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APPLICATIONS

1. Noise suppression

(a) imaging devices (medical, etc)

(b) biosignals (heart, brain)

(c) signals stored on analog media (tapes)

2. Enhancement of selected frequency ranges

(a) equalizers for audio systems (increasing the bass)

(b) edge enhancement in images

3. Removal or attenuation of selected frequencies

(a) removing the DC component of a signal

(b) removing interferences at a specific frequency, for example
those caused by power supplies

4. Bandwidth limiting

(a) anti-aliasing filters for sampling

(b) ensuring that a transmitted signal occupies only its alloted
frequency band.

5. Special operations

(a) differentiation

(b) integration

(c) Hilbert transform

6. Simulation/Modeling

(a) simulating communication channels

(b) modeling human auditory system
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DIGITAL AND ANALOG FILTERS: PROS AND CONS

It was said of early digital filters that they

1. Cost too much

2. Were too large

3. Used too much power.

But these considerations have become less important with advances
in hardware. Digital filters have the following advantages

1. Programmable (filter characteristics easily changed)

2. Reliable and repeatable

3. Free from component drift

4. No tuning required

5. Superior performance in some cases
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IIR DIGITAL FILTERS

IIR filter: A filter with an Infinite Impulse Response.

The transfer function H(z) of a realizable IIR filter must be a ra-
tional transfer function in z−1:

H(z) =
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · · aNz−N
.

IIR digital filters are implemented using ARMA (autoregressive mov-
ing average) difference equation:

y(n) = b0 x(n) + · · ·+ bM x(n−M)

− a1 y(n− 1)− · · · − aN y(n−N)

FIR DIGITAL FILTERS

FIR filter: A filter with a Finite Impulse Response.

The transfer function H(z) of a causal FIR filter is a polynomial in
z−1:

H(z) = b0 + b1z
−1 + · · ·+ bMz

−M .

FIR digital filters are usually implemented using MA (moving aver-
age) difference equation:

y(n) = b0 x(n) + b1 x(n− 1) + · · ·+ bM x(n−M).
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FIR AND IIR FILTERS: PROS AND CONS

FIR digital filters have several desirable properties in relation to IIR
filters.

1. FIR filters can have exactly linear phase.

2. FIR filters are automatically stable.

3. There are several very flexible methods for designing FIR digital
filters.

4. FIR filters are convenient to implement.

On the other hand,

1. Linear-phase FIR filters can have long delay between input and
output.

2. If the phase need not be linear, then IIR filters can be much
more efficient to implement.
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IDEAL FILTERS

The frequency responses of the common ideal filters:

1. Low-pass

0 ωo−ωo π−π

2. Hi-pass

0 ωo−ωo π−π

3. Band-pass

0 ωa−ωa ωb−ωb π−π

4. Band-stop

0 ωa−ωa ωb−ωb π−π

5. Notch

0 ωo−ωo π−π
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DIGITAL FILTER DESIGN

The filter design process consists of two parts: the approximation
problem and the realization problem. The approximation problem
deals with the choice of parameters or coefficients in the filter’s
transfer function. The realization part of the design problem deals
with choosing a structure to implement the transfer function.
The approximation stage can be divided into 4 steps:

1. A desired or ideal response is chosen (usually in the frequency
domain).

2. A class of filters is chosen (for example, FIR vs IIR).

3. A design criteria is chosen (least square or minimax).

4. An algorithm is selected to design the transfer function.

The realization stage can also be divided into 4 steps:

1. A set of structures is chosen.

2. A criteria for comparing different implementations is chosen.

3. The best structure is chosen, and its parameters are calculated
from the transfer function.

4. The structure is implemented in hardware or software.
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THE APPROXIMATION PROBLEM

The impulse response of ideal filter

d(n) = IDTFT
{
Df(ω)

}
,

where Df(ω) is an ideal low-pass response, for example, is unreal-
izable because it is noncausal and of infinite duration.

The actual frequency response of the filter will be denoted by Hf(ω)

Hf(ω) = DTFT {h(n)} =
∞∑

n=−∞
h(n) e−jnω.

The DTFT is the Z-transform evaluated on the unit circle z = ejω.

H(z) = Z {h(n)} =
∞∑

n=−∞
h(n) z−n

Hf(ω) = H(ejω)

The desired (or target) response of the filter will be denoted D(ω).

Common approximation criteria:

1. The square error criterion is written as

E2 =

∫ 2π

0
W (ω) · |Hf(ω)−D(ω)|2 dω

2. The Minimax (or Chebyshev) error criterion is written as

E∞ = max
ω
|W (ω) · (Hf(ω)−D(ω))|

3. The Lp error criterion is written as

Ep =

∫ 2π

0
W (ω) · |Hf(ω)−D(ω)|p dω

I. Selesnick EL 713 Lecture Notes 8



APPROXIMATION WITH CONSTRAINTS

In addition to these error functions to evaluate a filter’s frequency
response, one can place constraints on the frequency response.

1. It may be required that the filter response meet certain toler-
ances. For example, for a low-pass filter, it may be required
of the filter that it satisfy

1− δp ≤ |Hf(ω)| ≤ 1 + δp

for all frequencies ω in the passband, and

|Hf(ω)| ≤ δs

for all frequencies ω in the stopband.

2. Specified null constraint:

Hf(ωo) = 0

for a specified frequency ωo.

3. One can ask that the filter response have a specified degree
of tangency with the desired response. For example, one may
whish to specify several derivatives Hf(ω) at certain frequen-
cies.

THE REALIZATION PROBLEM

Once the transfer function is determined, it can be realized using
different structures. For example, one can implement an IIR filter
using the direct form, or a cascade of second order sections, or
one of several other structures. While they are all equivalent when
infinite precision is used, different structures behave differently when
the coefficients and the arithmetic operations are quantized.

I. Selesnick EL 713 Lecture Notes 9



SOME NOTATION

As and Ap represnt the attenuation in the stopband and the pass-
band of a lowpass filter.
The meaning of Ap and As is given by

δp = 1− 10−Ap/20 (1)

δs = 10−As/20 (2)

Equivalently,

Ap = −20 log10(1− δp) (3)

As = −20 log10(δs) (4)

The constants δp represents the size of the ripple in the pass-band,
and δs represents the size of the ripple in the stop-band. Ap, and
As are just δp and δs in decibels. The pass-band ripple size δp is the
maximum deviation of the actual frequency response from 1 in the
pass-band. The stop-band ripple size δs is the maximum deviation
of the actual frequency response from 0 in the stop-band.
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