresholding,

xopt = firm(y/a;λ/a2, 1/b2).
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Firm threshold function

firm(y ;λ, µ)
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Aims

The minimizer of the scalar function f is easily obtained via firm

thresholding.

However, the situation in the multivariate case is more complicated.

To generalize this process to the multivariate case, we aim to:

1. define a multivariate MC penalty (non-convex),

2. define a sparse-regularized least squares cost function (convex),

3. generalize the convexity condition,

4. provide a method to calculate a minimizer.
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Generalized Huber function

Let B ∈ RM×N .

We define the generalized Huber function SB : RN → R as

SB(x) := min
v∈RN

{
‖v‖1 + 1

2‖B(x − v)‖22
}
.

In the notation of infimal convolution, we have

SB = ‖ · ‖1 �
1
2‖B · ‖

2
2.

The generalized Huber function satisfies

0 6 SB(x) 6 ‖x‖1, ∀x ∈ RN .
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Generalized Huber function
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Generalized Huber function
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Generalized MC penalty

Let B ∈ RM×N .

We define the generalized MC (GMC) penalty function ψB : RN → R as

ψB(x) := ‖x‖1 − SB(x)

where SB is the generalized Huber function.

The generalized MC penalty satisfies

0 6 ψB(x) 6 ‖x‖1 for all x ∈ RN .
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Generalized MC penalty
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Generalized MC penalty
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Convexity condition

Let y ∈ RM , A ∈ RM×N , and λ > 0.

Define F : RN → R as

F (x) =
1

2
‖y − Ax‖22 + λψB(x)

where ψB is the generalized MC penalty.

If

BTB 4
1

λ
ATA,

then F is a convex function.

Hence, for convexity of F , we may simply set

B =
√
γ/λA, 0 6 γ 6 1. (1)
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Proximal algorithm

Using forward-backward splitting, we have:

Let λ > 0 and 0 6 γ < 1. Let y ∈ RN and A ∈ RM×N . Then a

saddle-point (xopt, vopt) of F can be obtained by the iterative algorithm:

Set ρ = max{1, γ/(1− γ)} ‖ATA‖2
Set µ : 0 < µ < 2/ρ

For i = 0, 1, 2, . . .

w (i) = x (i) − µAT
(
A(x (i) + γ(v (i) − x (i)))− y

)
u(i) = v (i) − µγATA(v (i) − x (i))

x (i+1) = soft(w (i), µλ)

v (i+1) = soft(u(i), µλ)

end

where i is the iteration counter.
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Example: frequency-domain sparsity
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Example: time-frequency domain sparsity
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Example: sparsity-assisted signal smoothing (SASS)
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Conclusion

Convex and the non-convex methods for sparse-regularized least squares

are usually mutually exclusive and incompatible.

To bridge these two approaches, we introduce a non-convex alternative to

the L1 norm that preserves the convexity of the cost function to be

minimized.

The proposed penalty leads to optimization problems with no extraneous

suboptimal local minima and allows the use of globally convergent,

computationally efficient, scalable convex optimization algorithms.

The advantages compared to L1 norm regularization are

(i) more accurate estimation of high-amplitude components of sparse

solutions,

(ii) a higher level of sparsity in a sparse approximation problem.
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