A MATLAB Tutorial Version 7

Ed Overman
Department of Mathematics
The Ohio State University

Introduction 3
1 Scalar Calculations 6
1.1 Simple Arithmetical Operations 6
1.2 Variables 7
1.3 Round-off Errors 9
1.4 Formatting Printing 10
1.5 Common Mathematical Functions 11
1.6 Complex Numbers 13
1.7 Script M-files 13
1.8 Help! 14
1.9 Be Able To Do 16
2 Arrays: Vector and Matrix Calculations 16
2.1 Generating Matrices 17
2.2 The Colon Operator 21
2.3 Manipulating Matrices 21
2.4 Simple Arithmetical Operations 25
2.5 Be Careful! 27
2.6 Common Mathematical Functions 29
2.7 Data Manipulation Commands 30
2.8 Advanced Topic: Multidimensional Arrays 32
2.9 Be Able To Do 33
3 Anonymous Functions, Strings, and Other Data Types 34
3.1 Anonymous Functions 34
3.2 Passing Functions as Arguments to Commands 36
3.3 Strings 36
3.4 Advanced Topic: Cell Arrays and Structures 37
4 Graphics 40
4.1 Two-Dimensional Graphics 40
4.2 Three-Dimensional Graphics 47
4.3 Advanced Graphics Techniques: Commands 49
4.4 Advanced Graphics Techniques: Handles and Properties 53
4.5 Be Able To Do 54
5 Solving Linear Systems of Equations 55
5.1 Square Linear Systems 55
5.2 Catastrophic Round-Off Errors 58
5.3 Overdetermined and Underdetermined Linear Systems 59
6 File Input-Output 61
7 Some Useful Linear Algebra Commands 63
8 Programming in MATLAB 69
8.1 Flow Control and Logical Variables 69
8.2 Matrix Relational Operators and Logical Operators 73
8.3 Function M-files 76
8.4 Odds and Ends 85
8.5 Advanced Topic: Vectorizing Code 87
9 Sparse Matrices 89
10 Initial-Value Ordinary Differential Equations 92
10.1 Basic Commands 92
10.2 Advanced Commands 96
11 Boundary-Value Ordinary Differential Equations 103
12 Polynomials and Polynomial Functions 106
13 Numerical Operations on Functions 108
14 Discrete Fourier Transform 111
15 Mathematical Functions Applied to Matrices 116
Appendix: Reference Tables 119
Solutions To Exercises 131
ASCII Table 133
Index 135

Introduction

MATLAB is an interactive software package which was developed to perform numerical calculations on vectors and matrices. Initially, it was simply a MATrix LABoratory. However, today it is much more powerful:

- It can do quite sophisticated graphics in two and three dimensions.
- It contains a high-level programming language (a "baby C") which makes it quite easy to code complicated algorithms involving vectors and matrices.
- It can numerically solve nonlinear initial-value ordinary differential equations.
- It can numerically solve nonlinear boundary-value ordinary differential equations.
- It contains a wide variety of toolboxes which allow it to perform a wide range of applications from science and engineering. Since users can write their own toolboxes, the breadth of applications is quite amazing.
Mathematics is the basic building block of science and engineering, and MATLAB makes it easy to handle many of the computations involved. You should not think of MATLAB as another complication programming language, but as a powerful calculator that gives you fingertip access to exploring interesting problems in science, engineering, and mathematics. And this access is available by using only a small number of commands and function ${ }^{\dagger}$ because MATLAB's basic data element is a matrix (or an array).

This is a crucial feature of MATLAB - it was designed to group large amounts of data in arrays and to perform mathematical operations on this data as individual arrays rather than as groups of data. This makes it very easy to apply complicated operations to the data, and it make it very difficult to do it wrong. In high-level computer languages you would usually have to work on each piece of data separately and use loops to cycle over all the pieces. In MATLAB this can frequently do complicated "things" in one, or a few, statements (and no loops). In addition, in a high-level language many mathematical operations require the use of sophisticated software packages, which you have to find and, much worse, to understand since the interfaces to these packages are frequently quite complicated and the documentation must be read and mastered. In MATLAB, on the other hand, these operations have simple and consistent interfaces which are quite easy to master. For an overview of the capabilities of MATLAB, type \gg demo
in the Help Navigator and click on MATLAB.
This tutorial is designed to be a concise introduction to many of the capabilities of MATLAB. It makes no attempt to cover either the range of topics or the depth of detail that you can find in a reference manual, such as Mastering MATLAB 7 by Duane Hanselman and Bruce Littlefield (which is over 850 pages long) or MATLAB Guide, 2nd edition by Desmond and Nicholas Higham (which is almost 400 pages long). This tutorial was initially written to provide students with a free "basic" overview of commands which are useful in an undergraduate course on linear algebra. Over the years it has grown to include courses in ordinary differential equations, mathematical modelling, and numerical analysis. It also includes an introduction to two- and three-dimensional graphics because graphics is often the preferred way to present the results of calculations.

In this tutorial MATLAB is first introduced as a calculator and then as a plotting package. Only afterwards are more technical topics discussed. We take this approach because most people are quite familiar with calculators, and it is only a small step to understand how to apply these same techniques to matrices rather than individual numbers or varibles. In addition, by viewing MATLAB as a simple but powerful calculater, rather than as a complicated software package or computer language, you will be in the correct frame of mind to use MATLAB.

You should view MATLAB as a tool that you are "playing with" - trying ideas out and seeing how

[^0]they work. If an idea works, fine; if it doesn't, investigate further and figure out why. Maybe you misunderstood some MATLAB command, or maybe your idea needs some refinement. "Play around" interactively and figure it out. There are no hard and fast rules for figuring it out - try things and see what happens. Don't be afraid to make mistakes; MATLAB won't call you an idiot for making a mistake. When you first learned to ride a bicycle, you fell down a lot - and you looked pretty silly. But you kept at it until you didn't fall down. You didn't study Newton's laws of motion and try to analyze the motion of a bicycle; you didn't take classes in how to ride a bicycle; you didn't get videos from the library on how to ride a bicycle. You just kept at it, possibly with the assistance of someone who steadied the bicycle and gave you a little push to get you started. This is how you should learn MATLAB.

However, this tutorial is not designed for "playing around". It is very ordered, because it has been designed as a brief introduction to all the basic topics that I consider important and then as a reference manual. It would be very useful for students to have a document which uses this "play around" approach so you would learn topics by using them in exploring some exercise. This is how workbooks should be written: present some exercise for students to investigate, and let them investigate it themselves. And these exercises should be interesting, having some connection to physical or mathematical models that the students - or at least a reasonable fraction thereof - have some knowledge of and some interest in. This tutorial is designed to be a reference manual that could be used alongside such a workbook - if only someone would write it.

Summary of Contents

We have tried to make this tutorial as linear as possible so that the building blocks necessary for a section are contained in preceding sections. This is not the best way to learn MATLAB, but it is a good way to document it. In addition, we try to separate these building blocks and put them in short subsections so that they are are easy to find and to understand. Next, we collect all the commands discussed in a subsection and put them in a box at the end along with a very brief discussion to make it easy to remember these commands. Finally, we collect all these commands and put them in the appendix again boxed up by topic. MATLAB has a HUGE number of commands and functions and this is one way to collect them for easy reference.
Warning: Usually we do not discuss the complete behavior of these commands, but only their most "useful" behavior. Typing
> help <command>
or
> doc <command> gives you complete information about the command.
Notation: help <command> means to enter whatever command you desire (without the braces). help command means to type these two words as written.
Section 1 of this tutorial discusses how to use MATLAB as a "scalar" calculator, and section 2 how to use it as a "matrix" calculator. Following this, you will be able to set up and solve the matrix equation $\mathrm{Ax}=\mathrm{b}$ where A is a square nonsingular matrix.

Section 4 discusses how to plot curves in two and three dimensions and how to plot surfaces in three dimensions. These three sections provide a "basic" introduction to MATLAB. At the end of each of these three sections there is a subsection entitled "Be Able To Do" which contains sample exercises to make sure you understand the basic commands discussed. (Solutions are included.)

You have hopefully noticed that we skipped section 3. It discusses a number of minor topics. Since they are useful in generating two- and three-dimensional plots, we have included it here.

The following sections delve more deeply into particular topics. Section 5 discusses how to find any and all solutions of $\mathrm{Ax}=\mathrm{b}$ where $\mathrm{A} \in \mathbb{C}^{m \times n}$ need not be a square matrix; there might be no solutions, one solution, or an infinite number to this linear system. When no solution exists, it discusses how to calculate a least-squares solution (i.e., the "best" approximation to a solution). In addition, it discusses how round-off errors can corrupt the solution, and how to determine if this is likely to occur.

Section 6 is quite brief and discusses advanced commands to input data into MATLAB and output it to a file. (The basic commands are discussed in subsection 4.1.) This is useful if the data is being shared
between various computer programs and/or software packages.
Section 7 discusses a number of commands which are useful in linear algebra and numerical linear algebra. Probably the most useful of these is calculating some or all of the eigenvalues of a square matrix.

Section 8 discusses MATLAB as a programming language - a very "baby C". Since the basic data element of MATLAB is a matrix, this programming language is very simple to learn and to use. Most of this discussion focuses on writing your own MATLAB commands, called function m-files (which are similar to functions in C and to functions, more generally subprograms, in Fortran). Using these functions, you can code a complicated sequence of statements such that all these statements as well as all the the variables used by these commands are hidden and will not affect the remainder of your MATLAB session. The only way to pass data into and out of these functions is through the argument list.

Section 9 discusses how to generate sparse matrices (i.e., matrices where most of the elements are zero). These matrices could have been discussed in section 2, but we felt that it added too much complexity at too early a point in this tutorial. Unless the matrix is very large it is usually not worthwhile to generate sparse matrices - however, when it is worthwhile the time and storage saved can be boundless.

Section 10 discusses how to use MATLAB to numerically solve initial-value ordinary differential equations. This section is divided up into a "basic" part and an "advanced" part. It often requires very little effort to solve even complicated odes; when it does we discuss in detail what to do and provide a number of examples. Section 11 discusses how to use MATLAB to numerically solve boundary-value ordinary differential equations.

Section 12 discusses how to numerically handle standard polynomial calculations such as evaluating polynomials, differentiating polynomials, and finding their zeroes. Polynomials and piecewise polynomials can also be used to interpolate data.

Section 13 discusses how to numerically calculate zeroes, extrema, and integrals of functions.
Section 14 discusses the discrete Fourier transform and shows how it arises from the continuous Fourier transform. We also provide an example which shows how to recover a simple signal which has been severely corrupted by noise.

Finally, section 15 discusses how to apply mathematical functions to matrices.
There is one appendix which collects all the commands discussed in this tutorial and boxes them up by topic. If a command has more than one use, it might occur in two or more boxes.

This tutorial closes with an index. It is designed to help in finding things that are "just on the tip of your tongue". All the MATLAB commands discussed here are listed at the beginning of the index, as well as alphabetically throughout the index.

1. Scalar Calculations

1.1. Simple Arithmetical Operations

MATLAB can be used as a scientific calculator. To begin a MATLAB session, type matlab or click on a MATLAB icon and wait for the prompt, i.e., "» ", to appear. (To exit MATLAB, type exit or quit.) You are now in the MATLAB workspace.
You can calculate $3.17 \cdot 5.7+17 / 3$ by entering
$>3.17 * 5.7+17 / 3$
and 2^{20} by entering
> 2^20
And $\sum_{j=1}^{12} 1 / j$ can be entered as
$\gg 1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+1 / 7+1 / 8+1 / 9+1 / 10+1 / 11+1 / 12$
You can enter a number in scientific notation using the """ operator. For example, you can enter 2×10^{-20} by
$>2 * 10 \wedge-20$
MATLAB, however, uses "e" to represent " $10 \wedge$ " so that MATLAB displays
$2.0000 \mathrm{e}-20$
The "standard" way to input 2×10^{-20} is as $2 \mathrm{e}-20$ or $2 \mathrm{E}-20$ or $2 . \mathrm{e}-20$ or $2 . \mathrm{E}-20$ (even
$2.0000000 \mathrm{e}-00020$ is acceptable).
Warning: 10^{-20} cannot be input as $\mathrm{e}-20$, but must be input as $1 \mathrm{e}-20$ or $1 \mathrm{E}-20$ or $1 . \mathrm{e}-20$ or 1.E-20 or ...
MATLAB can also handle complex numbers, where i or j represents $\sqrt{-1}$. For example, $5 i$ can be input as $5 i$ or as $5 * i$, while $5 \times 10^{30} i$ can be input as $5 e 30 i$ or as $5 e 30 * i$ or as $5 * 10 \wedge 30 * i$, but not as $5 * 10 \wedge 30 i$ (which MATLAB considers to be $5 \times 10^{30 i}$). To calculate $(2+2 i)^{4}$, enter $\gg(2+2 i) \wedge 4$
and MATLAB returns -64 .
You can also save all of your input to MATLAB and most of the output (plots are not saved) by using the diary command. This archive of your work can be invaluable when you are solving homework problems. You can later use an editor to extract the part you want to turn in, while "burying" all the false starts and typing mistakes that occur. Conversely, if you are involved in a continuing project, this archive can be invaluable in keeping a record of your progress.

If you do not specify a file, this archive is saved to the file diary (no extension) in the present directory. If the file already exists, this is appended to the end of the file (i.e., the file is not overwritten). Because of this feature you can use the diary command without fear that crucial work will be overwritten.

If you are entering a line and make a mistake, there are a number of ways you can correct your error:

- you can use the backspace or delete key to erase all the text back to your mistake,
- you can use the left-arrow key, i.e., " \leftarrow ", and the right-arrow key, i.e., " \rightarrow ", to move back and forth in the line, or
- you can use the mouse to move back and forth in the line.

Frequently, you will want to reexecute the previous line, or another previous line. For example, you might have made a mistake in the previous line and so it did not execute, or did not execute correctly. Of course, you can just retype the line - but, if it is very long, this can get very time-consuming. Instead, you can use the up-arrow key, i.e., " \uparrow ", to move backward, one statement at a time (or the down-arrow key, i.e., \downarrow " to move forward). Then hit the enter (or the return) key to execute the line.

1.2. Variables

Notation: We always use lowercase letters to denote scalar variables.
Variables can be used to store numerical values. For example, you can store the value $2^{1 / 3}$ in the variable x by entering
$>x=2^{\wedge}(1 / 3)$
This variable can then be used on the right-hand side of an equation such as
$\gg f x=3 * x^{\wedge} 6-17 * x^{\wedge} 3+79$
There can also be more than one command on a line. For example, if you type
$\gg \mathrm{x}=2^{\wedge}(1 / 3) ; \mathrm{fx}=3 * \mathrm{x}^{\wedge} 6-17 * \mathrm{x}^{\wedge} 3+79 ; \mathrm{g}=3 / \mathrm{fx}$;
then all three commands will be executed. Nothing will be printed out because semicolons follow each command. If you want everything printed out then type
$\gg x=2 \wedge(1 / 3), f x=3 * x^{\wedge} 6-17 * x \wedge 3+79, g=3 / f x$
Thus, you can separate statements on a line by commas or semicolons. If semicolons are used, the results of the statement are not displayed, but if commas are used, the results appear on the computer screen.
Warning: A variable can be overwritten at will. For example, at present $\mathrm{x}=2^{1 / 3}$. If you now type

$$
\gg x=x+5
$$

then x becomes $2^{1 / 3}+5$. No warning messages are printed if a variable is overwritten, just as in a programming language.
Although we do not discuss vectors and matrices until the next section, it is important to understand that MATLAB considers scalar variables to be vectors of length one or matrices of size 1×1. For example, if you type
$>f x$
the number 57 is returned. But you can also type
$\gg f(1)$
or
> $f x(1,1)$
and obtain the same result.
Character strings can also be stored in variables. For example, to store the string "And now for something completely different" in a variable, enter
$\gg \operatorname{str}=$ 'And now for something completely different'
(We discuss text variables in more detail in section 3.)
Note: To put a single quote mark into the string, use two single quote marks.
You can change a variable from a scalar to a vector or a matrix whenever you desire - or whenever you forget that the variable has already been defined. Unlike C, for example, variables do not needed to
be declared (or typed). A variable springs into existence the first time it is assigned a value, and its type depends on its context.

At start-up time, MATLAB also contains some predefined variables. Many of these are contained in the table below. Probably the most useful of these is pi.
Warning: Be careful since you can redefine these predefined variables. For example, if you type

$$
\gg \quad \mathrm{pi}=2
$$

then you have redefined π - and no error messages will be printed out!
Another very useful predefined variable is ans, which contains the last calculated value which was not stored in a variable. For example, it sometimes happens that you forget to put a value into a variable. Then MATLAB sets the expression equal to the variable ans. For example, if you type

$$
\gg \quad(3.2 * 17.5-5 / 3.1) \wedge 2
$$

but then realize that you wanted to save this value, simply enter

$$
\gg \mathrm{x}=\mathrm{ans}
$$

and x now contains $(3.2 \cdot 17.5-5 / 3.1)^{2}$.
In MATLAB it is trivial to display a variable: simply type it. For example, if x has the value -23.6 then
$>x$
returns
$\mathrm{x}=$
-23. 6000
It is sometimes useful to display the value of a variable or an expression or a character string without
displaying the name of the variable or ans. This is done by using disp. For example,

```
> disp(x)
> disp(pi^3)
> disp('And now for something completely different')
> disp('---------------------------------------------
```

displays
-23.6000
31.0063
And now for something completely different
(The command fprintf, which will be discussed in section 6 , allows much finer formatting of variables.) Note: When disp displays a variable or an array or an expression, it follows with a blank line. However, when it displays a string or a string variable, it does not.
Variables can also be deleted by using clear. For example, to delete x type
\gg clear x
Warning: This is a very dangerous command because it is so easy to lose a great deal of work. If you mean to type
\gg clear x
but instead you type
\gg clear
you will delete $\underline{\text { all the variables you have created in the workspace! }}$

Predefined Variables

ans	The default variable name when one has not been specified.
pi	π.
eps	Approximately the smallest positive real number on the computer such that $1+$ eps $\neq 1$.
Inf	∞ (as in $1 / 0$). You can also type inf.
NaN	Not-a-Number (as in 0/0). You can also type nan.
i	$\sqrt{-1}$.
j	$\sqrt{-1}$ (the same as i because engineers often use these interchangeably).
realmin	The smallest "usable" positive real number on the computer. This is "approximately" the smallest positive real number that can be represented on the computer (on some computer realmin/2 returns 0).
realmax	The largest "usable" positive real number on the computer. This is "approximately" the largest positive real number that can be represented on the computer (on most computer $2 *$ realmax returns Inf).

1.3. Round-off Errors

The most important principle for you to understand about computers is the following.
Principle 1.1. Computers cannot add, subtract, multiply, or divide correctly!
Computers do integer arithmetic correctly (as long as the numbers are not too large to be stored in the computer). However, computers cannot store most floating-point numbers (i.e., real numbers) correctly. For example, the fraction $1 / 3$ is equal to the real number $0.3333 \ldots$. Since a computer cannot store this infinite sequence of threes, the number has to be truncated.
eps is "close to" the difference between the exact number $1 / 3$ and the approximation to $1 / 3$ used in MATLAB. It is defined to be the smallest positive real number such that $1+\mathrm{eps}>1$ (although it is not actually calculated quite this accurately). For example, in MATLAB $1+0.1$ is clearly greater than 1 ; however, on our computer $1+1 \mathrm{e}-40$ is not. To see this, when we enter
$\gg(1+.1)-1$
we obtain 0.1000 as expected.
Note: MATLAB guarantees that the expression in parentheses is evaluated first, and then 1 is subtracted from the result.
However, when we enter
$\gg(1+1 . e-40)-1$
MATLAB returns 0 rather than 1.e-40. The smallest positive integer n for which
$\gg\left(1+10^{\wedge}(-n)\right)-1$
returns 0 is computer dependent. (On our computer it is 16.) What is not computer dependent is that this leads to errors in numerical calculations. For example, when we enter

```
> n = 5; ( n^(1/3) )^3 - n
```

MATLAB returns $-1.7764 \mathrm{e}-15$ rather than the correct result of 0 . If you obtain 0 , try some different values of n. You should be able to rerun the last statement executed without having to retype it by using the up-arrow key. Alternatively, on a Mac or a PC use the copy command in the menu; in Unix enter ${ }^{\wedge} \mathrm{p}$.
Note: It might not seem important that MATLAB does not do arithmetical operations precisely. However, you will see in subsection 5.2 that there are simple examples where this can lead to VERY incorrect results.
One command which is occasionally useful when you are just "playing around" is the input command, which displays a prompt on the screen and waits for you to enter some input from the keyboard. For example, if you want to try some different values of n in experimenting with the expression $\left(n^{1 / 3}\right)^{3}-n$, enter
$\gg \mathrm{n}=\operatorname{input}\left(\mathrm{n}={ }^{\prime}\right)$; ($\left.\mathrm{n} \wedge(1 / 3)\right) \wedge 3-\mathrm{n}$
The argument to the command input is the string which prompts you for input, and the input is stored in the variable n; the semicolon keeps the result of this command from being printed out. You can easily rerun this line for different values of n (as we described above) and explore how round-off errors can affect simple expressions.
Warning: eps and realmin are very different numbers. realmin is approximately the smallest positive number that can be represented on the computer, whereas eps is approximately the smallest positive number on the computer such that $1+\mathrm{eps} \neq 1$. (eps/realmin is larger than the total number of atoms in the known universe.)

input $($ ' $<$ prompt $>\prime$ ' $)$	Displays the Input desired.

1.4. Formatting Printing

The reason that $\left(n^{1 / 3}\right)^{3}-n$ can be nonzero numerically is that MATLAB only stores real numbers to a certain number of digits of accuracy. Type

$$
\gg \log 10(1 / \mathrm{eps})
$$

and remember the integer part of this number. This is approximately the maximum number of digits of accuracy of any calculation performed in MATLAB. For example, if you type $1 / 3$ in MATLAB the result is only accurate to approximately this number of digits. You do not see the decimal representation of $1 / 3$ to this number of digits because on start-up MATLAB only prints the result to four decimal digits - or five significant digits if scientific notation is used (e.g., the calculation $1 / 30000$ is displayed in scientific notation). To change how the results are printed out, use the format command in MATLAB. Use each of these four format functions and then type in $1 / 3$ to see how the result is printed out.

Format Options

```
format short The default setting.
format long Results are printed to approximately the maximum number of digits of accuracy
        in MATLAB.
format short e Results are printed in scientific notation using five significant digits.
format long e Results are printed in scientific notation to approximately the maximum number
    of digits of accuracy in MATLAB.
format short g Results are printed in the best of either format short or format short e.
format long g Results are printed in the best of either format long or format long e.
```


1.5. Common Mathematical Functions

MATLAB contains a large number of mathematical functions. Most are entered exactly as you would write them mathematically. For example,

```
> sin(3)
> exp(2)
> log(10)
```

return exactly what you would expect. As is common in programming languages, the trig functions are evaluated in radians. ${ }^{\dagger}$

Almost all the functions shown here are built-in functions. That is, they are coded in C so they execute very quickly. The one exception is the factorial function, i.e., $n!=1 \cdot 2 \cdot 3 \cdots n$, which is calculated by
$>$ factorial(n)
Note: This function is actually calculated by generating the vector $(1,2, \ldots, n)$ and them multiplying all its elements together by $\operatorname{prod}([1: n])$. (We discuss the colon operator in section 2.2.)
There is an important principle to remember about computer arithmetic in MATLAB.
Principle 1.2. If all the numbers you enter into MATLAB to do some calculation are "reasonably large" and the result of this calculation is one or more numbers which are "close to" eps , it is very likely that the number or numbers should be zero.

As an example, enter

```
    > deg = pi/180; th = 40; 1 - ( cos(th*deg)^2 + sin(th*deg)^2 )
```

The result is $1.1102 \mathrm{e}-16$. Clearly, all the numbers entered into this calculation are "reasonable" and the result is approximately eps. Obviously, the result is supposed to be zero since, from the Pythagorean theorem

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

for all angles θ. MATLAB tries to calculate the correct result, but it cannot quite. It is up to you to interpret what MATLAB is trying to tell you.
Note: If you obtained zero for the above calculation, try

```
    > th = input('angle = '); 1 - ( cos(th*deg)^2 + sin(th*deg)^2 )
```

for various angles. ${ }^{\ddagger}$ Some of these calculations should be nonzero.
There are a number of occasions in this overview where we reiterate that MATLAB cannot usually calculate results exactly. Sometimes these errors are small and unimportant - other times they are very important.
Warning: There is one technical detail about functions that will trip you up occasionally: how does MATLAB determine whether a word you enter is a variable or a function? The answer is that MATLAB first checks if the word is a variable and only if it fails does it check if the word is a function. For example, suppose you enter

$$
\gg \quad \sin =20
$$

[^1]by mistake (possibly you meant bin $=20$ but were thinking about something else). If you now type
$$
\gg \sin (3)
$$

MATLAB will reply
??? Index exceeds matrix dimensions.
because it recognizes that sin is a variable. Since MATLAB considers a variable to be a vector of length one, its complaint is that you are asking for the value of the third element of the vector sin (which only has one element). Similarly, if you enter
$\gg \sin (.25 * \mathrm{pi})$
MATLAB will reply
Warning: Subscript indices must be integer values.
because it thinks you are asking for the $.25 \pi$-th element of the vector sin. The way to undo your mistake is by typing
\gg clear \sin

Some Common Real Mathematical Functions

1.6. Complex Numbers

MATLAB can work with complex numbers as easily as with real numbers. For example, to find the roots of the quadratic polynomial $x^{2}+2 x+5$ enter

```
\(\gg \mathrm{a}=1 ; \mathrm{b}=2 ; \mathrm{c}=5\);
\(\gg \mathrm{x} 1=(-\mathrm{b}+\operatorname{sqrt}(\mathrm{b} \wedge 2-4 * a * \mathrm{c})) /(2 * \mathrm{a})\)
\(\gg \mathrm{x} 2=(-\mathrm{b}-\operatorname{sqrt}(\mathrm{b} \wedge 2-4 * a * \mathrm{c})) /(2 * a)\)
```

The output is
$-1.0000+2.0000 i$
and

$$
-1.0000-2.0000 i
$$

As another example, to calculate $e^{i \pi / 2}$ enter

```
> exp(i*pi/2)
```

and obtain

$$
0.0000+1.0000 i
$$

There are standard commands for obtaining the real part, the imaginary part, and the complex conjugate ${ }^{\dagger}$ of a complex number or variable. For example,

```
> x = 3 - 5i
> real(x)
> imag(x)
> conj(x)
```

returns 3, -5 , and $3.0000+5.0000$ i respectively.
Note that many of the common mathematical functions can take complex arguments. Above, MATLAB has calculated $e^{i \pi / 2}$, which is evaluated using the formula

$$
e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y)
$$

Similarly,

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i} .
$$

$$
\begin{array}{|l|}
\hline \text { Some Common Complex Mathematical Functions }
\end{array}
$$

$\operatorname{abs}(z)$	The absolute value of $z=x+i y$.	$\operatorname{conj}(z)$	$z^{*}=x-i y$.
$\operatorname{angle}(z)$	The angle of z. This is calculated	$\operatorname{imag}(z)$	The imaginary part of z, i.e., y.
	by atan2 (y, x).	$\operatorname{real}(z)$	The real part of z, i.e., x.

1.7. Script M-files

So far we have always entered MATLAB statements directly into the text window so that they are executed immediately. However, if we want to repeatedly execute a number of statements we have to put them all on one line and reexecute the whole line. This line can get very looonnng! The solution is to type the sequence of statements in a separate file named <file name>.m. It is easy to edit this file to remove any errors, and the sequence can be executed whenever desired by typing

```
> <file name>
```

The MATLAB statements themselves are not printed out, but the result of each statement is, unless a semicolon ends it. This type of file is called a script m-file: when MATLAB executes the command

[^2]<file name> the contents of the file "<file name>.m" are executed just as if you had typed them into into the text window. We will not emphasize script m-files further, but you will find many occasions where they are very helpful.

However, there is one point we need to emphasize. Make sure your file name is not the same as one of MATLAB's commands or functions. If it is, your file will not execute - MATLAB's will! To check this, you can enter
>> type <file name>
which types out the entire file file name.m if it is written in MATLAB and types out <file name> is a built-in function.
(A built-in function is written in C or Fortran and so cannot be viewed directly.) It your file is typed out, fine; if not, change the name of your file.

A long expression can be continued to a new line by typing three periods followed by the "enter (or "return") key. For example, $\sum_{j=1}^{20} 1 / j$ can be entered as

```
> 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 + 1/11 + 1/12 + ...
1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20
```

although there are much better ways to obtain this same expression with many fewer keystrokes (as you will see in subsection 2.7). Lines can also be continued in the MATLAB workspace by using three periods, but it is much more common to use continuation in an m -file.

If your m-file is very long, it is often valuable to include comments to explain what you are doing. Each line of comments must begin with the percent character, i.e., "\%". Comments can appear alone on a line or they can follow a statement that you have entered.
Note: By the way, comment lines are particularly useful if you write a number of script m-files. It is very easy to forget what this file is supposed to be doing.

Odds and Ends

$$
\begin{array}{|ll}
\text { type } & \text { Displays the actual MATLAB code for a command or function or m-file } \\
\ldots & \text { Continue an expression onto the next line. } \\
\% & \text { Begin a comment }
\end{array}
$$

1.8. Help!

Before discussing how to obtain help in MATLAB, here is a good place to discuss a very frustrating situation where you desperately need help: how do you abort a MATLAB statement which is presently executing. The answer is simply to type \wedge^{\wedge} (that is, hold down the control key and type "c").

The on-line help facility in MATLAB is quite extensive. If you type
> help
you will get a list of all the topics that you can peruse further by typing help followed by the name of the topic. If you want help on a specific command, simply type help followed by the name of the com-
mand, i.e.,
help <command>
For example, if you forget the exact form of the format command, just type
> help format
and you will see all the various ways that the output can be formatted.
Note: Typing
> help ?
gives you lots of information about arithmetical and relational and logical operators and special characters.
There is a more general command that can help you determine which commands might be of use. The command lookfor searches through the first line of all MATLAB help entries for a particular keyword. It is case insensitive so capital letters need not be used. For example,

```
> lookfor plot
```

returns all the MATLAB commands that have something to do with plots. (There are over one hundred.) This command may be useful - or it may not be. However, it is worth a try if you cannot remember the name of the command you want to use.
Warning: All of the thousands of MATLAB commands have to be checked, so this command might run slowly.
Note: The keyword need not be a complete word. For example, the keyword compl is contained in the words "complement", "complex", "complete", "completion", and "incomplete" - and in the capitals of all these words.
If you want to find out more about a specific command, enter
> type <command>
If the command is written in MATLAB's programming language (as discussed in section 8), the entire function will be typed out. (The type command does not work on internal MATLAB commands, called built-in function, which are coded in C.)

MATLAB also has an entire reference manual on-line which can be accessed by entering
$>$ doc
or
> helpdesk
This HTML documentation is displayed using your Web browser. It generally gives much more information than the help command, and in a more easily understood format.

After working for a while, you may well forget what variables you have defined in the workspace. Simply type who or whos to get a list of all your variables (but not their values). who simply returns the names of the variables you have defined, while whos also returns the size and type of each variable. To see what a variable contains, simply type the name of the variable on a line.

By the way, the demonstrations available by running demo show many of the capabilities of MATLAB and include the actual code used. This is always a good place to look if you are not sure how do do something.

Two commands that don't quite fit in any category are save and load. However, since these commands are occasionally very helpful, this is a good place to discuss them. Occasionally, you might need to save one or more MATLAB variables: it might have taken you some time to generate these variables and you might have to quit your MATLAB session without finishing your work - or you just might be afraid that you will overwrite some of them by mistake. The save command saves the contents of all your variables to the file "matlab.mat". Use help or doc to learn how to save all the variables to a file of your own choice and how to save just some of the variables. The load command loads all the saved variables back into your MATLAB session. ${ }^{\dagger}$ (As we discuss in subsection 4.1, the load command can also be used to input our own data into MATLAB.)

[^3]| | Getting Help |
| :---: | :---: |
| help | On-line help.
 help lists all the primary help topics.
 help <command> displays information about the command. |
| doc | On-line help reference manual in HTML format. doc accesses the manual.
 doc <command> displays information about the command. |
| helpdesk | Accesses the main page of the on-line reference manual. |
| type <command> | Displays the actual MATLAB code for this command. |
| lookfor <keyword> | Searches all MATLAB commands for this keyword. |
| who | Lists all the current variables. |
| whos | Lists all the current variables in more detail than who. |
| demo | Runs demonstrations of many of the capabilities of MATLAB. |
| save | Saves all of your variables. |
| load | Loads back all of the variables which have been saved previously. |
| ${ }^{\wedge} \mathrm{C}$ | Abort the command which is currently executing (i.e., hold down the control key and type "c"). |

1.9. Be Able To Do

After reading this section you should be able to do the following exercises. The MATLAB statements are given on page 131.

1. Consider a triangle with sides a, b, and c and corresponding angles $\angle a b, \angle a c$, and $\angle b c$.
(a) Use the law of cosines, i.e.,

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \angle a b
$$

to calculate c if $a=3.7, b=5.7$, and $\angle a b=79^{\circ}$.
(b) Then show c to its full accuracy.
(c) Use the law of sines, i.e.,

$$
\frac{\sin \angle a b}{c}=\frac{\sin \angle a c}{b},
$$

to calculate $\angle a c$ in degrees and show it in scientific notation.
(d) What MATLAB command should you have used first if you wanted to save these results to the file triangle.ans?
2. Calculate $\sqrt[3]{1.2 \times 10^{20}-12^{20}}$.
3. Analytically, $\cos 2 \theta=2 \cos ^{2} \theta-1$. Check whether this is also true numerically when using MATLAB by using a number of different values of θ. Use MATLAB statements which make it as easy as possible to do this.
4. How would you find out information about the fix command?

2. Arrays: Vector and Matrix Calculations

In the previous section we discussed operations using single numbers, i.e., scalars. In this section we discuss operations on sets of numbers called arrays. Until the advanced subsection at the end, we restrict our attention to one-dimensional arrays, which are called vectors, and two-dimensional arrays, which are called matrices. In this section we will generally refer to these sets of numbers specifically as vectors or matrices rather than use the more inclusive term "arrays". MATLAB was originally developed specifically to work with vectors and matrices and that is still one of its primary uses. For example, the multiplication of a matrix and a vector has a very specific meaning whereas the multiplication of two arrays does not.
Notation: We will always write matrices using capital letters and vectors using lower case letters.

This makes it much easier to understand MATLAB operations. This is also a good practice for you to use.
In addition, when we write "vector" we mean a column vector and so it is immediately obvious that $A * x$ is a legitimate operation of a matrix times a vector as long as the number of rows of the matrix A equals the number of columns of the column vector x . Also, $\mathrm{x} * \mathrm{~A}$ is illegitimate because the column vector x has only one column while the matrix A is expected to have more than one row. On the other hand, $x^{\prime} A$ is legitimate (x^{\prime} denotes the conjugate transpose of the vector x) as long as the row vector x^{\prime} has the same number of columns as the number of rows of the matrix A .
In addition, we have very specific notation for denoting vectors and matrices and the elements of each. We collect all this notation here.
Notation: \mathbb{R}^{m} denotes all real column vectors with m elements and \mathbb{C}^{m} denotes all complex column vectors with m elements.
$\mathbb{R}^{m \times n}$ denotes all real $m \times n$ matrices (i.e., having m rows and n columns) and $\mathbb{C}^{m \times n}$ denotes all complex $m \times n$ matrices.
Notation: In this overview the word "vector" means a column vector so that $\mathbb{C}^{m}=\mathbb{C}^{m \times 1}$. Vectors are denoted by boldface letters, such as x ; we will write a row vector as, for example, x^{T}, where ${ }^{\mathrm{T}}$ denotes the transpose of a matrix or vector (that is, the rows and columns are reversed.)
Notation: $\mathrm{A}=\left(a_{i j}\right)$ means that the (i, j)-th element of A (i.e., the element in the i-th row and the j-th column) is $a_{i j}$. $\mathrm{x}=\left(x_{i}\right)$ means that the i-th element of x is x_{i}.
By the way MATLAB works with complex matrices as well as it does real matrices. To remind you of this fact, we will use \mathbb{C} rather than \mathbb{R} unless there is a specific reason not to. If there is a distinction between the real and complex case, we will first describe the real case and then follow with the complex case in parentheses.

2.1. Generating Matrices

To generate the matrix

$$
\mathrm{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

in MATLAB type
$>A=\left[1_{\sqcup} 2 \sqcup 3 ; 4 \sqcup 5 \sqcup 6 ; 7 \sqcup 8 \sqcup 9\right]$
(where " \sqcup " denotes one or more spaces) or
$>A=\left[\sqcup 1 \sqcup 2 \sqcup 3_{\sqcup} ; \quad \sqcup 4 \sqcup 5 \sqcup 6 \sqcup ; \sqcup 7 \sqcup 8 \sqcup 9\right]$
or
$>A=[1,2,3 ; 4,5,6 ; 7,8,9]$
or
$>A=\left[\sqcup 1_{\sqcup}, \sqcup 2_{\sqcup}, \sqcup 3_{\sqcup} ;{ }_{\square} 4_{\sqcup}, \sqcup 5_{\sqcup}, \sqcup 6_{\sqcup} ; \sqcup 7_{\sqcup}, \sqcup 8_{\sqcup}, \sqcup 9_{\sqcup}\right]$
In other words, either spaces or commas can be used to delineate the elements of each row of a matrix; semicolons are required to separate rows. (Any number of spaces can be put around commas or semicolons to improve the readability of the expression.)
Notation: Since we prefer spaces, we will generally use them rather than commas to separate elements in a row.
Rows can also be separated by beginning each on a separate line. For example, the matrix A can also be entered by

$$
\begin{aligned}
& >\quad A=[1,2,3 \\
& 4,5,6 \\
& 7,8,9]
\end{aligned}
$$

However, we consider this to be more work than simply using semicolons and will not use it again. The more complicated matrix

$$
\mathrm{C}=\left(\begin{array}{ccc}
1 & 2+\sqrt{3} & 3 \sin 1 \\
e^{2} & 17 / 3 & \pi+3 \\
1 / 3 & 2-\sqrt{3} & -7 \cos \pi / 7
\end{array}\right)
$$

can be entered by typing
$>C=\left[\begin{array}{lll}1 & 2+\operatorname{sqrt}(3) & 3 * \sin (1) ; \exp (2) \\ 17 / 3 & \mathrm{pi}+3 ; 1 / 3 & 2-\operatorname{sqrt}(3) \quad-7 * \cos (\mathrm{pi} / 7)\end{array}\right]$
or
$\gg C=[1,2+\operatorname{sqrt}(3), 3 * \sin (1) ; \exp (2), 17 / 3, \operatorname{pi}+3 ; 1 / 3,2-\operatorname{sqrt}(3),-7 * \cos (\mathrm{pi} / 7)]$
Warning: When an element of a matrix consists of more than one term, it is important to enter all the terms without spaces - unless everything is enclosed in parentheses. For example,

```
        > x1 = [1 [ pi+3]
```

is the same as

```
            > x2 = [1 [ pi+ 3]
```

and is the same as

$$
\gg x 3=\left[\begin{array}{lll}
1 & (p i & +3
\end{array}\right]
$$

but is not the same as

$$
\gg \mathrm{x} 4=\left[\begin{array}{lll}
1 & \mathrm{pi} & +3
\end{array}\right] \quad \% \text { not the same as the previous three statements }
$$

(Try it!) In other words, MATLAB tries to understand what you mean, but it does not always succeed.

Definition

The transpose of a matrix $\mathrm{A} \in \mathbb{C}^{m \times n}$, denoted by A^{T}, is obtained by reversing the rows and columns of A . That is, if $\mathrm{A}=\left(a_{i j}\right)$ then $\mathrm{A}^{\mathrm{T}}=\left(a_{j i}\right)$. (For example, the $(2,4)$ element of A^{T}, i.e., $i=2$ and $j=4$, is a_{42}.)
A square matrix A is symmetric if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$.
The conjugate transpose of a matrix $\mathrm{A} \in \mathbb{C}^{m \times n}$, denoted by A^{H}, is obtained by reversing the rows and columns of A and then taking the complex conjugates of all the elements. That is, if $\mathrm{A}=\left(a_{i j}\right)$ then $\mathrm{A}^{\mathrm{H}}=\left(a_{j i}^{*}\right)$, where ${ }^{*}$ denotes the complex conjugate of a number.
A square matrix A is Hermitian if $\mathrm{A}^{\mathrm{H}}=\mathrm{A}$.
Note: In MATLAB A^{T} is calculated by A.' (i.e., a period followed by a single quote mark).
In MATLAB A^{H} is calculated by A^{\prime} (i.e., just a single quote mark.)
A vector can be entered in the same way as a matrix. For example, the vector

$$
\mathrm{x}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\right)=(1,2,3,4,5,6)^{\mathrm{T}}
$$

can be entered as
$\gg \mathrm{x}=[1 ; 2 ; 3 ; 4 ; 5 ; 6]$
However, this requires many semicolons; instead, take the transpose of a row vector by entering
$\gg x=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right] .^{\prime}$
where the MATLAB command for the transpose, i.e., " T ", is ".'" (i.e., a period followed by a single quote mark). There is one further simplification that is usually observed when entering a vector. The MATLAB command for the conjugate transpose, i.e., "H", of a matrix is "'" (i.e., just a single quote mark), which requires one less character than the command for the transpose. Thus, x is usually entered as
$>\quad x=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right]^{\prime}$
Aside: In fact, x should be entered as

$$
\gg x=[1: 6]^{\prime}
$$

since this requires much less typing. (We will discuss the colon operator shortly.)
Warning: $\mathrm{x}^{\mathrm{T}} \rightarrow \mathrm{x} .^{\prime}$ while $\mathrm{x}^{\mathrm{H}} \rightarrow \mathrm{x}^{\prime}$ so that you can only calculate x^{T} by x^{\prime} if x is real. This has bitten us occasionally!
Sometimes the elements of a matrix are complicated enough that you will want to simplify the process of generating the matrix. For example, the vector $\mathrm{r}=(\sqrt{2 / 3}, \sqrt{2}, \sqrt{3}, \sqrt{6}, \sqrt{2 / 3})^{\mathrm{T}}$ can be entered by typing

```
> s2 = sqrt(2); s3 = sqrt(3); r = [ s2/s3 s2 s3 s2*s3 s2/s3 ]'
```

We have now discussed how to enter matrices into MATLAB by using square parentheses, i.e., [...]. You work with individual elements of a matrix by using round parentheses, i.e., (. . .). For example, the element $a_{i j}$ of the matrix A is $A(i, j)$ in MATLAB. Suppose you want to create the matrix

$$
B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)
$$

without having to enter all nine elements. If A (see the beginning of this section) has already been generated, the simplest way is to type
$>\quad B=A ; B(3,3)=10$
Also, the element x_{i} of the vector x is $\mathrm{x}(\mathrm{i})$ in MATLAB. For example, to create the column vector

$$
\mathrm{x}=(1,2,3, \ldots, 47,48,49,51)^{\mathrm{T}} \in \mathbb{R}^{50}
$$

enter
$\gg \mathrm{x}=[1: 50]^{\prime} ; \mathrm{x}(50)=51$
or
$\gg x=[1: 50]^{\prime} ; x(50)=x(50)+1$
or
$\gg x=[1: 50]^{\prime} ; x($ length $(x))=x($ length $(x))+1$
where length returns the number of elements in a vector.
MATLAB also has a number of commands that can generate matrices. For example,
$\gg \quad C=z e r o s(5)$
or
$>\quad C=\operatorname{zeros}(5,5)$
generates a 5×5 zero matrix. Also,
$>\quad C=\operatorname{zeros}(5,8)$
generates a 5×8 zero matrix. Finally, you can generate a zero matrix C with the same size as an already existing matrix, such as A, by
$\gg \quad C=z e r o s(\operatorname{size}(A))$
where size(A) is a row vector consisting of the number of rows and columns of A. This command is frequently used to preallocate a matrix of a given size so that MATLAB does not need to "guess" how large to make it.

Similarly, you can generate a matrix with all ones by ones (n) or ones (m, n) or ones (size(D)). You can also generate the identity matrix, i.e., the matrix with ones on the main diagonal and zeroes off of it, by using the command eye with the same arguments as above.

Another useful matrix is a random matrix, that is, a matrix whose elements are all random numbers. This is generated by the rand command, which takes the same arguments as above. Specifically, the elements are uniformly distributed random numbers in the interval $(0,1)$. To be precise, these are pseudorandom numbers because they are calculated by a deterministic formula which begins with an initial "seed" - which is called the state, not the seed. Every time that a new MATLAB session is started, the default seed is set, and so the same sequence of random numbers will be generated. However, every time that this command is executed during a session, a different sequence of random numbers is generated. If desired, a different seed can be set at any time by entering
>> rand('state', <non-negative integer state number>)
Note: You can use the word "seed", rather than "state", as the first argument to rand but this causes MATLAB to use an older random number generator which has a period of $2^{31}-2$. The period of the current default random number generator is 2^{1492}.
Random matrices are often useful in just "playing around" or "trying out" some idea or checking out some algorithm. The command randn generates a random matrix where the elements are normally distributed (i.e., Gaussian distributed) random numbers with mean 0 and standard deviation 1.

There is another "random" function which is useful if you want to reorder a sequence. The command randperm(n) generates a random permutation of the integers $1,2, \ldots, n$.

Note: randperm changes the state of rand.
MATLAB also makes it convenient to assemble matrices in "pieces", that is, to put matrices together to make a larger matrix. That is, the original matrices are submatrices of the final matrix. For specificity, let us continue with A (see the beginning of this section). Suppose you want a 5×3 matrix whose first three rows are the rows of A and whose last two rows are all ones. This is easily generated by $>\quad[\mathrm{A}$; ones $(2,3)]$
(The semicolon indicates that a row has been completed and so the next rows consist of all ones. The fact that A is a matrix in its own right is immaterial. All that is necessary is that the number of columns of A be the same as the number of columns of ones $(2,3)$.$) This matrix could also be generated by$
$\gg \quad[\mathrm{A} ; \operatorname{ones}(1,3)$; ones $(1,3)]$
or by
$\gg\left[\mathrm{A} ;\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right.$; $\left.\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right]$
or even by
$\gg\left[A\right.$; $\left.\left[\begin{array}{lllllll}1 & 1 & 1 & ; & 1 & 1 & 1\end{array}\right]\right]$
Similarly, to generate a 3×4 matrix whose first three columns are the columns of A and whose last column is $(1,5,9)^{\mathrm{T}}$ type
$>\quad\left[\begin{array}{llll}A & {\left[\begin{array}{lll}1 & 5 & 9\end{array}\right]^{\prime}}\end{array}\right]$
(The space following the A indicates that the next column is to follow. The fact that the next entry is a column vector is immaterial. All that is necessary is that the number of rows of A be the same as the number of rows in the new last column.)

Elementary Matrices

```
zeros(n)
Generates an \(n \times n\) matrix with all elements being 0 .
zeros(m, n) Generates an m\timesn matrix.
zeros(size(A)) Generates a zero matrix with the same size as A.
ones Generates a matrix with all elements being 1.
    The arguments are the same as for zeros.
eye Generates the identity matrix, i.e., the diagonal elements are 1 and the off-
    diagonal elements are 0.
    The arguments are the same as for zeros.
rand Generates a matrix whose elements are uniformly distributed random numbers
    in the interval ( 0, 1). Each time that this function is called during a session it
    returns different random numbers.
    The arguments are the same as for zeros.
    The initial seed is changed by rand('seed', <seed number>).
randn Generates a matrix whose elements are normally (i.e., Gaussian) distributed
    random numbers with mean 0 and standard deviation 1. Each time that this
    function is called during a session it returns different random numbers.
    The arguments are the same as for zeros.
randperm(n) Generates a random permutation of the integers 1,2,\ldots,n.
\begin{tabular}{|ll|l|}
\hline size (A) & \multicolumn{1}{l}{\begin{tabular}{l} 
The size of a matrix as the row vector \((m, n)\). \\
Also, size \((A, 1)\) returns the number of rows (the first element of \(A)\) and size \((A, 2)\) \\
returns the number of columns (the second element of \(A)\). \\
The number of elements in a vector.
\end{tabular}} \\
\hline A. \(^{\prime}\) & Transpose, i.e., \(A^{T}\). & \(A^{\prime} \quad\) Conjugate transpose, i.e., \(A^{H}\). \\
\hline
\end{tabular}
```


2.2. The Colon Operator

For real numbers a and b the MATLAB command

$$
>\quad[\mathrm{a}: \mathrm{b}]
$$

or, more simply,
$\gg a: b$
generates the row vector $(\mathrm{a}, \mathrm{a}+1, \mathrm{a}+2, \ldots, \mathrm{a}+k)$ where the integer k satisfies $\mathrm{a}+k \leq \mathrm{b}$ and $\mathrm{a}+(k+1)>\mathrm{b}$. Thus, the vector $\mathrm{x}=(1,2,3,4,5,6)^{\mathrm{T}}$ should be entered into MATLAB as
$>x=[1: 6]^{\prime}$
or even as
$>x=[1: 6.9]^{\prime}$
(although we can't imagine why you would want to do it this way). If c is also a real number the MATLAB command
$>$ [a:c:b]
or
> $a: c: b$
generates a row vector where the difference between successive elements is c. Thus, we can generate numbers in any arithmetic progression using the colon operator. For example, typing
> [18:-3:2]
generates the row vector $(18,15,12,9,6,3)$. while typing
$\gg[\mathrm{pi}:-.2 * \mathrm{pi}: 0]$
generates the row vector $(\pi, .8 \pi, .6 \pi, .4 \pi, .2 \pi, 0)$.
Warning: There is a slight danger if c is not an integer. As an oversimplified example, entering $>\mathrm{x}=[.02: .001: .98]^{\prime}$
should generate the column vector $(0.02,0.021,0.022, \ldots, 0.979,0.98)^{\mathrm{T}}$. However, because of round-off errors in storing floating-point numbers, there is a possibility that the last element in x will be 0.979 . The MATLAB package was written specifically to minimize such a possibility, but it still remains. ${ }^{\dagger}$ We will discuss the command linspace which avoids this difficulty in section 4. An easy "fix" to avoid this possibility is to calculate x by
$\gg \mathrm{x}=[20: 980]^{\prime} / 1000$

2.3. Manipulating Matrices

For specificity in this subsection we will mainly work with the 5×6 matrix

$$
\mathrm{E}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & 29 & 30
\end{array}\right)
$$

which can be generated by
$\gg E=[1: 6 ; 7: 12 ; 13: 18 ; 19: 24 ; 25: 30]$
Note: Spaces will frequently be used in MATLAB commands in this subsection for readability.
You can use the colon notation to extract submatrices from E. For example,
$\left.\gg F=E\left(\begin{array}{lll}1 & 3 & 5\end{array}\right],\left[\begin{array}{llll}2 & 3 & 4 & 5\end{array}\right]\right)$
extracts the elements in the first, third, and fifth rows and the second, third, fourth, and fifth columns of E ; thus,

$$
\mathrm{F}=\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
14 & 15 & 16 & 17 \\
26 & 27 & 28 & 29
\end{array}\right)
$$

[^4]You can generate this submatrix more easily by typing
$\gg F=E(1: 2: 5,2: 5)$
There is an additional shortcut you can use: in a matrix a colon by itself represents an entire row or column. For example, the second column of F is $F(:, 2)$ and the second row is $F(2,:)$. To replace the second column of F by two times the present second column minus four times the fourth column enter $\gg \mathrm{F}(:, 2)=2 * \mathrm{~F}(:, 2)-4 * \mathrm{~F}(:, 4)$
And suppose you now want to double all the elements in the last two columns of F. Simply type $\gg F(:, 3: 4)=2 * F(:, 3: 4)$
Entering $\mathrm{E}(:,:$) prints out exactly the same matrix as entering E. This is not a very useful way of entering E, but it shows how the colon operator can work. On the other hand, entering
$>\mathrm{G}=\mathrm{E}(:, 6:-1: 1)$
generates a matrix with the same size as E but with the columns reversed, i.e.,

$$
\mathbf{G}=\left(\begin{array}{cccccc}
6 & 5 & 4 & 3 & 2 & 1 \\
12 & 11 & 10 & 9 & 8 & 7 \\
18 & 17 & 16 & 15 & 14 & 13 \\
24 & 23 & 22 & 21 & 20 & 19 \\
30 & 29 & 28 & 27 & 26 & 25
\end{array}\right)
$$

Finally, there is one more use of a colon. Entering
$>f=E(:)$
generates a column vector consisting of the columns of E (i.e., the first five elements of f are the first column of E, the next five elements of f are the second column of E, etc.).
Note: On the right side of an equation, E(:) is a column vector with the elements being the columns of E in order. On the left side of an equation, $\mathrm{E}(:)$ reshapes a matrix. However, we will not discuss this reshaping further because the reshape command described below is easier to understand.
The colon operator works on rows and/or columns of a matrix. A different command is needed to work on the diagonals of a matrix. For example, you extract the main diagonal of E by typing
$\gg d=\operatorname{diag}(E)$
(so d is the column vector $(1,8,15,22,29)^{\mathrm{T}}$), one above the main diagonal by typing
$\gg d 1=\operatorname{diag}(E, 1)$
(so d1 is the column vector $(2,9,16,23,30)^{\mathrm{T}}$), and two below the main diagonal by typing
$\gg \mathrm{d} 2=\operatorname{diag}(\mathrm{E},-2)$
(so d2 is the column vector $\left.(13,20,27)^{\mathrm{T}}\right)$.
The MATLAB command diag transforms a matrix (i.e., a non-vector) into a column vector. The converse also holds: when diag is applied to a vector, it generates a symmetric matrix. The command
$\gg F=\operatorname{diag}(d)$
generates a $\underline{5 \times 5}$ matrix whose main diagonal elements are the elements of d, i.e., $1,8,15,22,29$, and whose off-diagonal elements are zero. Similarly, entering
$\gg \mathrm{F} 1=\operatorname{diag}(\mathrm{d} 1,1)$
generates a $\underline{6 \times 6}$ matrix whose first diagonal elements (i.e., one above the main diagonal) are the elements of d1, i.e., $\overline{2,9,16}, 23,30$, and whose other elements are zero, that is,

$$
\mathrm{F} 1=\left(\begin{array}{cccccc}
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 9 & 0 & 0 & 0 \\
0 & 0 & 0 & 16 & 0 & 0 \\
0 & 0 & 0 & 0 & 23 & 0 \\
0 & 0 & 0 & 0 & 0 & 30 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Finally, typing

```
> F2 = diag(d2, -2)
```

generates a $\frac{5 \times 5}{}$ matrix whose -2 -nd diagonal elements (i.e., two below the main diagonal) are the elements of d 2 , i.e., $13,20,27$, and whose other elements are zero, i.e.,

$$
\mathrm{F} 2=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
13 & 0 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 & 0 \\
0 & 0 & 27 & 0 & 0
\end{array}\right)
$$

You can also extract the upper triangular or the lower triangular part of a matrix. For example,

$\gg G 1=\operatorname{triu}(E)$

constructs a matrix which is the same size as E and which contains the same elements as E on and above the main diagonal; the other elements of G1 are zero. This command can also be applied to any of the diagonals of a matrix. For example,
$>\quad \mathrm{G} 2=\operatorname{triu}(\mathrm{E}, 1)$
constructs a matrix which is the same size as E and which contains the same elements as E on and above the first diagonal, i.e.,

$$
\mathrm{G} 2=\left(\begin{array}{cccccc}
0 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 9 & 10 & 11 & 12 \\
0 & 0 & 0 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 23 & 24 \\
0 & 0 & 0 & 0 & 0 & 30
\end{array}\right)
$$

The similar command tril extracts the lower triangular part of a matrix.
As an example of the relationship between these three commands, consider the square random matrix F generated by

```
> F = rand (6)
```

All the following MATLAB commands calculate F anew:

```
> triu(F) + tril(F) - diag(diag(F))
> triu(F, 1) + diag(diag(F)) + tril(F, -1)
> triu(F) + tril(F, -1)
> triu(F, 2) + diag(diag(F, 1), 1) + tril(F)
```

Note: Numerically the first command might not generate exactly the same matrix as the following three because of round-off errors.
By the way, diag, triu and tril cannot appear on the left-hand side of an equation. Instead, to zero out all the diagonals above the main diagonal of F enter

$$
\gg F=F-\operatorname{triu}(F, 1)
$$

and to zero out just the first diagonal above the main diagonal enter

```
> F = F - tril(triu(F, 1), 1)
```

What if you want to insert numbers from the upper right-hand corner of a matrix to the lower left-hand corner? There is no explicit function which does this but there are a number of indirect functions:
$f \operatorname{liplr}(A)$ flips the matrix from left to right, i.e., reverses the columns of the matrix;
flipud(A) flips the matrix up and down, i.e., reverses the rows of the matrix;
rot90(A) rot90 rotates the matrix 90°; and
$\operatorname{rot90}(\mathrm{A}, \mathrm{k})$ rotates the matrix $k \times 90^{\circ}$.
MATLAB has a command which is useful in changing the shape of a matrix while keeping the same numerical values. The statement
$\gg K=\operatorname{reshape}(H, m, n)$
reshapes the matrix $\mathrm{H} \in \mathbb{C}^{p \times q}$ into $\mathrm{K} \in \mathbb{C}^{m \times n}$ where m and n must satisfy $m n=p q$ (or an error message will be generated). A column vector is generated from H, as in $H(:)$, and the elements of K are taken columnwise from this vector. That is, the first m elements of this column vector go in the first column of K , the second m elements go in the second column, etc. For example, the matrix E which has been used throughout this subsection can be easily (and quickly) generated by

```
> E = reshape([1:30], 6, 5)'
```

Occasionally, there is a need to delete elements of a vector or rows or columns of a matrix. This is easily done by using the null matrix []. For example, entering

```
> x = [llllll}
> x(2) = []
```

results in $\mathrm{x}=(1,3,4)^{\mathrm{T}}$. As another example, you can delete the even columns of G by $>\mathrm{G}(:, 2: 2: 6)=[]$
The result is

$$
\mathbf{G}=\left(\begin{array}{ccc}
6 & 4 & 2 \\
12 & 10 & 8 \\
18 & 16 & 14 \\
24 & 22 & 20 \\
30 & 28 & 26
\end{array}\right)
$$

Also, occasionally, there is a need to replicate or tile a matrix. That is, the command
$>B=\operatorname{repmat}(A, m, n)$
generates a matrix B which contains m rows and n columns of copies of A . (If $n=m$ then repmat (A, m) is sufficient.) If A is a p by q matrix, then $\mathrm{B} \in \mathbb{R}^{m p \times n q}$. This even works if A is a scalar, in which case this is the same as
$>B=A$ *ones (m, n)
(but it is much faster if m and n are large since no multiplication is involved).

	Manipulating Matrices
A (i, j $)$	$a_{i, j}$.
A ($:, \mathrm{j}$)	the j-th column of A .
A (i, :)	the i-th row of A.
A (: , :)	A itself.
A ($31, ? 2$)	There are many more choices than we care to describe: ? 1 can be i or i1:i2 or i1:i3:i2 or : or [i1 i2 ... ir] and ?2 can be j or $\mathrm{j} 1: \mathrm{j} 2$ or $\mathrm{j} 1: \mathrm{j} 3: \mathrm{j} 2$ or : or $[\mathrm{j} 1 \mathrm{j} 2 \ldots \mathrm{jr}$].
A (:)	On the right-hand side of an equation, this is a column vector containing the columns of A one after the other.
$\left.\begin{array}{l} \operatorname{diag}(A) \\ \operatorname{diag}(A, k) \end{array}\right\}$	A column vector of the k-th diagonal of the matrix (i.e., non-vector) A. If k is not given, then $k=0$.
$\left.\begin{array}{l} \operatorname{diag}(\mathrm{d}) \\ \operatorname{diag}(\mathrm{d}, \mathrm{k}) \end{array}\right\}$	A square matrix with the k-th diagonal being the vector d . If k is not given, then $k=0$.
$\left.\begin{array}{l} \operatorname{triu}(\mathrm{A}) \\ \operatorname{triu}(\mathrm{A}, \mathrm{k}) \end{array}\right\}$	A matrix which is the same size as A and consists of the elements on and above the k-th diagonal of A . If k is not given, then $k=0$.
$\left.\begin{array}{l} \operatorname{tril}(\mathrm{A}) \\ \operatorname{tril}(\mathrm{A}, \mathrm{k}) \end{array}\right\}$	The same as the command triu except it uses the elements on and below the k-th diagonalof A . If k is not given, then $k=0$.
fliplr (A)	Flips a matrix left to right.
flipud(A)	Flips a matrix up and down.
$\left.\begin{array}{l} \operatorname{rot} 90(A) \\ \operatorname{rot} 90(A, k) \end{array}\right\}$	Rotates a matrix $k \times 90^{\circ}$. If k is not given, then $k=1$.
$\operatorname{repmat}(\mathrm{A}, \mathrm{m}, \mathrm{n})$	Generates a matrix with m rows and n columns of copies of A. (If $n=m$ the third argument is not needed.)
reshape (A, m, n)	Generates an $m \times n$ matrix whose elements are taken columnwise from A. Note: The number of elements in A must be $m n$.
[]	The null matrix. This is also useful for deleting elements of a vector and rows or columns of a matrix.

2.4. Simple Arithmetical Operations

Matrix Addition:
If $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{m \times n}$ then the MATLAB operation

$$
\gg A+B
$$

means $\mathrm{A}+\mathrm{B}=\left(a_{i j}\right)+\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right)$. That is, the (i, j)-th element of $\mathrm{A}+\mathrm{B}$ is $a_{i j}+b_{i j}$.
Matrix Subtraction:
If $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{m \times n}$ then the MATLAB operation
$\gg A-B$
means $\mathrm{A}-\mathrm{B}=\left(a_{i j}\right)-\left(b_{i j}\right)=\left(a_{i j}-b_{i j}\right)$.
Matrix Multiplication by a scalar:
If $\mathrm{A} \in \mathbb{C}^{m \times n}$ then for any scalar c the MATLAB operation

```
        c*A
```

means $\mathrm{cA}=\mathrm{c}\left(a_{i j}\right)=\left(\mathrm{c} a_{i j}\right)$. For example, the matrix $\mathrm{q}=(0, .1 \pi, .2 \pi, .3 \pi, .4 \pi, .5 \pi)^{\mathrm{T}}$ can be gener-
ated by

$$
\gg \mathrm{q}=[0: .1 * \mathrm{pi}: .5 * \mathrm{pi}]^{\prime}
$$

but more easily by

$$
\gg \mathrm{q}=\left[\begin{array}{llllll}
0 & : & . & : & .5
\end{array}\right]^{\prime} * \mathrm{pi}
$$

or

$$
\gg \mathrm{q}=[0: 5]^{\prime} * .1 * \mathrm{pi}
$$

Matrix Multiplication:
If $A \in \mathbb{C}^{m \times \ell}$ and $B \in \mathbb{C}^{\ell \times n}$ then the MATLAB operation $>\quad \mathrm{A} * \mathrm{~B}$
means $\mathrm{AB}=\left(a_{i j}\right)\left(b_{i j}\right)=\left(\sum_{k=1}^{\ell} a_{i k} b_{k j}\right)$. That is, the (i, j)-th element of AB is $a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+$ $\cdots+a_{i \ell} b_{\ell j}$.
Matrix Exponentiation:
If $\mathrm{A} \in \mathbb{C}^{n \times n}$ and p is a positive integer, then the MATLAB operation
$>A^{\wedge} p$
means $\mathrm{A}^{p}=\underbrace{\mathrm{AA} \cdots \mathrm{A}}_{p \text { times }}$.
Matrix Exponentiation is also defined when p is not an integer. For example,

$$
\gg A=[12 ; 34] ; B=A^{\wedge}(1 / 2)
$$

calculates a complex matrix B whose square is A. (Analytically, $B^{2}=A$, but numerically

$$
\gg \quad \mathrm{B} \wedge 2-\mathrm{A}
$$

returns a non-zero matrix - however, all of its elements are less than $10 \cdot$ eps in magnitude.)
Note: For two values of p there are equivalent MATLAB commands:
$A^{1 / 2}$ can also be calculated by $\operatorname{sqrtm}(A)$ and
A^{-1} can also be calculated by $\operatorname{inv}(A)$.
Matrix Division:
The expression

$$
\frac{\mathrm{A}}{\mathrm{~B}}
$$

makes no sense in linear algebra: if B is a square non-singular matrix it might mean $B^{-1} A$ or it might mean $A B^{-1}$. Instead, use the operation
$>\mathrm{A} \backslash \mathrm{b}$
to calculate the solution of the linear system $A x=b$ (where A must be a square non-singular matrix) by Gaussian elimination. This is much faster computationally than calculating the solution of $\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b}$ by

$$
\gg x=\operatorname{inv}(A) * b
$$

Similarly,
$A \backslash B$
solves $A x=b$ repeatedly where b is each column of B in turn.

Elementwise Multiplication:
If $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{m \times n}$, then the MATLAB operation

$$
\gg \quad \mathrm{A} \cdot * \mathrm{~B}
$$

means $\left(a_{i j} b_{i j}\right)$. That is, the (i, j)-th element of $\mathrm{A} . * \mathrm{~B}$ is $a_{i j} b_{i j}$. Note that this is not a matrix
operation, but it is sometimes a useful operation. For example, suppose y $\in \mathbb{R}^{n}$ has been defined pre-
viously and you want to generate the vector $\mathbf{z}=\left(1 y_{1}, 2 y_{2}, 3 y_{3}, \ldots, n y_{n}\right)^{\mathrm{T}}$. You merely type

$$
\gg \mathrm{z}=[1: \mathrm{n}]^{\prime} \cdot * \mathrm{y}
$$

(where the spaces are for readability). Recall that if $\mathrm{y} \in \mathbb{C}^{n}$ you will have to enter

$$
\gg \mathrm{z}=[1: \mathrm{n}] .^{\prime} . * \mathrm{y}
$$

because you do not want to take the complex conjugate of the complex elements of y .
Elementwise Division:
If $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{m \times n}$, then the MATLAB operation

$$
\gg A . / B
$$

means $\left(a_{i j} / b_{i j}\right)$.
Elementwise Left Division:
If $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{m \times n}$, then the MATLAB operation

$$
\gg \quad B . \backslash A
$$

means the same as A./B
Elementwise Exponentiation:
If $\mathrm{A} \in \mathbb{C}^{m \times n}$, then
$>$ A.^p
means $\left(a_{i j}^{p}\right)$ and
$\gg \mathrm{p} . \wedge \mathrm{A}$
means $\left(p^{a_{i j}}\right)$. Also, if $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{m \times n}$, then A.^B
means $\left(a_{i j}^{b_{i j}}\right)$.
Where needed in these arithmetic operations, MATLAB checks that the matrices have the correct size.
For example,
$>A+B$
will return an error message if A and B have different sizes, and
$\gg A * B$
will return an error message if the number of columns of A is not the same as the number of rows of B.
Note: There is one exception to this rule. When a scalar is added to a matrix, as in A +c , the scalar is promoted to the matrix cJ where J has the same size as A and all its elements are 1 . That is,

```
> A + C
```

is evaluated as

```
> A + c*ones(size(A))
```

This is not a legitimate expression in linear algebra, but it is a very useful expression in MATLAB. For example, you can represent the function

$$
y=2 \sin (3 x+4)-5 \quad \text { for } x \in[2,3]
$$

by 101 data points using

$$
\begin{aligned}
& \gg \quad x=[2: .01: 3]^{\prime} ; \\
& >y=2 * \sin (3 * x+4)-5
\end{aligned}
$$

This is much more intelligible than calculating y using

$$
\gg y=2 * \sin (3 * x+4 * \operatorname{ones}(101,1))-5 * \operatorname{ones}(101,1)
$$

In some courses that use vectors, such as statics courses, the dot product of the real vectors \vec{a} and \vec{b} is defined by

$$
\vec{a} \cdot \vec{b}=\sum_{i=1}^{n} a_{i} b_{i}
$$

In linear algebra this is called the inner product and is defined for vectors $\mathrm{a}, \mathrm{b} \in \mathbb{R}^{n}$ by $\mathrm{a}^{\mathrm{T}} \mathrm{b}$. It is calculated by
$>\mathrm{a}^{\prime} * \mathrm{~b}$
(If $\mathrm{a}, \mathrm{b} \in \mathbb{C}^{n}$ the inner product is $\mathrm{a}^{\mathrm{H}} \mathrm{b}$ and is calculated by $\mathrm{a}^{\prime} * \mathrm{~b}$.) The outer product of these two vectors is defined to be $a b^{T}$ and is calculated by
$\gg a * b^{\prime}$
(If a, b are complex the outer product is ab^{H} and is calculated by $\mathrm{a*} \mathrm{~b}^{\prime}$.) It is important to keep these two products separate: the inner product is a scalar, i.e., $\mathrm{a}^{\mathrm{T}} \mathrm{b} \in \mathbb{R}$ (if complex, $\mathrm{a}^{\mathrm{H}} \mathrm{b} \in \mathbb{C}$), while the outer product is an $n \times n$ matrix, i.e., $\mathrm{ab}^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ (if complex, $\mathrm{ab}^{\mathrm{H}} \in \mathbb{C}^{n \times n}$).

In linear algebra we often work with "large" matrices and are interested in the amount of "work" required to perform some operation. Previously, MATLAB kept track of the number of flops, i.e., the number of floating-pointoperations, performed during the MATLAB session. Unfortunately, this disappeared in version 6. Instead, we can calculate the amount of CPU time ${ }^{\dagger}$ required to execute a command by using cputime. This command returns the CPU time in seconds that have been used since you began your $M A T L A B$ session. This time is frequently difficult to calculate, and is seldom more accurate than to $1 / 100^{-t h}$ of a second. Here is a simple example to determine the CPU time required to invert a matrix.

$$
\gg \mathrm{n}=\text { input }\left({ }^{\prime} \mathrm{n}={ }^{\prime}\right) ; \text { time }=\text { cputime } ; \operatorname{inv}(\operatorname{rand}(\mathrm{n})) ; \text { cputime }- \text { time }
$$

Warning: Remember that you have to subtract the CPU time used before the operation from the CPU time used after the operation.
By the way, you can also calculate the wall clock time required for some sequence of commands by using tic and toc. For example,
> tic; <sequence of commands>; tic
returns the time in seconds for this sequence of commands to be performed.
Note: This is very different from using cputime. tic followed by toc is exactly the same as if you had used a stopwatch to determine the time. Since a timesharing computer can be running many different processes at the same time, the elapsed time might be much greater than the CPU time. Normally, the time you are interested in is the CPU time.

2.5. Be Careful!

Be very careful: occasionally you might misinterpret how MATLAB displays the elements of $\underline{\text { a vector or matrix. For example, the MATLAB command eig calculates the eigenvalues of a square }}$ matrix. (We discuss eigenvalues in section 7.) To calculate the eigenvalues of the Hilbert matrix of order 5, i.e.,

$$
\left(\begin{array}{lllll}
1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\
1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\
1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 \\
1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 \\
1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 & 1 / 9
\end{array}\right),
$$

[^5](we discuss this matrix in detail in subsection 5.2) enter

```
> format short
> eig(hilb(5))
```

MATLAB displays the eigenvalues as the column vector

```
ans =
```

0.0000
0.0003
0.0114
0.2085
1.5671

You might think the the first element of this vector is 0 . However, if it was zero MATLAB would display 0 and not 0.0000 . Entering

```
        > format short e
```

 \(\gg\) ans
 displays
ans =
3.2879e-06
3.0590e-04
$1.1407 \mathrm{e}-02$
$2.0853 \mathrm{e}-01$
$1.5671 \mathrm{e}+00$
which makes it clear that the smallest eigenvalue is far from zero.
On the other hand, if you enter
$>$ format short
$>A=\left[\begin{array}{lllllll}1 & 2 & 3 ; & 5 & 6 ; 7 & 8 & 9\end{array}\right]$
$\gg \operatorname{eig}(A)$
MATLAB displays

```
ans =
```

16.1168
-1.1168
-0.0000
It might appear from our previous discussion that the last eigenvalue is not zero, but is simply too small to appear in this format. However, entering

```
> format short e
> ans
```

displays
ans =
$1.6117 e+01$
$-1.1168 e+00$
$-8.0463 e-16$

Since the last eigenvalue is close to eps, but all the numbers in the matrix A are of "reasonable size", you can safely assume that this eigenvalue is zero analytically. It only appears to be nonzero when calculated by MATLAB because computers cannot add, subtract, multiply, or divide correctly!

As another example of how you might misinterpret the display of a matrix, consider the Hilbert matrix of order two

$$
H=\left(\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1 / 3
\end{array}\right)
$$

We write H^{100} as

$$
\mathrm{H}^{100} \approx 10^{10}\left(\begin{array}{ll}
1.5437 & 0.8262 \\
0.8262 & 0.4421
\end{array}\right)
$$

while in MATLAB entering
$>$ format short
$\gg H=h i l b(2)$
$\gg H \wedge 100$
displays
ans =
$1.0 \mathrm{e}+10 *$

1.5437	0.8262
0.8262	0.4421

It is very easy to miss the term " $1.0 \mathrm{e}+10 *$ " because it stands apart from the elements of the matrix. Similarly, entering

```
> format short
> H = hilb(2)
> ( H^(1/2) )^2 - H
```

should result in the zero matrix, since $\left(\mathrm{H}^{1 / 2}\right)^{2}=\mathrm{H}$. However, MATLAB displays
ans $=$
1.0e-15*

$$
\begin{array}{rr}
0.2220 & 0 \\
0 & 0
\end{array}
$$

where, again, it is easy to miss the term " $1 . \mathrm{e}-15 *$ " and not realize that this matrix is very small - in fact, it should be zero.
$\underline{\text { Be careful: MATLAB has finite memory. You should have no problem creating a matrix by }}$ $\gg A=z \overline{\operatorname{eros}(1000)}$
but you might well have a problem if you enter

```
        > A = zeros(10000)
```

The amount of memory available is dependent on the computer and the operating system and is very hard to determine. Frequently it is much larger than the amount of physical memory on your computer. But, even if you have sufficient memory, MATLAB may slow to a crawl and become unusable. The whos command will tell you how much memory you are using and show you the size of all your variables. If you have large matrices which are no longer needed, you can reduce their sizes by equating them to the null matrix, i.e., [], or remove them entirely by using clear.
Warning: Recall that the clear command is very dangerous because clear A deletes the variable A but clear (without anything following) deletes all variables!

2.6. Common Mathematical Functions

In linear algebra mathematical functions cannot usually be applied to matrices. For example, e^{A} and $\sin \mathrm{A}$ have no meaning unless A is a square matrix. (We will discuss their mathematical definitions in section 15.)

Here we are interested in how MATLAB applies common mathematical functions to matrices and vectors. For example, you might want to take the sine of every element of the matrix $\mathrm{A}=\left(a_{i j}\right) \in \mathbb{C}^{m \times n}$, i.e., $\mathrm{B}=\left(\sin a_{i j}\right)$. This is easily done in MATLAB by
$>\quad B=\sin (A)$
Similarly, if you want $\mathbf{C}=\left(e^{a_{i j}}\right)$, enter
$\gg C=\exp (A)$
Also, if you want $\mathrm{D}=\left(\sqrt{a_{i j}}\right)$ type
$>\quad C=\operatorname{sqrt}(A)$
or

```
> C = A.^(1/2)
```

All the common mathematical functions in the table entitled "Some Common Real Mathematical Functions" in subsection 1.5 can be used in this way.

As we will see in the section on graphics, this new interpretation of mathematical functions makes it easy in MATLAB to graph functions without having to use the MATLAB programming language.

2.7. Data Manipulation Commands

MATLAB has a number of "simple" commands which are used quite frequently. Since many of them are quite useful in analyzing data, we have grouped them around this common "theme".

To calculate the maximum value of the vector x , type
$\gg m=\max (x)$
If you also want to know the element of the vector which contains this maximum value, type
$>\quad[\mathrm{m}, \mathrm{i}]=\max (\mathrm{x})$
If the elements of the vector are all real, the result of this command is the element which has the maximum value. However, if any of the elements of x are complex (i.e., non-real), this command has no mathematical meaning. MATLAB defines this command to determine the element of the vector which has the maximum absolute value of the elements of x .
Warning: Make sure you understand the description of max if you every apply it to non-real vectors. For example, if $\mathrm{x}=(-2,1)^{\mathrm{T}}$ then $\max (\mathrm{x})$ returns 1 as expected. However, if $\mathrm{x}=(-2, i)^{\mathrm{T}}$ then $\max (x)$ returns -2 . This is because the element which has the largest absolute value is -2 . Thus, if x is a non-real vector, then $\max (x)$ is not the same as max (abs(x)).
Since the columns of the matrix A can be considered to be vectors in their own right, this command can also be applied to matrices. Thus,

```
max(A)
```

returns a row vector of the maximum element in each of the columns of A if all the elements of A are real. If any of the elements of A are non-real, this command returns the element in each column which has the maximum absolute value of all the elements in that column.

To find the maximum value of an entire real matrix, type
$\gg \max (\max (\mathrm{A}))$
or
$>\max (\mathrm{A}(:))$
and to find the maximum absolute value of an entire real or complex matrix, type
$\gg \max (\max (\operatorname{abs}(\mathrm{A})))$
or

```
> max(abs(A(:)))
```

The command min acts similarly to max except that it finds the minimum value (or element with the minimum absolute value) of the elements of a vector or the columns of a matrix.

To calculate the sum of the elements of the vector x, type
$>\operatorname{sum}(x)$
sum behaves similarly to max when applied to a matrix. That is, it returns the row vector of the sums of each column of the matrix. This command is sometimes useful in adding a deterministic series. For example,
$\gg 1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+1 / 7+1 / 8+1 / 9+1 / 10+1 / 11+1 / 12+\ldots$
$1 / 13+1 / 14+1 / 15+1 / 16+1 / 17+1 / 18+1 / 19+1 / 20$
is entered much more easily as
$\gg \operatorname{sum}(\operatorname{ones}(1,20) . /[1: 20])$
or even as

```
> sum(1./[1:20])
```

The mean, or average, of these elements is calculated by

```
> mean(x)
```

where mean $(x)=\operatorname{sum}(x) /$ length (x).
std calculates the standard deviation of the elements of a vector. The standard deviation is a measure of how much a set of numbers "vary" and is defined as

$$
\operatorname{std}(\mathrm{x})=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\langle\mathrm{x}\rangle\right)^{2}}
$$

where $\langle x\rangle$ is the mean of the elements.
MATLAB can also sort the elements of the vector x in increasing order by
$\gg \operatorname{sort}(x)$
If the vector is non-real, the elements are sorted in increasing absolute value. (If two elements have the same absolute value, the one with the smaller absolute angle in polar coordinates is used.)

The MATLAB command diff calculates the difference between successive elements of a vector. For example, if $\mathrm{x} \in \mathbb{R}^{n}$ then the command

```
> s = diff(x)
```

generates the vector $\mathrm{s} \in \mathbb{R}^{n-1}$ which is defined by $s_{i}=x_{i+1}-x_{i}$. There are a number of uses for this command. For example,

- if s has been sorted, then $\operatorname{diff}(s)=0$ can be used to test if any elements of s are repeated (or the number that are repeated.
- similarly, all $(\operatorname{diff}(x))>0$ tests if the elements of s are monotonically increasing.
- a numerical approximation to the derivative of $y=f(x)$ can be calculated by $\operatorname{diff}(\mathrm{y})$./diff (x).

The MATLAB function which is almost the inverse of diff is cumsum which calculates the cumulative sum of the elements of a vector or matrix. For example, if $s \in \mathbb{R}^{n-1}$ has been generated by $s=$ $\operatorname{diff}(\mathrm{x})$, then
$>\quad c=\operatorname{cumsum}(s)$
generates the vector $\mathrm{c} \in \mathbb{R}^{n-1}$ where $c_{i}=\sum_{j=1}^{i} s_{j}$. We can recover x by
\gg xrecovered $=$ zeros(length(x),1)
\gg xrecovered(1) $=x(1)$
$\gg \operatorname{xrecovered}(2:$ length $(x))=x(1)+c$
There are also a number of MATLAB commands which are particularly designed to plot data. The commands we have just discussed, such as the average and standard deviation, give a coarse measure of the distribution of the data. To actually "see" what the data looks like, it has to be plotted. Two particularly useful types of plots are histograms (which show the distribution of the data) and plots of data which include error bars. These are both discussed in subsection 4.1.

Although it does not quite fit here, sometimes you want to know the length of a vector x , which is $\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}$. (Note that this is not length (x) which returns the number of elements in x , i.e., n.) This length, which is often called the Euclidean length, can be calculated by entering
$\gg \operatorname{sqrt}\left(\mathrm{x}^{\prime} * \mathrm{x}\right)$
but it can be entered more easily by
$\gg \operatorname{norm}(\mathrm{x})$
(As we discuss in section 7, the norm of a vector is a more general concept than simply the Euclidean length.)

Data Manipulation Commands

$\max (\mathrm{x})$	The maximum element of a real vector. [m, i] $=\max (x)$ also returns the element which contains the maximum value in i.
$\max (\mathrm{A})$	A row vector containing the maximum element in each column of a matrix. $[m$, i] $=\max (A)$ also returns the element in each column which contains the maximum value in i.
$\left.\begin{array}{l} \min (x) \\ \min (A) \end{array}\right\}$	The sum of the elements of a vector, or a row vector containing the sum of the elements in each column in a matrix.
$\left.\begin{array}{l} \operatorname{mean}(\mathrm{x}) \\ \operatorname{mean}(\mathrm{A}) \end{array}\right\}$	The mean, or average, of the elements of a vector, or a row vector containing the mean of the elements in each column in a matrix.
norm (x)	The Euclidean length of a vector.
norm(A)	The matrix norm of A. Note: the norm of a matrix is not the Euclidean length of each column in the matrix.
$\left.\begin{array}{l} \operatorname{prod}(x) \\ \operatorname{prod}(A) \end{array}\right\}$	The product of the elements of a vector, or a row vector containing the product of the elements in each column in a matrix.
$\left.\begin{array}{l} \operatorname{sort}(x) \\ \operatorname{sort}(A) \end{array}\right\}$	Sorts the elements in increasing order of a real vector, or in each column of a real matrix.
$\left.\begin{array}{l} \operatorname{std}(x) \\ \operatorname{std}(A) \end{array}\right\}$	The standard deviation of the elements of a vector, or a row vector containing the standard deviation of the elements in each column in a matrix.
$\left.\begin{array}{l} \operatorname{sum}(x) \\ \operatorname{sum}(A) \end{array}\right\}$	The sum of the elements of a vector, or a row vector containing the sums of the elements in each column in a matrix.
$\left.\begin{array}{l} \operatorname{diff}(x) \\ \operatorname{diff}(A) \end{array}\right\}$	The difference between successive elements of a vector, or between successive elements in each column of a matrix.
$\left.\begin{array}{l} \operatorname{cumsum}(x) \\ \operatorname{cumsum}(A) \end{array}\right\}$	The cumulative sum between successive elements of a vector, or between successive elements in each column of a matrix.

2.8. Advanced Topic: Multidimensional Arrays

We have already discussed 1-D arrays (i.e., vectors) and 2-D arrays (i.e., matrices). Since these are two of the most fundamental objects in linear algebra, there are many operations and functions which can be applied to them. In MATLAB you can also use multidimensional arrays (i.e., n - D arrays).

A common use for multidimensional arrays is simply to hold data. For example, suppose a company produces three products and we know the amount of each product produced each quarter; the data naturally fits in a 2-D array, i.e., (product, amount). Now suppose the company has five sales regions so we split the amount of each product into these regions; the data naturally fits in a 3-D array, i.e., (product, region, amount). Finally, suppose that each product comes in four colors; the data naturally fits in a 4-D array, i.e., (product, color, region, amount).

For another example, a 3-D array might be the time evolution of 2-D data. Suppose we record a grey scale digital image of an experiment every minute for an hour. Each image is stored as a matrix M with $m_{i, j}$ denoting the value of the pixel positioned at $\left(x_{i}, y_{j}\right)$. The 3-D array Mall can contain all these images: Mall ($\mathbf{i}, \mathrm{j}, \mathrm{k}$) denotes the value of the pixel positioned at $\left(x_{i}, y_{j}\right)$ in the k-th image. The entire k-th image is $\operatorname{Mall}(:,:, \mathrm{k})$ and it is filled with the k-th image M by

```
> Mall(:,:,k) = M
```

If you want to multiply M by another matrix A, you can use $M * A$ or $\operatorname{Mall}(:,:, k) * A$; if you want to average the first two images you can use $.5 *(\operatorname{Mall}(:,:, 1)+\mathrm{Mall}(:,:, 2))$.

Many MATLAB functions can be used in $n-D$, such as ones, rand, sum, and size. The cat function is particularly useful in generating higher-dimensional arrays. For example, suppose we have four matrices A, B, C, and $D \in \mathbb{R}^{2 \times 7}$ which we want to put into a three-dimensional array. This is easily done by

```
> ABCD = cat(3, A, B, C, D)
```

which concatenates the four matrices using the third dimension of ABCD. (The " 3 " denotes the third dimension of ABCD.) And it is much easier than entering

```
> ABCD(:,:,1) = A;
> }\operatorname{ABCD}(:,:,2) = B
> ABCD(:,:,3) = C;
> ABCD(:,:,4) = D;
```

If instead, we enter
$>A B C D=\operatorname{cat}(j, A, B, C, D)$
then the four matrices are concatenated along the j-th dimension of ABCD . That is, $\operatorname{cat}(1, A, B, C, D)$ is the same as [A, B, C, D] and $\operatorname{cat}(2, A, B, C, D)$ is the same as [A; B; C; D].

Another useful command is squeeze which squeezes out dimensions which only have one element. For example, if we enter

```
> E = ABCD(:,2,:)
```

(where the array $A B C D$ was created above), then we might think that E is a matrix whose columns consist of the second columns of A, B, C, and D. However, size (E) = 214 so that E is a three-dimensional array, not a two-dimensional array. We obtain a two-dimensional array by squeeze(E).

Multidimensional Array Functions

cat Concatenates arrays; this is useful for putting arrays into a higher-dimensional array.
squeeze Removes (i.e., squeezes out) dimensions which only have one element.

2.9. Be Able To Do

After reading this section you should be able to do the following exercises. The answers are given on page 131.

1. Consider the matrix

$$
\mathrm{A}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right)
$$

(a) Enter it in the following three ways:
(i) type in all 16 elements directly.
(ii) since each row is in arithmetic progression, use the colon operator to enter each row.
(iii) since each column is in arithmetic progression, use the colon operator (and the transpose operator) to enter each column.
(b) Multiply the second row of A by $-9 / 5$, add it to the third row, and put the result back in the second row. Do this all using one MATLAB statement.
2. Generate the tridiagonal matrix

$$
\mathrm{A}=\left(\begin{array}{cccccc}
4 & -1 & & & & 0 \\
-1 & 4 & -1 & & & \\
& -1 & 4 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
0 & & & -1 & 4 & -1 \\
& & & & -1 & 4
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

where the value of n has already been entered into MATLAB.
3. Generate the tridiagonal matrix

$$
\mathrm{A}=\left(\begin{array}{cccccc}
1 & -1 & & & & 0 \\
e^{1} & 4 & -1 & & & \\
& e^{2} & 9 & -1 & \cdot \cdot & \\
& & \cdot & \ddots \cdot & e^{n-1} & (n-1)^{2}
\end{array}\right)-10 \mathbb{R}^{n \times n}
$$

where the value of n has already been entered into MATLAB.
4. Consider the matrix

$$
\mathrm{A}=\left(\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & -5 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Enter it using as few keystrokes as possible. (In other words, don't enter the elements individually.)
(b) Zero out all the elements of A below the diagonal.
5. Enter the column vector

$$
x=(0,1,4,9,16,25, \ldots, 841,900)^{\mathrm{T}}
$$

using as few keystrokes as possible. (In other words, don't enter the elements individually.)
6. (a) Generate a random 5×5 matrix R.
(b) Determine the largest value in each row of R and the element in which this value occurs.
(c) Determine the average value of all the elements of R.
(d) Generate the matrix S where every element of S is the sine of the corresponding element of R.
(e) Put the diagonal elements of R into the vector r.
7. Generate the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)
$$

(a) Calculate a matrix B which is the square root of A. That is, $B^{2}=A$. Also, calculate a matrix C each of whose elements is the square root of the corresponding element of A.
(b) Show that the matrices you have obtained in (a) are correct by substituting the results back into the original formulas.

3. Anonymous Functions, Strings, and Other Data Types

Now that we have discussed scalar and matrix calculations, the next important topic is graphics. However, there are a number of minor topics which are useful in graphics and so we collect them here. First, anonymous functions allow us to easily define a function which we can then plot. Second, some graphics functions require that the name of a function be passed as an argument. Third, character strings are necessary in labelling plots. And, finally, cell arrays are occasionally helpful in labelling plots. Cell arrays are generally used to manage data and since structures are also used to manage data we also include them here. Another reason is that there are a number of data types in MATLAB including numeric, text variables, cell arrays, and structures. (A "minor" data type is logical, which we discuss in section 8.1.) We might as well get the last three out of the way at once.

3.1. Anonymous Functions

In MATLAB it is common to define a mathematical function in a separate file as we discuss in subsection 8.3. (This is similar to writing a function or subroutine or subprogram in a high-level computer language.) However, if the mathematical function is particularly simple, that is, it can be written as one simple expression, we can define it in MATLAB using an anonymous function. If our function is

$$
f(<\arg 1>,<\arg 2>, \ldots)=<\text { expression }>
$$

the MATLAB statement is

```
> f = @(<arg1>, <arg2>, ...) <expression>
```

For example, we can define the function

$$
f(t)=t^{5} e^{-2 t} \cos (3 t)
$$

by

```
> =@(t) t.^5 .* exp(-2*t) .* cos(3*t)
```

and then evaluate it by

```
> x = [0:.01:1]'
> fx = f(x)
> A = rand(5)
>fA=f(A)
```

More generally, we can define

$$
g(x, y, a, b, c)=x^{a} e^{-b x} \cos (c y)
$$

by

$$
\gg \mathrm{g}=@(\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{~b}, \mathrm{c}) \mathrm{x} \cdot \wedge \mathrm{a} \cdot * \exp (-\mathrm{b} \cdot * \mathrm{x}) \cdot * \cos (\mathrm{c} \cdot * \mathrm{y})
$$

in which case any of the input arguments can be in \mathbb{R} or in \mathbb{R}^{n}. It is also possible - although probably not very useful - to let g have one vector argument, say $\mathrm{x}=(x, y, a, b, c)^{\mathrm{T}}$ by

```
> g_ = @(x) x(1)^x(3) * exp(-x(4)*x(1)) * cos(x(5)*x(2))
```

(In this example there is no purpose to use.$*$ or.\wedge.)
Warning: It is quite easy to forget to put dots (i.e., ".") before the mathematical operations of multiplication (i.e., *), division (i.e., /), and exponentiation (i.e., ^). For example, if f is defined by $\gg f=@(t) t \wedge 5 * \exp (-2 * t) * \cos (3 * t)$
then
$>\mathrm{f}(3)$
is allowed, but not
$>f([1: 10])$
Be careful!
The syntax for defining an anonymous function is
> @(<argument list>) <expression>
(Since there is no left-hand side to this expression, the name of this function is ans.) The symbol @ is the MATLAB operator that constructs a function handle. This is similar to a pointer in C which gives the address of a variable or of a function. The name "handle" is used in MATLAB to denote a variable which refers to some "object" which has been created. Thus, we can think of an anonymous function as being created by
(<argument list>) <expression>
and the handle to the function (in C , the address of the function) being returned by using @. By the way, we can create a function handle to a MATLAB function by, for example,

$$
\gg f=@ \cos
$$

so that $f(3)$ is the same as $\cos (3)$. We give an example where this is very useful in section 3.4
It is important to understand that all user-defined variables which appear in <expression> must either appear in the argument list or be defined before the function is defined. If the variable does not $\overline{a p p e a r}$ in the argument list, then $\overline{i t s}$ value is fixed when the function is defined. For example, if a very simple function is defined by

```
r = 10
> h = @(x) r*x
```

then the function is $h(x)=10 x$ even if r is modified later. Thus,

$$
\gg h(5)
$$

returns 50 and so does

```
r = 0
l(5)
```

Warning: Don't forget that if a variable does not appear in the argument list, then its value is fixed when the function is defined.
A function can also be defined - but don't do it -by the inline command. For example, the function f defined above can also be defined by

```
> f = inline('t.^5 .* exp(-2*t) .* cos(3*t)', 't')
```

In general, if our function is

$$
f(<\arg 1>,<\arg 2>, \ldots)=<\text { expression }>
$$

the MATLAB statement is

$$
>\mathrm{f}=\text { inline ('<expression>', '<arg1>', '<arg2>', } \ldots \text {) }
$$

Since it is quite easy to forget to put dots (i.e., .) before the mathematical operations of multiplication (i.e., *), division (i.e., /), and exponentiation (i.e., ^), the MATLAB command vectorize does it for you. To continue the first example,
$>\mathrm{f}=$ vectorize (inline ('t^5 * $\left.\exp (-2 * t) * \cos (3 * t)^{\prime},{ }^{\prime} t^{\prime}\right)$)
is equivalent to the f defined above but does not require you to remember all the dots.
Warning: The inline command is obsolete and should not be used because it is very, very, very, very, very inefficient. It is mentioned here only because you might find it in "old" codes.

3.2. Passing Functions as Arguments to Commands

It is sometimes necessary to pass the name of a function into a MATLAB function or a function m-file created by the user. For example, as we discuss in section 4.1, we can plot the function $y=f(x)$ in the interval $[-5,+5]$ by
fplot(<function name>, [-5 +5])
The question is how we pass the name of the function (or the function handle) to the function.
If f has been defined by an anonymous function, then we enter fplot(f, [-5 +5])
because f is a variable which we have already defined. If fnc is a MATLAB function or a user-defined function m-file, then it is not known in the MATLAB workspace so

```
fplot(fnc, [-5 +5]) % WRONG
```

will not work. Instead, we use
fplot(@fnc, $[-5+5]$) \% CORRECT
Note: There are a number of "older" ways to pass function names. For example, $\gg f p l o t\left(' f n c^{\prime},[-5+5]\right)$
will also work. We can even pass a "simple" function by, for example, $\gg \operatorname{fplot}\left({ }^{\prime}(x * \sin (x)+\operatorname{sqrt}(1+\cos (x))) /(x \wedge 2+1)^{\prime},[-5+5]\right)$
but don't do it! Instead, use anonymous functions or function m-files.

3.3. Strings

Character strings are a very minor part of MATLAB, which is mainly designed to perform numerical calculations. However, they perform some very useful tasks which are worth discussing now.

It is often important to combine text and numbers on a plot. Since we discuss graphics in the next section, now is a good time to discuss how characters are stored in MATLAB variables. A string variable, such as

$$
\gg \text { str }=\text { 'And now for something completely different' }
$$

is simply a row vector with each character (actually its ASCII representation as shown on page 133) being a single element. MATLAB knows that this is a text variable, not a "regular" row vector, and so converts the numerical value in each element into the corresponding character when it is printed out. For example, to see what is actually contained in the vector str enter
or
> 1 *str
Character variables are handled the same as vectors or matrices. For example, to generate a new text variable which adds "- by Monty Python" to str, i.e., to concatenate the two strings, enter
$\gg \operatorname{str} 2=[$ str ' - by Monty Python']
or
$\gg \operatorname{str} 2=\left[s t r,{ }^{\prime}\right.$ - by Monty Python']
(which might be easier to read). To convert a scalar variable, or even a vector or a matrix, to a character variable use the function num2str. For example, suppose you enter

```
> x = linspace(0, 2*pi, 100)'
> c1 = 2
> c2 = -3
> y = c1*sin(x) + c2*\operatorname{cos(x)}
```

and want to put a description of the function into a variable. This can be done by

```
> s = [ num2str (c1), '*sin(x) + ', num2str (c2), '* cos(x)']
```

without explicitly having to enter the values of $c 1$ and $c 2$.
A text variable can also contain more than one line if it is created as a matrix. For example,

```
> Str = ['And ',
    'now '
    'for '
    'something '
    'completely'
    'different ']
```

is four lines long. Since str is a matrix, each row must have the same number of elements and so we have to pad all but the longest row. (Using cell arrays, we will shortly show how to avoid this requirement that each row must have the same number of characters.)
Note: We do not usually enter matrices this way, i.e., one column per line. Instead, we simply use ";" to separate columns. However here we need to make sure that each row has EXAGTLY the same number of characters - or else a fatal error message will be generated.
If desired, you can have more control over how data is stored in strings by using the sprintf command which behaves very similarly to the C commands sprintf, fprintf, and printf. It is also very similar to the fprintf command in MATLAB which is discussed in detail in Section 6. Note that the data can be displayed directly on the screen by using disp. That is, sprintf (...) generates a character string and disp(sprintf(...)) displays it on the screen.

There also is a str2num command to convert a text variable to a number and sscanf to do the same with more control over how the data is read. (This is also very similar to the C command, as discussed in section 6.)

3.4. Advanced Topic: Cell Arrays and Structures

It is occasionally useful in MATLAB to have a single variable contain all the data which is related to a specific task - and this data might well consist of scalars, vectors and/or matrices, and text variables. One simple reason for this is that it is easier to pass all the data into and out of functions. A cell array generalizes the "standard" arrays which were discussed in the previous section. The elements of a "standard" array are numbers, either real or complex, whereas the elements of a cell array can be any data type. The primary difference between a cell array and a structure is that in a structure the elements are named rather than numbered. We consider this an advanced topic not because it is complicated, but because it is so seldom necessary.

A simple example of a cell array is

```
> C = {2+3i, 'go cells'; [1 2 3 3]', hilb(5) }
```

and the output is
$C=$

$$
\begin{aligned}
{[2.0000+3.0000 i] } & \text { 'go cells' } \\
{[3 \times 1 \text { double }] } & {[5 \times 5 \text { double }] }
\end{aligned}
$$

The only difference between this and a "standard" array is that here curly braces, i.e., $\{\ldots\}$, enclose the elements of the array rather than brackets, i.e., [. .]. Note that only the scalar and the text variable are shown explicitly. The other elements are only described. A second way to generate the same cell array is by

```
> C(1,1) = {2+3i }
> C(1,2) = {'go cells'}
C(2,1) = {[\begin{array}{lll}{1}&{2}&{3}\end{array}]}
C(2,2) = {hilb(5) }
```

and a third way is by

```
> C{1,1} = 2+3i
> C{1,2} = 'go cells'
> C{2,1} = [lllll}
> C{2,2} = hilb(5)
```

It is important to understand that there is a difference between $C(i, j)$ and $C\{i, j\}$. The former is the cell containing element in the (i, j)-th location whereas the latter is the element itself. For example,

```
C(1,1)^5 % WRONG
```

returns an error message because a cell cannot be raised to a power whereas
$>\mathrm{C}\{1,1\}^{\wedge} 5 \quad$ \% CORRECT
returns $1.2200 \mathrm{e}+02-5.9700 \mathrm{e}+02 \mathrm{i}$. All the contents of a cell can be displayed by using the celldisp function. In addition, just as a "standard" array can be preallocated by using the zeros function, a cell array can be preallocated by using the cell function. We will not discuss cells further except to state that cell array manipulation is very similar to "standard" array manipulation.
Warning: In MATLAB you can change a variable from a number to a string to a matrix by simply
putting it on the left-hand side of equal signs. For example,
$\gg c=p i$
$\gg \mathrm{c}=$ 'And now for something completely different ${ }^{\prime}$
$>c(5,3)=17$
redefines c twice without any difficulty. However, this cannot be done with cells. If you now try
$>c\{3\}=\operatorname{hilb}(5)$
MATLAB will return with the error message
??? Cell contents assignment to a non-cell array object.
In order to use c as a cell (if has been previously used as a non-cell), you have to either clear it using clear, empty it using [], or explicitly redefine it by using the cell function.
One particularly useful feature of cell arrays is that a number of text variables can be stored in one cell array. We previously defined a "standard" array of strings in Str on page 37 where each string had to have the same length. Using a cell array we can simply enter

```
Str_cell = {'And'
    'now'
    'for'
    'something'
    'completely'
    'different'}
```

or
\gg Str_cell $=$ \{'And'; 'now'; 'for'; something'; 'completely'; 'different'\}
and obtain the i-th row by
$\gg S t r _c e l l\{i,:\}$

Structures can store different types of data similarly to cell arrays, but the data is stored by name, called fields, rather than by number. Structures are very similar to structures in C and C++. The cell array we have been using can be written as a structure by

```
> Cs.scalar = 2+3i
> Cs.text = 'go cells'
> Cs.vector = [llll}
> Cs.matrix = hilb(5)
```

Typing
> Cs
returns

```
Cs =
scalar: 2.0000 + 3.0000i
                text: 'go cells'
vector: [3x1 double]
matrix: [5x5 double]
```

The structure can also be created using one command by

```
> Cs = struct('scalar', 2+3i, 'text', 'go cells', ...
                    'vector', [1 2 3]', 'matrix', hilb(5))
```

By the way, structures can themselves be vectors or matrices. For example,

```
Cs(2) = struct('scalar', pi, 'text', 'structures rule', ...
'vector', ones(10,1), 'matrix', hilb(5)^2)
```

Now
$>\mathrm{Cs}$
returns

```
Cs =
    1x2 struct array with fields:
        scalar
        text
        vector
        matrix
```

Warning: As with cells, you cannot change a nonstructure variable to a structure variable. Instead, you have to either clear it using clear, empty it using [], or explicitly redefine it by using the struct function.
We can also use function handles in cell elements and structures. For example, suppose you want to work with all six basic trig functions. They can be stored in a cell array by
$>\mathrm{T}=\{@ \sin , @ \cos , @ t a n, @ c o t, @ s e c, @ c s c\}$
so that $\mathrm{T}\{2\}(0)=1$. They can also be stored in a structure by
$\gg \operatorname{Tr} . \mathrm{a}=$ @sin; $\operatorname{Tr} . \mathrm{b}=$ @cos; $\operatorname{Tr} . c=$ @tan; $\operatorname{Tr} . \mathrm{d}=$ @cot; $\operatorname{Tr} . \mathrm{e}=$ @sec; $\operatorname{Tr} . f=$ @csc;
so that $\operatorname{Tr} . b(0)=1$. By the way, we can even store anonymous functions in cell arrays and structures. For example,
$>C=\{@ \sin , @(x) \exp (\sin (x)), @(x) \exp (\exp (\sin (x)))\}$
is allowed - but probably not very interesting.
Note: We cannot store function handles in standard matrices - we can only store numbers.

Other Data Types

```
num2str(x) Converts a variable to a string. The argument can also be a vector or a matrix.
str2num(str) Converts a string to a variable. The argument can also be a vector or a matrix
    string.
sscanf Behaves very similarly to the C command in reading data from a file using any
    desired format. (See fscanf for more details.)
sprintf Behaves very similarly to the C command in writing data to a string using any
    desired format. (See fprintf for more details.)
cell Preallocate a cell array of a specific size.
celldisp Display all the contents of a cell array.
struct Create a structure.
```


4. Graphics

A very useful feature of MATLAB is its ability to generate high quality two- and three-dimensional plots using simple and flexible commands. All graphical images are generated in a "graphics window", which is completely separate from the "text window" in which MATLAB commands are typed. Thus, non-graphical and graphical commands can be completely intermixed.

Graphical images can be generated both from data calculated in MATLAB and from data which has been generated outside of MATLAB. In addition, these images can be output from MATLAB and printed on a wide variety of output devices, including color ink-jet printers and black-and-white and color laser printers.

There are a number of demonstrations of the graphical capabilities in MATLAB which are invoked by
\gg demo
Since the MATLAB commands which generate the plots are also shown, this demo makes it quite easy to generate your own graphics. You also can have very fine control over the appearance of the plots. We begin by considering only the basic commands; more advanced graphics commands are discussed in the next section.
Note: Most MATLAB commands which take vectors as arguments will accept either row or column vectors.

4.1. Two-Dimensional Graphics

The MATLAB command plot is used to constructing basic two-dimensional plots. For example, suppose you want to plot the functions $\mathrm{y} 1=\sin \mathrm{x}$ and $\mathrm{y} 2=e^{\cos \mathrm{x}}$ for $\mathrm{x} \in[0,2 \pi]$; also, you want to plot $\mathrm{y} 3=\sin \left(\cos \left(\mathrm{x}^{2}-\mathrm{x}\right)\right)$ for $\mathrm{x} \in[0,8]$. First, generate n data points on the curve by
$\gg n=100$;
$\gg \mathrm{x}=2 * \mathrm{pi} *[0: \mathrm{n}-1]^{\prime} /(\mathrm{n}-1) ;$
$\gg y 1=\sin (x) ;$
$\gg y 2=\exp (\cos (x))$;
$\gg \mathrm{xx}=8 *[0: \mathrm{n}-1] /(\mathrm{n}-1)$;
$\gg y 3=\sin (\cos (x x . \wedge 2-x x)) ;$
We plot these data points by

```
> plot(x, y1)
> plot(x, y2)
> plot(xx, y3)
```

Note that the axes are changed for every plot so that the curve just fits inside the axes. We can generate the x coordinates of the data points more easily by

```
> x = linspace(0, 2*pi, n);
```

$\gg \mathrm{xx}=\operatorname{linspace}(0,8, \mathrm{n})$;

The linspace command has two advantages over the colon operator:
(1) the endpoints of the axis and the number of points are entered directly as
> $\mathrm{x}=$ linspace(<first point>, <last point>, <number of points>)
so it is much harder to make a mistake; and
(2) round-off errors are minimalized so you are guaranteed that x has exactly n elements, and its first and last elements are exactly the values entered into the command. ${ }^{\dagger}$
To put all the curves on one plot, type
$\gg \operatorname{plot}(x, y 1, x, y 2, x x, y 3)$
Each curve will be a different color - but this will not be visible on a black-and-white output device. Instead, you can change the type of lines by

$$
\gg \operatorname{plot}\left(x, y 1, x, y 2, '-{ }^{\prime}, x x, y 3, '^{\prime}\right)
$$

where " --" means a dashed line and ":" means a dotted line. (We discuss these symbols in detail in subsection 4.3.) In addition, you can use small asterisks to show the locations of the data points for the y3 curve by

```
> plot(x, y1, x, y2, '--', xx, y3, ':*')
```

These strings are used to modify the color of the line, to put markers at the nodes, and to modify the type of line as shown in the table below. (As we discuss later in this section, the colors are defined by giving the intensities of the red, green, and blue components.)

		Customizing Lines and Markers			
Symbol	Color (R G B)	Symbol	Line Style	Marker	Description
r	red (100)		solid line (default)		plus sign
g	green (0100$)$		dashed line	-	circle
b	blue (001)		dotted line	*	asterisk
y	yellow (110)		dash-dot line		point
m	magenta (101)				cross
	(a deep purplish red)				square
c	cyan (011)				diamond
	(greenish blue)				upward pointing
w	white ($\left.\begin{array}{lll}1 & 1 & 1\end{array}\right)$				triangle
k	black (00000$)$				downward pointing triangle
					right pointing triangle
				$<$	left pointing triangle
					pentagram
				h	hexagram
				(none)	no marker

[^6]above, which does not suffer from round-off errors because the colon operator is only applied to integers.

For example,

$$
\gg \operatorname{plot}\left(x, y 1, r^{\prime}, x, y 2,^{\prime} g-o^{\prime}, x, y 3, ' m p^{\prime}\right)
$$

plots three curves: the first is a red, solid line; the second is a a green, dashed line with circles at the data points; the third has magenta pentagrams at the data points but no line connecting the points.

We can also plot the first curve, and then add the second, and then the third by

```
> plot(x, y1)
> hold on
> plot(x, y2)
> plot(xx, y3)
> hold off
```

Note that the axes can change for every new curve. However, all the curves appear on the same plot.
Instead of putting a number of curves on one plot, you might want to put a number of curves individually in the graphics window. You can display m plots vertically and n plots horizontally in one graphics window by

```
> subplot(m, n, p)
```

This divides the graphics window into $m \times n$ rectangles and selects the p-th rectangle for the current plot. All the graphics commands work as before, but now apply only to this particular rectangle in the graphics window. You can "bounce" between these different rectangles by calling subplot repeatedly for different values of p.
Warning: If you are comparing a number of plots, it is important to have the endpoints of the axes be the same in all the plots. Otherwise your brain has to try to do the rescaling "on the fly" - which is very difficult. Of course, you frequently do not know how large the axes need to be until you have filled up the entire graphics window. The axis command (discussed below) can then be used to rescale all the plots.
In addition, you can also change the endpoints of the axes by

```
> axis([[-1 10 -4 4])
```

The general form of this command is axis ([xmin xmax ymin ymax]). If you only want to set some of the axes, set the other or others to $\pm \operatorname{Inf}(-\operatorname{Inf}$ if it is the minimum value and $+\operatorname{Inf}$ if it is the maximum). Also, you can force the two axes to have the same scale by

```
    > axis equal
```

or
> axis image
and to have the same length by
\gg axis square
To learn about all the options for these commands, use the help or doc command.
Note: The command axis is generally only in effect for one plot. Every new plot turns it off, so it must be called for every plot (unless hold is on).
The plot command generates linear axes. To generate logarithmic axes use semilogx for a logarithmic axis in x and a linear axis in y , semilogy for a linear axis in x and a logarithmic axis in y , and loglog for logarithmic axes in both x and y .

MATLAB has two different commands to plot a function directly rather than plotting a set of points. Warning: These commands do not always generate the correct curve (or curves) because they know nothing of the actual behavior of the function. They can have problems with sharp peaks and asymptotes and other "strange behavior". We will show some examples shortly.
The first command we discuss is fplot, which can be executing by simply entering
> fplot(<function name>, <limits>)
where the function is usually generated as an anonymous function or a MATLAB function or a user generated function m -file (as described in section 8.3). The limits are either
[xmin xmax]
in which case the y-axis just encloses the curve or
[xmin xmax ymin ymax]
in which case you are also specifying the endpoints on the y-axis.
Note: Recall in section 3.2 we discussed how to pass a function as an argument.

This function uses adaptive step control to generate as many data points as it considers necessary to plot the function accurately. You can also store the data points calculated by
$>\quad[x, y]=$ fplot(<function name>, <limits>)
rather than having the function plotted directly. You then have complete control over how to plot the curve using the plot function.

The other command which can plot a function is ezplot, which is more general than fplot. To plot a function on the interval $[-2 \pi,+2 \pi]$ enter
> ezplot(<function name>)
To include limits (as with fplot) enter
> ezplot(<function name>, <limits>)
In addition, a parametrically defined function can be plotted by
> ezplot(<fnc 1>, <fnc 2>, <limits>)
Finally, this command can also plot an implicitly defined function, i.e., $f(x, y)=0$, by

```
>> ezplot(<2D fnc>, <limits>)
```

For example,

```
> f = @(x,y) (x^2 + y^2)^2 - (x^2 - y^2);
> ezplot(f)
```

plots the lemniscate of Bernoulli (basically an " ∞ " symbol).
Warning: Be particularly careful when plotting implicit functions because they can be REALLY NASTY and occasionally ezplot may not get it right.
There is an important difference between
$\gg f p l o t(f,[-5$ 5])
and
$\gg \operatorname{ezplot}\left(f,\left[\begin{array}{ll}-5 & 5\end{array}\right]\right)$
In the former $f(x)$ is only evaluated for scalar values of x, while in the latter $f(x)$ is evaluated for vector values of x. Thus, when using ezplot care must be taken if f is evaluated in a function m-file. If $f(x)$ cannot be evaluated for vector values, the error message

Warning: Function failed to evaluate on array inputs; vectorizing the function may
speed up its evaluation and avoid the need to loop over array elements.
will be generated
fplot and ezplot do not always generate exactly the same curves. For example, in
$\gg f=@(x) \log (x)+1$;
$\gg f p l o t(f,[-2 * p i ~ 2 * p i])$
\gg ezplot(f)
fplot generates a spurious plot for $x \in[-2 * p i, 0)$ where it plots the real part of $\log x$ while ezplot only plots the function for $x \in(0,2 \pi]$. Also, in
$\gg f=@(x) x$./ ($\left.x^{\wedge} 2+0.01\right)$;
$\gg f p l o t(f,[-2 * p i+2 * p i])$
> ezplot(f)
the vertical axes are different and ezplot is missing part of the curve. Finally, in

```
f = @(x) x^3/(x^2 + 3*x - 10);
ezplot(f, [-10 +10])
```

the function blows up at $x=-5$ and 2 and part of the curve for $x \in(-5,2)$ is not shown.
Polar plots can also be generated by the polar command. There is also an "easy" command for generating polar plots, namely ezpolar.

Since you often want to label the axes and put a title on the plot, there are specific commands for each of these. Entering

```
> xlabel(<string>)
>> ylabel(<string>)
> title(<string>)
```

put labels on the x-axis, on the y-axis, and on top of the plot, respectively. Note that a title can contain more than one line as was discussed in section 3 .

For example, typing title(t) where

```
t = ['The Dead
```

 'Parrot Sketch']
 or
$\mathrm{t}=$ \{'The Dead $^{\prime}$
'Parrot Sketch'\}
or

```
t = {'The Dead'; 'Parrot Sketch'}
```

results in a two-line title. The former uses a "standard" array and so requires all the rows to have the same number of columns, whereas the latter uses a cell array and so each row can have a different length.

There are also a number of ways to plot data, in addition to the commands discussed above. The two we discuss here are histograms and error bars. To plot a histogram of the data stored in the vector x , type

```
> hist(x)
```

which draws ten bins between the minimum and maximum values of the elements in x . For example, to see how uniform the distribution of random numbers generated by rand is, type

```
> x = rand(100000, 1);
> hist(x)
```

To draw a histogram with a different number of bins, type
\gg hist (x, <number of bins>)
and to draw a histogram with the centers of the bins given by the vector c, type
$\gg \operatorname{hist}(\mathrm{x}, \mathrm{c})$
As another example, to see how uniform the distribution of Gaussian random numbers generated by randn is, type

```
> x = randn(1000, 1);
> hist(x)
```

Clearly you need more random numbers to get a "good" histogram - but, at the moment, we are interested in a different point. If you rerun this command a number of times, you will find that the endpoints of the histogram fluctuate. To avoid this "instability", fix the endpoints of the histogram by

```
> xmax = 4;
> nrbin = 20;
> nrdata = 1000;
> c = xmax*[ -1+1/nrbin : 2/nrbin : 1-1/nrbin ];
> x = randn(nrdata, 1);
> hist(x, c)
```

Note that c contains the midpoints of each bin and not their endpoints. Another way to calculate c, which might be clearer, is
$\gg c=$ linspace(-xmax+xmax/nrbin, xmax-xmax/nrbin, nrbin);
Of course, to get a "good" histogram you should increase nrbin, say to 100, and nrdata, say to 100,000 . If you now rerun this code you will see a much smoother histogram.

We have already seen how to plot the vector x vs. the vector y by using the plot command. If, additionally, you have an error bar of size e_{i} for each point y_{i}, you can plot the curve connecting the data points along with the error bars by
$\gg \operatorname{errorbar}(\mathrm{x}, \mathrm{y}, \mathrm{e})$
Sometimes the error bars are not symmetric about the y values. In this case, you need vectors 1 and u where at x_{i} the error bars extend from $y_{i}-l_{i}$ to $y_{i}+u_{i}$. This is done by
$\gg \operatorname{errorbar}(\mathrm{x}, \mathrm{y}, \mathrm{l}, \mathrm{u})$
Note: All the elements of 1 and u are non-negative.
Data can also be entered into MATLAB from a separate data file. For example,
$\gg M=\operatorname{csvread}\left({ }^{\prime}<f i l e\right.$ name $\left.>^{\prime}\right)$
reads in data from a file one row per line of input. The numbers in each line must be separated by commas. The data can then be plotted as desired. The command csvwrite writes the elements of a matrix into a file using the same format. (If desired, you can have much more control over how data is input and
output by using the fscanf and fprintf commands, which are similar to their C counterparts. These commands are discussed in detail in section 6.)

The load command can also be used to read a matrix into MATLAB from a separate data file. The data must be stored in the data file one row per line. The difference between this command and csvread is that the numbers can be separated by commas or by spaces. The matrix is input by entering
\gg load('<file name>')
and it is stored in the matrix named <file name-no extension> (i.e., drop the extension, if any, in the file name). ${ }^{\dagger}$

Graphics can also be easily printed from within MATLAB. You can print directly from the graphics window by going into the "File" menu item. If desired, the plot can be sent to a file rather than to an output device. You can also store the plot in the text window by using the command print. There are an innumerable number of printer specific formats that can be used. (See help print or doc print for details.) If you want to save a file in postscript, you can save it in black-and-white postscript by

```
    > print -deps <file name b&w>
```

or in color postscript by
> print -depsc <file name color>
There is a minor, but important, difference between these two files if they are printed on a black-andwhite laser printer. When the black-and-white file is printed, all the non-white colors in the plot become black. However, when the color file is printed, the colors are converted to different grayscales. This makes it possible to differentiate lines and/or regions.
Note: The print command is also a MATLAB function where it is called by
>> print('-deps', '<file name b\&w>')
The advantage of using the print function is that the arguments can be variables. An
oversimplified example is

```
> device = '-deps'
> file = '<file name b&w>'
> print(device, file)
```

It is oversimplifed because there is no need to use three lines when one will do. However, if many plots are to be printed then the print device can be changed once rather than in every print command. Also, if you are printing many plots then you can easily modify the file names as in

```
> i = 1
> file = ['fiddledum', num2str(i), '.eps']
> print(device, file)
> ...
> i = i + 1
> file = ['fiddlededum', num2str(i), '.eps']
> print(device, file)
> ...
```

[^7]Input-Output

csvread('<file name>')	Reads data into MATLAB from the named file, one row per line of input; the numbers in each line must be separated by commas.
load('<file name>')	Reads data into MATLAB from the named file, one row per line of input; the numbers in each line can be separated by spaces or commas. The name of the resulting matrix is <file name>.
csvwrite('<file name>', A)	Writes out the elements of a matrix to the named file using the same format as csvread.
print	Prints a plot or saves it in a file using various printer specific formats.
	For example, print -deps <file name> saves the plot in the file using encapsulated PostScript (so it can be plotted on a PostScript laser printer).

	Two-Dimensional Graphics
$\operatorname{plot}(\mathrm{x}, \mathrm{y})$	Plots the data points in Cartesian coordinates. The general form of this command is plot(x1, y1, s1, x2, y2, s2, ...) where s1, s2,... are optional character strings containing information about the type of line, mark, and color to be used. Some additional arguments that can be used: plot(x) plots x vs. the index number of the elements. plot(Y) plots each column of Y vs. the index number of the elements. plot (x, Y) plots each column of Y vs. x . If z is complex, plot(z) plots the imaginary part of z vs. the real part.
semilogx semilogy	The same as plot but the x axis is logarithmic. The same as plot but the y axis is logarithmic.
loglog	The same as plot but both axes are logarithmic.
fplot(<function name>, <limits>)	Plots the specified function within the limits given. The limits can be [xmin xmax] or [xmin xmax ymin ymax].
$\left.\begin{array}{l} \text { ezplot(<function name> } \\ \text { ezplot(<fnc 1>, <fnc 2>) } \\ \text { ezplot(<2D fnc>) } \end{array}\right\}$	Generates an "easy" plot (similar to fplot) given the function $f(x)$. It can also plot a parametric function, i.e., $(x(t), y(t))$, or an implicit function, i.e., $f(x, y)=0$. Limits can also be specified if desired.
polar (r, theta)	Plots the data points in polar coordinates.
ezpolar(<function name>)	Generate an "easy" polar plot of $r=<$ functionname $>(\theta)$.
xlabel(<string>)	Puts a label on the x-axis.
ylabel(<string>)	Puts a label on the y-axis.
title(<string>)	Puts a title on the top of the plot.
axis	Controls the scaling and the appearance of the axes. axis equal and axis([xmin xmax ymin ymax]) are two common uses of this command.
hold	Holds the current plot (hold on) or release the current plot (hold off).
linspace ($\mathrm{a}, \mathrm{b}, \mathrm{n}$)	Generates n equally-spaced points between a and b (inclusive).
hist (x)	Plots a histogram of the data in a vector using 10 bins. hist(x, <number of bins>) changes the number of bins. hist (x, c) lets you choose the midpoint of each bin.
$\left.\begin{array}{l} \operatorname{errorbar}(x, y, e) \\ \operatorname{errorbar}(x, y, l, u) \end{array}\right\}$	The first plots the data points x vs. y with error bars given by e. The second plots error bars which need not be symmetric about y.
subplot (m, n, p)	Divides the graphics window into $m \times n$ rectangles and selects the p-th rectangle for the current plot.

4.2. Three-Dimensional Graphics

The MATLAB command plot3 plots curves in three-dimensions. For example, to generate a helix enter

```
>> t = linspace(0, 20*pi, 1000);
> c = cos(t);
> s = sin(t);
> plot3(c, s, t)
```

and to generate a conical helix enter

```
> t = [0 : pi/100 : 20*pi];
> c = cos(t);
> s = sin(t);
> plot3(t.*c, t.*s, t)
```

Also, you can put a label on the z-axis by using the zlabel command. There is also an "easy" plot3 command. It generates the curve $(x(t), y(t), z(t))$ for $t \in(0,2 \pi)$ by

```
> ezplot3(x, y, z)
```

if x, y, and z have been defined using anonymous functions. Again, you change the domain of t by specifying the additional argument [tmin, tmax].

MATLAB also plots surfaces $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ in three-dimensions with the hidden surfaces removed. First, the underlying mesh must be created. The easiest way is to use the command meshgrid. This combines a discretization of the x axis, i.e., $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, and the y axis, i.e., $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, into the rectangular mesh $\left\{\left(x_{i}, y_{j}\right) \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$ in the $x-y$ plane. The function f can then be evaluated at these mesh nodes. For example,

```
> x = [-3:0.1:3]';
> y = [-2:0.1:2]';
> [X, Y] = meshgrid(x, y);
> F = (X + Y).*exp( -X.*X - 2*Y.*Y );
> mesh(X, Y, F)
```

generates a colored, wire-frame surface whereas
$>\operatorname{surf}(X, Y, F)$
generates a colored, filled-in surface. We discuss how to change the colors, and even how to use the colors as another variable, in the next section.

You can change the view of a three-dimensional plot by using the view command. This command is called in either of two ways:

- First, you can give the angles from the origin of the plot to your eye by
view(<azimuth>, <elevation>)
where the azimuth is the angle in degrees in the $x-y$ plane measured from the $-y$ axis (so 0° is the $-y$ axis, 90° is the x axis, 180° is the y axis, etc.) and the elevation is the angle in degrees up from the $x-y$ plane toward the $+z$ axis (so 0° is in the $x-y$ plane, 90° is on the $+z$ axis, etc.).
- Second, you can give the coordinates of a vector pointing from the origin of the plot to your eye by view ([x y z]), where you enter the coordinates of the vector.
If you type

```
> contour(X, Y, F)
```

you will see contour plots of the surface. That is, you will be looking down the z axis at curves which represent lines of constant elevation (i.e., constant z values). If we type

```
> contour3(X, Y, F)
```

you will see contour plots of the surface in three dimensions. You can again change your view of these curves by using the view command.

If you do not want to bother with generating the mesh explicitly, you can generate "easy" plots by ezcontour, ezcontour3, ezmesh, and ezsurf.

Three-Dimensional Graphics

plot3(x, y, z)	Plots the data points in Cartesian coordinates. The general form of this command is plot(x1, y1, z1, s1, x2, y2, z2, s2, ...) where s1, s2, ... are optional character strings containing information about the type of line, mark, and color to be used.
ezplot3(<fnc 1>, <fnc 2>, <fnc 3>)	Generates an "easy" plot in 3-D.
$\operatorname{mesh}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$	Plots a 3-D surface using a wire mesh.
ezmesh (<2D fnc>)	Generates an "easy" 3-D surface using a wire mesh.
$\operatorname{surf}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$	Plots a 3-D filled-in surface.
ezsurf (<2D fnc>)	Generates an "easy" 3-D filled-in surface.
view	Changes the viewpoint of a 3-D surface plot by view(<azimuth>, <elevation>) or view([x y z]).
meshgrid (x, y)	Generates a 2-D grid given the x-coordinates and the y-coordinates of the mesh lines.
zlabel (<string>)	Puts a label on the z-axis.
axis	Controls the scaling and the appearance of the axes. axis([xmin xmax ymin ymax zmin zmax]) changes the endpoints of the axes.
contour (X, Y, Z)	Plots a contour looking down the z axis.
ezcontour (<2D fnc>)	Generates an "easy" contour looking down the z axis.
contour3(X, Y, Z)	Plots a contour in 3-D.
ezcontour3(<2D fnc>)	Generates an "easy" contour in 3-D.
subplot (m, n, p)	Remember than subplot can also be called in 3-D to put a number of plots in one graphics window.

4.3. Advanced Graphics Techniques: Commands

In the previous subsections we have discussed how to use "simple" graphics commands to generate basic plots. MATLAB can also do much more "interesting" graphics, and even publication quality graphics. Here we discuss some of the more useful advanced features. We divide the topic into two subsections: the first discusses the commands themselves and the second discusses how to change some of the properties of these commands.
Note: The demonstration program shows many more of the graphics capabilities of MATLAB. Enter demo
and then in Help Navigator click on Graphics.
It is possible to obtain the current position of the cursor within a plot by using the ginput command.
For example, to collect any number of points enter
$\gg \mathrm{x}, \mathrm{y}]=$ ginput
Each position is entered by pressing any mouse button or any key on the keyboard except for the carriage return (or enter) key. To terminate this command press the return key. To enter exactly n positions, use > $[\mathrm{x}, \mathrm{y}]=\operatorname{ginput}(\mathrm{n})$
You can terminate the positions at any time by using the return key. Finally, to determine which mouse button or key was entered, use $\gg \mathrm{x}, \mathrm{y}$, button] $=$ ginput (n)
The vector button contains integers specifying which mouse button ($1=$ left, $2=$ center, and $3=$ right $)$ or key (its ASCII representation) was pressed.

Labels can also be added to a plot. Text can be placed anywhere inside the plot using
\gg text(xpt, ypt, <string>)
The text is placed at the point (xpt, ypt) in units of the current plot. The default is to put the center of the left-hand edge of the text at this point. You can also use the mouse to place text inside the plot using

```
>> gtext(<string>)
```

The text is fixed by depressing a mouse button or any key.
If more than one curve appears on a plot, you might want to label each curve. This can be done directly using the text or gtext command. Alternatively, a legend can be put on the plot by
>> legend(<string1>, <string2>, ...)
Each string appears on a different line preceded by the type of line (so you should use as many strings as there are curves). The entire legend is put into a box and it can be moved within the plot by using the left mouse button.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands can be used in these strings to modify the appearance of the text. The results are similar, but not quite identical, to the appearance of the text from the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ program (so do some experimenting). Most of the "common" $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands can be used, including Greek letters; also, "^" and "-" are used for superscripts and subscripts. For example, the x-axis can be labelled α^{2} and the y-axis $\int_{0}^{\alpha} f(x) d x$ by
>> xlabel('\alpha^2')
$>y$ ylabel('\int_0^\pi\betaf(x) dx')
To see the complete list of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands, enter
\gg doc text
and then click on the highlighted word String.
Note: For you TeXers note the funny control sequence " \backslash betaf (x)" which generates $\beta f(x)$. If you would have typed " \backslash beta $\mathrm{f}(\mathrm{x})$ " you would have obtained $\beta f(x)$ because MATLAB preserves spaces. If typing " \backslash betaf (x) " sets your teeth on edge, try " \backslash beta\{\}f (x) " instead.
It is often essential for the title to include important information about the plot (which would, otherwise, have to be written down "somewhere" and connected to this specific plot). For example, suppose you enter

```
x = linspace(0, 2*pi, 100)
> c1 = 2
> c2 = -3
> p1 = 1
p2 = 3
> y = c1*sin(x).^p1 + c2*\operatorname{cos(x).^p2}
> plot(x, y)
```

and you want to "play around" with the two coefficients to obtain the most "pleasing" plot. Then you probably should have the title include a definition of the function - and you should not have to modify the title by hand every time you change the coefficients. This can be done by

```
> t = [num2str (c1), '*sin^', num2str(p1), '(x) + ', num2str(c2), ...
    '*(os^^', num2str(p2), '(x)']
> title(t)
```

where we use the text variable t, rather than putting the string directly into title, simply to make the example easier to read. There is now a permanent record of the function which generated the curve.
(Alright, this isn't a great example, but it's better than nothing.)
You can also put plots in a new graphics window by entering
> figure
where the figures are numbered consecutively starting with one (and appear at the top of the window). Or enter
$>$ figure (n)
and the figure will have the specific number n. This creates a new window and makes it the current target for graphics commands. You can "bounce" between graphics windows by entering
\gg figure (n)
where n is the number of the graphics window you want to make current. New plots will now appear in this figure. In this way much more information can be generated and viewed on the computer terminal.

Occasionally, it is useful to clear a figure. For example, suppose you divide a window into a 2×2 array of plotting regions and use subplot to put a plot into each region; you then save the figure into a file. Next, you only want to put plots into two of these four regions. The difficulty is that the other two regions will still contain the previous plots. You can avoid this difficulty by clearing the figure using

> clf

which clears the current figure. You can clear a particular figure by $\operatorname{clf}(\mathrm{n})$.
All the above MATLAB commands can be used for 3-D graphics except for gtext. The text command is the same as described above except that the position of the text requires three coordinates, i.e.,
$\gg \operatorname{text}(\mathrm{x}, \mathrm{y}, \mathrm{z}$, <string>)

The new command
> zlabel(<string>)
labels the z-axis.
As we discussed in the previous subsection, the mesh and surf commands allow us to plot a surface in three dimensions where the colors on the surface represent its height. We can add a rectangle which contains the correspondence between the color and the height of the surface by adding
\gg colorbar
We can also let the colors represent a separate quantity C, which is also defined at each mesh point, by changing the command to
$\gg \operatorname{mesh}(\mathrm{X}, \mathrm{Y}, \mathrm{F}, \mathrm{C})$
or
$\gg \operatorname{surf}(X, Y, F, C)$
Each graphics window has a separate color map associated with it. This color map is simply an $n \times 3$ matrix, where each element is a real number between 0 and 1 inclusive. In each row the first column gives the intensity of the color red, the second column green, and the third column blue; these are called the RGB components of a color. For example, we show the RGB components of cyan, magenta, yellow, red, blue, green, white, and black in the table "Customizing Lines and Markers" at the beginning of this section; for further information, enter doc colorspec. The value input to this color map is the row representing the desired color.

For mesh or surf the value of F (or of C if there is a fourth argument) is linearly rescaled so its minimum value is 1 and its maximum value is n. To see the current color map, enter

```
> colormap
```

To change the color map, enter
>> colormap(<color map>)
where <color map> can be an explicit $n \times 3$ matrix of the desired RGB components or it can be a string containing the name of an existing color map. The existing color maps can be found by typing

```
> doc graph3d
```

A useful color map for outputting to laser printers is 'gray'. In this colormap all three components of each row have the same value so that the colors change gradually from black (RGB components $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$) through gray $[.5 .5 .5]$) to white $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$).

MATLAB can also plot a two-dimensional image (i.e., a picture) which is represented by a matrix $\mathrm{X} \in \mathbb{R}^{m \times n}$. The (i, j)-th element of x specifies the color to use in the current color map. This color appear in the (i, j)-th rectilinear patch in the plot. For example, to display the color image of a clown enter

```
> load clown
> image(X);
> colormap(map)
```

The image command inputs the matrix X and the colormap map from clown.mat. Then the image is displayed using the new color map. Similarly,

```
> load earth
> image(X);
> colormap(map);
> axis image
```

displays an image of the earth. (The axis command forces the earth to be round, rather than elliptical.) (In the demonstration program, after clicking on "Visualization" double-click on "Image colormaps" to see the images which you can access in MATLAB and the existing color maps.)

MATLAB can also fill-in two-dimensional polygons using fill or three-dimensional polygons using
fill3. For example, to draw a red circle surrounding a yellow square, enter

```
> t = linspace(0, 2*pi, 100);
> s = 0.5;
> xsquare = [-s s s -s]';
> ysquare = [-s -s s s]';
> fill(cos(t), sin(t), 'r', xsquare, ysquare, ' y')
> axis equal;
```

To obtain a more interesting pattern replace the above fill command by
> colormap('hsv');
\gg fill(cos(t), sin(t), [1:100], xsquare, ysquare, [100:10:130])
Rather than entering polygons sequentially in the argument list, you can enter

```
> fill(X, Y, <color>)
```

where each column of X and Y contain the endpoints of a different polygon. Of course, in this case the number of endpoints of each polygon must be the same, by padding if necessary. For example, to draw a cube with all the faces having a different solid color, input the matrices

$$
X=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right), Y=\left(\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right), Z=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Then enter

```
> fill3(X, Y, Z, [1:6])
> axis equal
```

Change your orientation using view to see all six faces. Read the documentation on fill and fill3 for more details.

Advanced Graphics Features: Plots

clf	Clear a figure (i.e., delete everything in the figure)
colorbar	Adds a color bar showing the correspondence between the value and the color.
colormap	Determines the current color map or choose a new one.
demo	
figure	Runs demonstrations of many of the capabilities of MATLAB. Creates a new graphics window and makes it the current target. figure (n) makes the n-th graphics window the current target.
fill3(x,y, <color>)	Fills one or more polygons with the color or colors specified by the vector or string <color>.
image	Fills one or more 3D polygons with the color or colors specified by the vector or string <color>

Advanced Graphics Features: Text and Positioning

ginput	Obtains the current cursor position.
$\left.\begin{array}{l} \operatorname{text}(x, y,<\text { string>) } \\ \operatorname{text}(x, y, z,<\text { string> }) \end{array}\right\}$	Adds the text to the location given in the units of the current plot.
gtext (<string>)	Places the text at the point given by the mouse.
legend(<string 1>, ...)	Places a legend on the plot using the strings as labels for each type of line used. The legend can be moved by using the mouse.

4.4. Advanced Graphics Techniques: Handles and Properties

In this subsection we briefly discuss handle graphics. This is a collection of low-level graphics commands which do the actual work of generating graphics. In the previous parts of this section we have mainly discussed "high-level" graphics commands which allow us to create useful and high quality graphical images very easily. The low-level commands allow us to customize these graphical images, but at the cost of having to get much more involved in how graphical images are actually created. This subsection will be quite short because we do not want to get bogged down in this complicated subject. Instead, we will only discuss a few of - what we consider to be - the more useful customizations.

In handle graphics we consider every component of a graphical image to be an object, such as a subplot, an axis, a piece of text, a line, a surface, etc. Each object has properties and we customize an object by changing its properties. Of course, we have to be able to refer to a particular object to change its properties, and a handle is the unique identifier which refers to a particular object. (Each handle is a unique floating-point number.)

We will use a small number of examples to explain handle graphics. There are many properties of the text that can be changed in the text command by
$>$ text (xpt, ypt, <string>, '<Prop $1>^{\prime}$, <Value $1>$, '<Prop 2>', <Value 2>, ...)
or
$>\mathrm{h}=$ text(xpt, ypt, <string>);
$\gg \operatorname{set}\left(\mathrm{h},{ }^{\prime}<\right.$ Prop 1>', <Value $1>$, '<Prop 2>', <Value 2>, ...)
where <Prop ?> is the name of one of the properties for the text object and <Value ?> is one of the allowed values. (We show some names and values in the following table.) We have shown two ways to customize the properties. In the former all the properties are set in the text command. In the latter the text command creates an object, using its default properties, with handle h. The set command then changes some of the properties of the object whose handle is h. For example, entering
$\gg \operatorname{set}\left(\mathrm{h}, ~ ' C o l o r^{\prime}, ~ ' r ', ~ ' F o n t S i z e ', ~ 16, ~ ' R o t a t i o n ', ~ 90\right) ~$
results in a large, red text which is rotated 90°. You can also change the default properties for gtext, xlabel, ylabel, zlabel, and title.

The more common way of customizing parameters is by using the set command. The two functions get and set are used to obtain the value of one parameter and to set one or more parameters. For example, to get the font which is presenting being used enter
$\gg \mathrm{s}=\operatorname{get}\left(\mathrm{h},{ }^{\prime}\right.$ FontName')
and the string s contains the name of the font. The two arguments to get are the handle of the object desired and the name of the property.

There are two other commands which can obtain a handle:
$\gg h f=g c f$
returns the handle of the current figure and

```
> ha = gca
```

returns the handle of the current axes in the current figure. There is one case where we frequently use handle graphics. When a figure is printed, the graphical images do not fill the entire page. The default size is approximately 6.5 inches wide and 5.5 inches high. When we want to use the full size of a sheet of paper we use
$>$ figure('PositionPaper', [0 0 008.5 11])
or
$>$ figure (n)
$\gg \operatorname{set}\left(g c f\right.$, 'PositionPaper', $\left.\left[\begin{array}{llll}0 & 0 & 8.5 & 11\end{array}\right]\right)$
since the default units for this property are inches. This sets the graphical images to use the full paper size (the position is given as [left bottom width height]) with a one inch border. This is frequently useful if subplot is being used to put a number of plots on a page.

Finally, if subplot is being used it is sometimes useful to put a title on the entire page, not just in each subplot. This can be done by

```
> axes_handle = axes('Position', [0 0 1 0.95], 'Visible', 'off');
> title_handle = get(axes_handle, 'title');
> set(title_handle, 'String', <title>, 'Visible', 'on');
```

The first line specifies a rectangle for the axes in normalized units (so that (
[left bottom width height] = [llll 00011$]$ is the full size of the figure). The axes are invisible because they are only being created so that a title can go on top. The second line gets the handle for the title object of the new axes. The third line puts <title> into the title object and makes it visible.

Advanced Graphics Features: Properties

```
get(<handle>, '<Prop>') Return the current value of the property of the object with this
handle.
set(<handle>, '<Prop 1>', Set the property, or properties, of the object with this handle.
    <Value 1>, ...)
gca
gcf The current figure handle.
```


4.5. Be Able To Do

After reading this section you should be able to do the following exercises. The answers are given on page 131.

1. Plot e^{x} and one of its Taylor series approximations.
(a) Begin by plotting e^{x} for $x \in[-1,+1]$.
(b) Then plot

$$
p_{3}(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
$$

on the same graph.
(c) Also plot the difference between e^{x} and this cubic polynomial, i.e., $e^{x}-p_{3}(x)$ on the same graph.
(d) Next, generate a new graph containing all three curves by using only one plot command, force the axes to be to the same scale, and let all three curves have different colors. Put labels on the x and y axes and a silly title on the entire plot.
(e) The above plot is not very instructive because $e^{x}-p_{3}(x)$ is much smaller than either e^{x} or $p_{3}(x)$. Instead, use two plots. The first plot contains e^{x} and $p_{3}(x)$ and the second plot, which is immediately below the first, contains $e^{x}-p_{3}(x)$. These two plots should fill an entire sheet of paper.
2. Consider the function

$$
f(x, y)=\left(x^{2}+4 y^{2}\right) \sin (2 \pi x) \sin (2 \pi y)
$$

(a) Plot this function for $x, y \in[-2,+2]$.

Note: Make sure you use the ".*" operator in front of each sine term. What does the surface look like if you don't?
(b) This surface has high peaks which interfere with your view of the surface. Change your viewpoint so you are looking down at the surface at such an angle that the peaks do not block your view of the central valley.
Note: There are an infinite number of answers to this part.

5. Solving Linear Systems of Equations

One of the basic uses of MATLAB is to solve the linear system

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots+a_{j n} x_{n}=b_{j} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m},
\end{gathered}
$$

or the equivalent matrix equation

$$
\mathrm{Ax}=\mathrm{b}
$$

Note that there are m equations in n unknowns so that there may be zero solutions to this linear system, one solution, or an infinite number of solutions. We will discuss the case where $m \neq n$ in detail in subsection 5.3. Here we concentrate on $m=n$.

5.1. Square Linear Systems

As we discussed previously, when $m=n$ the MATLAB operation

```
> x = A\b
```

calculates the unique solution x by Gaussian elimination when A is nonsingular. We can also solve it by

$$
\gg \mathrm{x}=\text { linsolve(} \mathrm{A}, \mathrm{~b})
$$

The advantage of using linsolve is that it can be much faster when A has a particular property. The third argument to linsolve gives the particular property. For our purposes the most important properties are lower triangular, upper triangular, symmetric, and positive definite. Enter
$\gg \mathrm{x}=\operatorname{linspace(\mathrm {A},\mathrm {b},\mathrm {prop})}$
where prop is a logical structure with the following elements:
LT - the matrix is lower triangular,
UT - the matrix is upper triangular,
SYM - the matrix is symmetric triangular, and
POSDEF - the matrix is positive definite.
Normally, all the elements are false; set the property you want to true by
> prop.??? = true
where ??? is one of the above properties. To turn this property back off, enter
>> prop.??? = false
(We discuss logical variables in section 8.1.) If A has one (or more) of these properties, it can be solved much faster than using $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$.

When A is singular there are either zero solutions or an infinite number of solutions to this equation and a different approach is needed. The appropriate MATLAB command system is now rref. It begins by applying Gaussian elimination to the linear system of equations. However, it doesn't stop there; it continues until it has zeroed out all the elements it can, both above the main diagonal as well as below it. When done, the linear system is in reduced row echelon form:

- The first nonzero coefficient in each linear equation is a 1 (but a linear equation can be simply $0=0$ in which case it has no nonzero coefficient).
- The first nonzero term in a particular linear equation occurs later than in any previous equation. That is, if the first nonzero term in the j-th equation is $x_{k_{j}}$ and in the $j+1$-st equation is $x_{k_{j+1}}$, then $k_{j+1}>k_{j}$.
To use rref, the linear system must be written in augmented matrix form, i.e.,

$$
\begin{gathered}
x_{1} \\
x_{2} \\
\cdots
\end{gathered} x_{n}=\begin{gathered}
\text { rhs } \\
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
\end{gathered}
$$

Warning: It is very important to realize that an augmented matrix is not a matrix (because the operations we apply to augmented matrices are not the operations we apply to matrices). It is simply a linear system of equations written in shorthand: the first column is the coefficients of the x_{1} term, the second column is the coefficients of the x_{2} term, etc., and the last column is the coefficients on the right-hand side. The vertical line between the last two columns represents the equal sign. Normally, an augmented matrix is written without explicitly writing the header information; however, the vertical line representing the equal sign should be included to explicitly indicate that this is an augmented matrix.
rref operates on this augmented matrix to make as many of the elements as possible zero by using allowed operations on linear equations - these operations are not allowed on matrices, but only on linear systems of equations. The result is an augmented matrix which, when written back out as a linear system of equations, is particularly easy to solve. For example, consider the system of equations

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =-1 \\
4 x_{1}+5 x_{2}+6 x_{3} & =-1 \\
7 x_{1}+8 x_{2}+10 x_{3} & =0
\end{aligned}
$$

which is equivalent to the matrix equation $\mathrm{Ax}=\mathrm{b}$ where

$$
\mathrm{A}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right) \quad \text { and } \quad \mathrm{b}=\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)
$$

The augmented matrix for this linear system is
(We have included the header information for the last time.) Entering

```
    >ref([A b])
```

returns the augmented matrix

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Clearly, the solution of the linear system is $x_{1}=2, x_{2}=-3$, and $x_{3}=1$.
Of course, you could just as easily have found the solution by

```
>> = A\b
```

so let us now consider the slightly different linear system

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =-1 \\
4 x_{1}+5 x_{2}+6 x_{3} & =-1 \\
7 x_{1}+6 x_{2}+9 x_{3} & =-1,
\end{aligned}
$$

This is equivalent to the matrix equation $\mathrm{Ax}=\mathrm{b}$ where

$$
\mathrm{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad \text { and } \quad \mathrm{b}=\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

Since A is a singular matrix, the linear system has either no solutions or an infinite number of solutions. The augmented matrix for this linear system is

$$
\left(\begin{array}{ccc|c}
1 & 2 & 3 & -1 \\
4 & 5 & 6 & -1 \\
7 & 8 & 9 & 0
\end{array}\right)
$$

Entering
> $\quad \operatorname{rref}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{b}])\end{array}\right.\right.$
returns the augmented matrix

$$
\left(\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

so the solution of the linear system is $x_{1}=1+x_{3}$ and $x_{2}=-1-2 x_{3}$ for any $x_{3} \in \mathbb{R}$ (or \mathbb{C} if desired). In vector form, the solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1+x_{3} \\
-1-2 x_{3} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\left(\begin{array}{c}
x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

Suppose you modify the matrix equation slightly by letting $\mathrm{b}=(-1,-1,0)^{\mathrm{T}}$. Now entering

$$
\gg \quad \operatorname{rref}([\mathrm{A} \quad \mathrm{~b}])
$$

results in the augmented matrix

$$
\left(\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Since the third equation is $0=1$, there is clearly no solution to the linear system. Warning: The command rref does not always give correct results. For example, if

$$
\mathrm{C}=\left(\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right)
$$

then the matrix $I-C$ is singular (where I is the identity matrix). However, if you solve $(\mathrm{I}-\mathrm{C}) \mathrm{x}=0$ by

$$
\gg C=\left[\begin{array}{llll}
0.95 & 0.03 ; & 0.05 & 0.97
\end{array}\right] ;
$$

$\gg \operatorname{rref}\left(\left[\operatorname{eye}(\operatorname{size}(\mathrm{C}))-\mathrm{C} \quad[0]^{\prime}\right]\right)$

MATLAB displays

ans =
$\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}$
010
which indicates that the only solution is $\mathrm{x}=\mathbf{0}$. On the other hand, if you enter

```
> C = [0.95 0.03; 0.05 0.97]; b = 1;
> rref([eye(size(C))-C [b 0]'])
```

then MATLAB realizes that $I-C$ is singular. Clearly there is some value of between 0 and 1 where MATLAB switches between believing that $\mathrm{I}-\mathrm{C}$ is non-singular and singular. ${ }^{\dagger}$

	Solving Linear Systems
linsolve(A, b, <properties>)	Solve the linear system of equations Ax $=\mathrm{b}$ where A has certain properties.
rref	Calculates the reduced row echelon form of a matrix or an aug- mented matrix.

5.2. Catastrophic Round-Off Errors

We have mentioned repeatedly that computers cannot add, subtract, multiply, or divide correctly! Up until now, the errors that have resulted have been very small. Now we present two examples where the errors are very large.

In this first example, the reason for the large errors is easy to understand. Consider the matrix

$$
\mathrm{A}_{\epsilon}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9+\epsilon
\end{array}\right)
$$

which is singular when $\epsilon=0$ and nonsingular otherwise. But how well does MATLAB do when $\epsilon \ll 1$? Enter
$\gg \mathrm{eps}=\operatorname{input}\left({ }^{\prime} \mathrm{eps}={ }^{\prime}\right) ; \mathrm{A}=[123 ; 456 ; 789+\mathrm{eps}] ; \operatorname{inv}(\mathrm{A}) * \mathrm{~A}-\operatorname{eye}(\operatorname{size}(\mathrm{A}))$ so that the final matrix should be 0 . Begin by letting $\epsilon=0$ and observe that the result displayed is nowhere close to the zero matrix! However, note that MATLAB is warning you that it thinks something is wrong with the statement

[^8]Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND $=1.541976 \mathrm{e}-18$.
(RCOND is its estimate of the inverse of the condition number. See cond in section 7 for more details.) Now choose some small nonzero values for ϵ and see what happens. How small can ϵ be before MATLAB warns you that the matrix is "close to singular or badly scaled"? In this example, you know that the matrix is "close to singular" if ϵ is small (but nonzero) even if MATLAB does not. The next example is more interesting.

For the second example, consider the Hilbert matrix of order n, i.e.,

$$
\mathrm{H}_{n}=\left(\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & . . & 1 / n \\
1 / 2 & 1 / 3 & 1 / 4 & . . & 1 /(n+1) \\
1 / 3 & 1 / 4 & 1 / 5 & . . & 1 /(n+2) \\
\vdots & \vdots & \vdots & . & \vdots \\
1 / n & 1 /(n+1) & 1 /(n+2) & . . & 1 /(2 n-1)
\end{array}\right)
$$

which is generated in MATLAB by
$\gg H=\operatorname{hilb}(n)$
There does not seem to be anything particularly interesting, or strange, about this matrix; after all, $h_{i j}=1 /(i+j-1)$ so the elements are all of "reasonable" size. If you type
$\gg \mathrm{n}=10 ; \mathrm{H}=\operatorname{hilb}(\mathrm{n}) ;(\mathrm{H} \wedge(1 / 2)) \wedge 2-\mathrm{H}$
the result is not particularly surprising. The resulting matrix should be the zero matrix, but, because of round-off errors, it is not. However, every element is in magnitude less than 10^{-15}, so everything looks fine.

However, suppose you solve the matrix equation

$$
\mathrm{Hx}=\mathrm{b}
$$

for a given b . How close is the numerical solution to the exact solution? Of course, the problem is: how can you know what the analytical solution is for a given b ? The answer is to begin with x and calculate b by $\mathrm{b}=\mathrm{Hx}$. Then solve $\mathrm{Hx}=\mathrm{b}$ for x and compare the final and initial values of x . Do this in MATLAB by
$\gg n=10 ; x=\operatorname{rand}(n, 1) ; b=H * x ; x n u m=H \backslash b$
and compare x with xnum by calculating their difference, i.e.,
$\gg \mathrm{x}$ - xnum
The result is not very satisfactory: the maximum difference in the elements of the two vectors is usually somewhere between 10^{-5} and 10^{-3}. That is, even though all the calculations have been done to approximately 16 significant digits, the result is only accurate to three to five significant digits! (To see how much worse the result can be, repeat the above commands for $\mathrm{n}=\overline{12 . \text {) }}$

It is important to realize that most calculations in MATLAB are very accurate. It is not that solving a matrix equation necessarily introduces lots of round-off errors; instead, Hilbert matrices are very "unstable" matrices - working with them can lead to inaccurate results. On the other hand, most matrices are quite "stable". For example, if you repeat the above sequence of steps with a random matrix, you find that the results are quite accurate. For example, enter
$\gg n=1000 ; R=\operatorname{rand}(n) ; x=\operatorname{rand}(n, 1) ; b=R * x ; x n u m=R \backslash b ; \max (a b s(x-\operatorname{xnum}))$
The results are much more reassuring, even though n is 100 times as large for this random matrix as for the Hilbert matrix - and even though there are over 600,000 times as many floating point operations needed to calculate x by Gaussian elimination for this random matrix!
Note: By entering all the commands on one line, it is easy to repeat this experiment many times for different random numbers by simply rerunning this one line.

5.3. Overdetermined and Underdetermined Linear Systems

If $\mathrm{A} \in \mathbb{C}^{m \times n}$ where $m>n, \mathrm{Ax}=\mathrm{b}$ is called an overdetermined system because there are more equations than unknowns. In general, there are no solutions to this linear equation. (However, to be sure use rref.) However, you can find a "best" approximation by finding the solution for which the vector

$$
\mathrm{r}=\mathrm{Ax}-\mathrm{b}
$$

which is called the residual, is smallest in Euclidean length; that is,

$$
\operatorname{norm}(\mathrm{r}) \equiv \sqrt{\sum_{i=1}^{n} r_{i}^{2}}
$$

is minimized. (The norm function is discussed in section 7.) This is called the least-squares solution. This best approximation is calculated in MATLAB by typing
$>\mathrm{A} \backslash \mathrm{b}$
Analytically, the approximation can be calculated by solving

$$
\mathrm{A}^{\mathrm{T}} \mathrm{Ax}=\mathrm{A}^{\mathrm{T}} \mathrm{~b}
$$

However, numerically this is less accurate than the method used in MATLAB.
Note that this is the same command used to find the solution to a square linear system. This cannot be the intent here since A is not a square matrix. Instead, MATLAB interprets this command as asking for the least-squares solution. Again, this command only makes sense if there is a unique solution which minimizes the length of the vector $\mathrm{Ax}-\mathrm{b}$. If there are an infinite number of least-squares solutions, MATLAB warns you of this fact and then returns one of the solutions. For example, if

$$
\mathrm{A}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
2 \\
1 \\
2 \\
4
\end{array}\right)
$$

then $A \mathrm{x}=\mathrm{b}$ has no solutions, but has an infinite number of least-square approximations. If you enter
$>\quad \mathrm{A} \backslash \mathrm{b}$
the response is
Warning: Rank deficient, rank $=2$ tol $=1.4594 \mathrm{e}-14$.
It also returns the solution $(-1 / 4,0,29 / 60)^{\mathrm{T}}$ (after using the MATLAB command rats which we discuss below), which is one particular least-squares approximation. To find all the solutions, you can use rref to solve $A^{T} A x=A^{T} b$. (If A is complex, solve $A^{H} A x=A^{H} b$.)

Occasionally, if there are an infinite number of least-squares approximations, the solution desired is the "smallest" one, i.e., the x for which the length of the vector x is minimized. This can be calculated using the pseudoinverse of A , denoted by A^{+}. Since A is not square, it cannot have an inverse. However, the pseudoinverse is the unique $n \times m$ matrix which satisfies the Moore-Penrose conditions:

- $\mathrm{AA}^{+} \mathrm{A}=\mathrm{A}$
- $\mathrm{A}^{+} \mathrm{AA}^{+}=\mathrm{A}^{+}$
- $\left(\mathrm{AA}^{+}\right)^{T}=\mathrm{AA}^{+}$
- $\left(A^{+} A\right)^{T}=A^{+} A$

In particular, if A is a square nonsingular matrix, then A^{+}is precisely A^{-1}. This pseudoinverse is calculated in MATLAB by entering

```
pinv(A)
```

The reason for mentioning the pseudoinverse of A is that the least-squares approximation to $\mathrm{Ax}=\mathrm{b}$ can also be calculated by

$$
\gg \operatorname{pinv}(A) * b
$$

If there are an infinite number of least-squares approximations, this returns the one with the smallest length.

Next, suppose that $\mathrm{A} \in \mathbb{C}^{m \times n}$ with $m<n . \mathrm{Ax}=\mathrm{b}$ is called an underdetermined system because there are less equations than unknowns. In general, there are an infinite number of solutions to this equation. We can find these solutions by entering
$\gg \operatorname{rref}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{b}\end{array}\right]\right)$
and solving the result for x . We can find one particular solution by entering
$>\mathrm{A} \backslash \mathrm{b}$

This solution will have many of its elements being 0 . We can also find the solution with the smallest
length by entering
$\gg \operatorname{pinv}(\mathrm{A}) * b$
Warning: It is possible for an overdetermined system to have one or even an infinite number of solutions (not least-squares approximations). It is also possible for an underdetermined system to have no solutions. The way to check the number of solutions is to use the rref command.
One command which is occasionally useful is rats. If all the elements of A and b are rational numbers, then the solution and/or approximation obtained is usually a rational number, although stored as a floating-point number. This command displays a "close" rational approximation to the floating-point number, which may or may not be the exact answer. For example, entering
$\gg \operatorname{rats}(1 / 3-1 / 17+1 / 5)$
results in the text variable $121 / 255$, which is the correct answer.
Warning: Be careful when using this command. rats (sqrt(2)) makes no sense (as was known in 500 $\mathrm{BC})$.

Solving Linear Systems

$\mathrm{A} \backslash \mathrm{b}$	When $\mathrm{Ax}=\mathrm{b}$ is an overdetermined system, i.e., $m>n$ where $\mathrm{A} \in \mathbb{C}^{m \times n}$, this is the least-squares approximation; when it is an underdetermined solution, i.e., $m<n$, this is a solution which has 0 in many of its elements. The pseudoinverse of A.
$\operatorname{rats}(\mathrm{x})$	Calculates a "close" approximation to the floating-point number x.
the exact value. This is frequently	

6. File Input-Output

In section 4.1 we discussed the csvread and csvwrite commands which allow simple input from and output to a file. The MATLAB commands fscanf and fprintf, which behave very similarly to their C counterparts, allow much finer control over input and output. Before using them a file has to be opened by
>> fid $=$ fopen('<file name>', <permission string>)
where the file identifier fid is a unique nonnegative integer attached to the file. (Three file identifiers always exist as in C: 0 is the standard input, 1 is the standard output, and 2 is the standard error.) The permission string specifies how the file is to be accessed:
' r ' read only from the file.
' w ' write only to the file (anything previously contained in the file is overwritten). If necessary, the file is created.
' a ' append to the end of the file (everything previously contained in the file is retained).
' $\mathrm{r} \mathbf{}^{\prime}$ ' read from and write to the file (anything previously contained in the file is overwritten).
' w^{+}' read from and write to the file (anything previously contained in the file is overwritten). If necessary, the file is created.
If the fopen command fails, -1 is returned in the file identifier. Enter
> fclose(fid)
if a file needs to be closed.
To write formatted data to a file, enter
> fprintf(fid, <format string>, <variable 1>, <variable 2>, ...)
The elements contained in the variables are written to the file specified in a previous fopen command according to the format string. If fid is omitted, the output appears on the screen. The format string is very similar to that of C, with the exception that the format string is cycled through until the end of the file is reached or the number of elements specified by size is attained.

To briefly review some of the C format specifications, the conversion characters are:
d - The argument is converted to decimal notation.
c - The argument is a single character.
s - The argument is a string.
e - The argument is a floating-point number in "E" format.
f - The argument is a floating-point number in decimal notation.
g - The argument is a floating-point number in either "E" or decimal notation.
Each conversion character is preceded by "\%". The following may appear between the "\%" and the conversion character:

- A minus sign which specifies left adjustment rather than right adjustment.
- An integer which specifies a minimum field width.
- If the maximum field width is larger than the minimum field width, the minimum field width is preceded by an integer which specifies the maximum field width, and the two integers are separated by a period.
fprintf can also be used to format data on the screen by omitting the fid at the beginning of the argument list. Thus, it is possible to display a variable using as little or as much control as desired. For example, if x contains -23.6 three different ways to display it are

```
> x
> disp(['x = ', num2str(x)])
> fprintf(% %12.6e\n', x)
```

and the results are

```
x =
    -23.6000
x = -23.6000
-2.360000e+01
```

Note: It is easy to print the matrix A in the MATLAB workspace as we just described. However, it is a little more difficult to print it to a file. The following works and can be entered on one line, although it is actually a number of statements.

```
> Str = disp(A); for i = [1:size(Str, 1)] fprintf(fid, %%s\n', Str(i,:)); end
```

To read formatted data from a file, enter
> $A=$ fscanf(fid, <format string>, <size>)
The data is read from the file specified in a previous fopen command according to the format string and put into the matrix A. The size argument, which puts an upper limit on the amount of data to be read, is optional. If it is a scalar, or is not used at all, A is actually a vector. If it is [m n], then A is a matrix of this size.

> Advanced Input-Output

```
fopen('<file name>',
    <permission string>)
    <variable 1>,...)
fprintf(<format string>,
    <variable 1>,...)
```

fscanf(fid, <format string>) Behaves very similarly to the C command in reading data from
fprintf(fid, <format string>, Behaves very similarly to the C command in writing data to a

Opens the file with the permission string determining how the file is to be accessed. The function returns the file identifier, which is a unique nonnegative integer attached to the file.

```
fclose(fid)
```

fclose(fid)
fclose(fid) Closes the file with the given file identifier.

```
    a file using any desired format.
Behaves very similarly to the C command in writing data to a
file using any desired format.
Behaves very similarly to the C command in displaying data on the screen using any desired format.

\section*{7. Some Useful Linear Algebra Commands}

We briefly describe in alphabetical order some of the MATLAB commands that are most useful in linear algebra. Most of these discussions can be read independently of the others. Where this is not true, we indicate which should be read first.
chol
Let \(\mathrm{A} \in \mathbb{R}^{n \times n}\) be symmetric and positive definite \({ }^{\dagger}\). Then there exists an upper triangular matrix R such that \(R^{T} R=A . R\) is calculated by
```

> R = chol(A)

```

If A is not positive definite, an error message is printed. (If \(\mathrm{A} \in \mathbb{C}^{n \times n}\) then \(\mathrm{R}^{\mathrm{H}} \mathrm{R}=\mathrm{A}\).)
cond
Note: Read the discussion on norm below first.
The condition number of \(\mathrm{A} \in \mathbb{C}^{n \times n}\), which is denoted by \(\operatorname{cond}(\mathrm{A})\), is a positive real number which is always \(\geq 1\). It measures how "stable" \(A\) is: if \(\operatorname{cond}(A)=\infty\) the matrix is singular, while if \(\operatorname{cond}(A)=1\) the matrix is as nice a matrix as you could hope for - in particular, cond(I) =1. To estimate the number of digits of accuracy you might lose in solving the linear system \(A x=b\), enter

\section*{\(\log 10(\) cond (A))}

In subsection 5.2 we discussed the number of digits of accuracy you might lose in solving \(\mathrm{Hx}=\mathrm{b}\) where \(H\) is the Hilbert matrix of order 10. In doing many calculations it was clear that the solution was only accurate to 3 to 5 significant digits. Since cond(H) is \(1.6 \times 10^{13}\), it is clear that you should lose about 13 of the 16 digits of accuracy in this calculation. Thus, everything fits.

If A is nonsingular, the condition number is defined by
\[
\operatorname{cond}_{p}(\mathrm{~A})=\|\mathrm{A}\|_{p}\left\|\mathrm{~A}^{-1}\right\|_{p} \quad \text { for } p \in[1, \infty]
\]
or
\[
\operatorname{cond}_{\mathrm{F}}(\mathrm{~A})=\|\mathrm{A}\|_{\mathrm{F}}\left\|\mathrm{~A}^{-1}\right\|_{\mathrm{F}}
\]

It is calculated in MATLAB by
\(\gg \operatorname{cond}(\mathrm{A}, \mathrm{p})\)
where p is 1,2 , \(\operatorname{Inf}\), or ' fro '. If \(\mathrm{p}=2\) the command can be shortened to \(\gg\) cond (A)
Note that the calculation of the condition number of \(A\) requires the calculation of the inverse of \(A\). The MATLAB command condest approximates the condition number without having to calculate this inverse. See the discussion of this command below for further information on when it might be preferable. Note: Sometimes we want to solve, or find the "best" approximation to, \(\mathrm{Ax}=\mathrm{b}\) when \(\mathrm{A} \in \mathbb{C}^{m \times n}\) is not a square matrix. (This is discussed in detail in subsection 5.3.) Since we still want to know the accuracy of any solution, we want to generalize the condition number to nonsquare matrices. This is done by defining the condition number of a nonsquare matrix in the 2-norm to be the ratio of the largest to the smallest singular value of A , i.e., \(\sigma_{1} / \sigma_{\min \{m, n\}}\).

\section*{condest}

Note: Read the discussion on cond above first.
The calculation of the condition number of \(\mathrm{A} \in \mathbb{C}^{n \times n}\) requires the calculation of its inverse. There are two reasons this might be inadvisable.
- The calculation of \(\mathrm{A}^{-1}\) requires approximately \(2 n^{3}\) flops, which might take too long if \(n\) is very large.
- If A is a sparse matrix (i.e., most of its elements are zero), we discuss in section 9 how to store only the nonzero elements of A to conserve storage. (For example, if \(n=10,000\) and A is tridiagonal \({ }^{\ddagger}\), the number of nonzero elements in A is approximately 30,000 but the total number of elements in A

\footnotetext{
\({ }^{\dagger} \mathrm{A} \in \mathbb{R}^{n \times n}\) is positive definite if \(\mathrm{x}^{\mathrm{T}} \mathrm{Ax} \geq 0\) for all \(\mathrm{x} \in \mathbb{R}^{n}\) and \(\mathrm{x}^{\mathrm{T}} \mathrm{Ax}=0\) only if \(\mathrm{x}=\mathbf{0}\). In practical terms, it means that all the eigenvalues of \(A\) are positive. \(\left(A \in \mathbb{C}^{n \times n}\right.\) is positive definite if \(x^{H} A x \geq 0\) for all \(x \in \mathbb{C}^{n}\) and \(\mathrm{x}^{\mathrm{T}} \mathrm{Ax}=0\) only if \(\mathrm{x}=\mathbf{0}\).)
\({ }^{\ddagger}\) A matrix is tridiagonal if its only nonzero elements occur on the main diagonal or on the first diagonal above or below the main diagonal
}
is \(100,000,000\).) Since the inverse of a sparse matrix is generally much less sparse (in fact it may have no zero elements at all), MATLAB may not be able to store \(A^{-1}\).
The command condest calculates a lower bound to the condition number of a matrix in the 1-norm without having to determine its inverse. This approximation is almost always within a factor of ten of the exact value.

When MATLAB calculates \(A \backslash b\) or \(\operatorname{inv}(A)\), it also calculates condest(A). It checks if its estimate of the condition number is large enough that A is likely to be singular. If so, it returns an error message such as
```

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.055969e-18.
where RCOND is the inverse of condest (A).

```
det
Let \(\mathrm{A} \in \mathbb{C}^{n \times n}\). The determinant of A is calculated by \(>\operatorname{det}(A)\)
\(\operatorname{det}(A)=0\) if and only if \(A\) is singular. However, due to round-off errors it is very unlikely that you will obtain 0 numerically unless all the entries to A are integers. For example, consider the matrix
\[
\mathrm{C}=\left(\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right)
\]
\(\mathrm{I}-\mathrm{C}\) is singular (where I is the identity matrix) but
\[
\gg C=[0.950 .03 ; 0.050 .97] ; \operatorname{det}(\operatorname{eye}(\operatorname{size}(C))-C)
\]
does not return 0. However, the number it returns is much smaller than eps and so it seems "reasonable" that I-C is singular. On the other hand,
\(\gg \operatorname{det}(\) hilb(10))
returns \(2.2 \times 10^{-53}\), but the Hilbert matrix is not singular for any \(n\). (The singular value decomposition, which is described below, is a much better method for determining if a square matrix is singular.)

\section*{eig}

Let \(\mathrm{A} \in \mathbb{C}^{n \times n}\). A scalar \(\lambda \in \mathbb{C}\) is an eigenvalue of A if there exists a nonzero vector \(\mathrm{v} \in \mathbb{C}^{n}\) such that
\[
\mathrm{Av}=\lambda \mathrm{v}
\]
v is called the eigenvector corresponding to \(\lambda\). There are always \(n\) eigenvalues of A, although they need not all be distinct. MATLAB will very happily calculate all the eigenvalues of A by
```

 > eig(A)
    ```

It will also calculate all the eigenvectors by
\(\gg[V, D]=\operatorname{eig}(A)\)
\(\mathrm{D} \in \mathbb{C}^{n \times n}\) is a diagonal matrix containing the \(n\) eigenvalues on its diagonal and the corresponding eigenvectors are found in the same columns of the matrix \(\mathrm{V} \in \mathbb{C}^{n \times n}\).

A matrix is defective if it has less eigenvectors than eigenvalues. MATLAB normally cannot determine when this occurs. For example, the matrix
\[
\mathrm{B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\]
is defective since it has two eigenvalues, both of which are 1 , but it only has one eigenvector, namely \((1,0)^{\mathrm{T}}\). If you enter
\(\gg B=[11 ; 01] ;[V, D]=\operatorname{eig}(B)\)
MATLAB calculates the two eigenvalues correctly, but it finds the two eigenvectors \((1,0)^{\mathrm{T}}\) and \(\left(-1,2.2 \times 10^{-16}\right)^{\mathrm{T}}\). Clearly the latter eigenvector should be \((-1,0)^{\mathrm{T}}\) so that, in fact, there is only one eigenvector.

Note: If A is a sparse matrix (see Section 9), you cannot use eig. You either have to use the function eigs or do eig(full(A)).

\section*{eigs}

Note: Read the discussion on eig above first.
Frequently, you do not need all the eigenvalues of a matrix. For example, you might only need the largest ten in magnitude, or the five with the largest real part, or the one which is smallest in magnitude, or ... In addition, you might need some eigenvalues of the generalized eigenvalue problem
\[
\mathrm{Ax}=\lambda \mathrm{Bx}
\]
where \(B\) is a symmetric positive definite matrix. (If \(B\) is complex, it must be Hermetian.) eigs can do all of this. Of course, this means that there are numerous possible arguments to this function so read the documentation carefully.

Why not just use eig anyway? Calculating all the eigenvalues of \(\mathrm{A} \in \mathbb{R}^{n \times n}\) requires (very) approximately \(10 n^{3}\) flops, which can take a very long time if \(n\) is very large. On the other hand, calculating only a few eigenvalues requires many, many fewer flops. If A is a full matrix, it requires \(c n^{2}\) flops where \(c\) is of "reasonable" size; if A is a sparse matrix (see Section 9), it requires cn flops.
Note: If A is sparse, you cannot use eig - you will first have to do eig(full(A)).
Also, this command generates lots of diagnostic output. To calculate the largest 3 eigenvalues of A in magnitude without generating any diagnostics, enter
```

> op.disp = 0
> eigs(A, 3, 'LM', op)

```
(op.disp is a structure, which was discussed in section 3.4.)
inv
To calculate the inverse of the square matrix \(\mathrm{A} \in \mathbb{C}^{n \times n}\) enter
\[
\gg \quad \operatorname{inv}(A)
\]

The inverse of \(A\), denoted by \(\mathrm{A}^{-1}\), is a matrix such that \(\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}\), where \(\mathrm{I} \in \mathbb{R}^{n \times n}\) is the identity matrix. If such a matrix exists, it must be unique.

MATLAB cannot always tell whether this matrix does, in fact, exist. For example, the matrix
\[
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
\]
does not have an inverse. If you try to take the inverse of this matrix, MATLAB will complain that
Warning: Matrix is singular to working precision.
It will display the inverse matrix, but all the entries will be Inf.
The above matrix was very simple. The matrix
\[
\mathrm{A}=\left(\begin{array}{lll}
1 & 2 & 3  \tag{7.1}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
\]
also does not have an inverse. If you ask MATLAB to calculate the inverse of A , it will complain that
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND \(=2.055969 \mathrm{e}-18\).
(RCOND is the inverse of a numerical approximation to the condition number of A; see condest above.) That is, MATLAB is not positive that A is singular, because of round-off errors, but it thinks it is likely. However, MATLAB still does try to calculate the inverse. Of course, if you multiply this matrix by A the result is nowhere close to I. (Try it!) In other words, be careful - and read (and understand) all
warning messages.
lu
Let \(\mathrm{A} \in \mathbb{C}^{n \times n}\). Then there exists an upper triangular matrix U , a unit lower triangular matrix \(\mathrm{L}^{\dagger}\), and a permutation matrix \(P^{\ddagger}\) such that
\[
\mathrm{LU}=\mathrm{PA}
\]

The MATLAB command \(l u\) calculates these matrices by entering
\[
\gg \quad[\mathrm{L}, \mathrm{U}, \mathrm{P}]=\operatorname{lu}(\mathrm{A})
\]

If A is invertible, all the elements of U on the main diagonal are nonzero. If you enter
\(\gg A=[123 ; 456 ; 789] ;[L, U, P]=1 u(A)\)
where A is the singular matrix defined earlier, \(u_{33}\) should be zero. Entering \(\gg U(3,3)\)
displays \(1.1102 \mathrm{e}-16\), which clearly should be zero as we discussed in subsection 1.5.
Note: This is the first time we have had a function return more than one argument. We discuss this notation in detail in section 8.3. For now, we simply state that when [v, D] occurs on the right side of the equal sign it means the matrix whose first columns come from V and whose last columns come from D. However, on the left side of the equal sign it means that the function returns two arguments where the first is stored in the variable V and the second in D .

\section*{norm}

The norm of a vector or matrix is a nonnegative real number which gives some measure of the "size" of the vector or matrix. The \(p\)-th norm of a vector is defined by
\[
\|\mathbf{x}\|_{p}= \begin{cases}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} & \text { if } p \in[1, \infty) \\ \max _{1 \leq i \leq n}\left|x_{i}\right| & \text { if } p=\infty\end{cases}
\]

For \(p=1,2\), or \(\infty\) it is calculated in MATLAB by entering
\(\gg \operatorname{norm}(\mathrm{x}, \mathrm{p})\)
where p is 1,2 , or Inf. If \(\mathrm{p}=2\) the command can be shortened to \(\gg \operatorname{norm}(\mathrm{x})\)
The \(p\)-th norm of a matrix is defined by
\[
\|\mathbf{A}\|_{p}=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathrm{Ax}\|_{p}}{\|\mathrm{x}\|_{p}} \quad \text { for } p \in[1, \infty]
\]
and is calculated in MATLAB by entering
\(\gg \operatorname{norm}(A, p)\)
where again p is 1,2 , or Inf. If \(\mathrm{p}=2\) the command can be shortened to
\(\gg \operatorname{norm}(\mathrm{A})\)
There is another matrix norm, the Frobenius norm, which is defined for \(\mathrm{A} \in \mathbb{C}^{m \times n}\) by
\[
\|\mathrm{A}\|_{\mathrm{F}}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
\]
and is calculated in MATLAB by entering
```

> norm(A, 'fro')

```
null
Let \(\mathrm{A} \in \mathbb{C}^{n \times n}\). We can calculate an orthonormal basis for the null space of A by

\footnotetext{
\({ }^{\dagger}\) A unit lower triangular matrix is lower triangular and, in addition, all the elements on the main diagonal are 1 .
\({ }^{\ddagger} \mathrm{P}\) is a permutation matrix if its columns are a rearrangement of the columns of I .
}
```

 null(A)
    ```
orth
    Let \(\mathrm{A} \in \mathbb{C}^{n \times n}\). We can calculate an orthonormal basis for the columns of A by
        > \(\operatorname{orth}(A)\)
qr
    Let \(\mathrm{A} \in \mathbb{R}^{m \times n}\). Then there exists an orthogonal matrix \(\mathrm{Q} \in \mathbb{R}^{m \times m} \dagger\) and an upper triangular matrix
\(\mathrm{R} \in \mathbb{R}^{m \times n}\) such that
\[
\mathrm{A}=\mathrm{QR}
\]
(If \(\mathrm{A} \in \mathbb{C}^{m \times n}\) then there exists an unitary matrix \(\mathrm{Q} \in \mathbb{C}^{m \times m}\) and an upper triangular matrix \(\mathrm{R} \in \mathbb{C}^{m \times n}\) such that \(A=Q R\).) We calculate \(Q\) and \(R\) in MATLAB by entering
```

> [Q, R] = qr(A)

```

It is frequently preferable to add the requirement that the diagonal elements of R be decreasing in magnitude, i.e., \(\left|r_{i+1, i+1}\right| \leq\left|r_{i, k}\right|\) for all \(i\). In this case
\[
\mathrm{AE}=\mathrm{QR}
\]
for some permutation matrix E and
\[
\gg \quad[Q, R, E]=\operatorname{qr}(A)
\]

One reason for this additional requirment on \(R\) is that you can immediately obtain an orthonormal basis for the range of A and the null space of \(\mathrm{A}^{\mathrm{T}}\). If \(r_{k, k}\) is the last nonzero diagonal element of R , then the first \(k\) columns of Q are an orthonormal basis for the range of A and the final \(n-k\) columns are an orthonormal basis for the null space of \(\mathrm{A}^{\mathrm{T}}\). The command orth is preferable if all you want is an orthonormal basis for \(R(\mathrm{~A})\).
rank
Let \(\mathrm{A} \in \mathbb{C}^{m \times n}\). The rank of A is the number of linearly independent columns of A and is calculated by \(\gg \operatorname{rank}(A)\)
This number is calculated by using the singular value decomposition, which we discuss below.
svd
Let \(\mathrm{A} \in \mathbb{R}^{m \times n}\). A can be decomposed into
\[
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
\]
where \(\mathrm{U} \in \mathbb{R}^{m \times m}\) and \(\mathrm{V} \in \mathbb{R}^{n \times n}\) are orthogonal matrices and \(\Sigma \in \mathbb{R}^{m \times n}\) is a diagonal matrix (although not necessarily square) with real nonnegative elements in decreasing order. That is,
\[
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{m, n\}} \geq 0
\]
(If \(\mathrm{A} \in \mathbb{C}^{m \times n}\) then \(\mathrm{U} \in \mathbb{C}^{m \times m}\) and \(\mathrm{V} \in \mathbb{C}^{n \times n}\) are unitary matrices and \(\Sigma \in \mathbb{R}^{m \times n}\) is a diagonal matrix with real nonnegative elements in decreasing order.) These matrices are calculated by
\[
\gg \quad[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A})
\]

The diagonal elements of \(\Sigma\) are called the singular values of A. Although A need not be a square ma\(\operatorname{trix}\), both \(\mathrm{A}^{\mathrm{T}} \mathrm{A} \in \mathbb{R}^{n \times n}\) and \(\mathrm{AA}^{\mathrm{T}} \in \mathbb{R}^{m \times m}\) are square symmetric matrices. (If A is complex, \(\mathrm{A}^{\mathrm{H}} \mathrm{A}\) and \(\mathrm{AA}^{\mathrm{H}}\) are both square Hermitian matrices.) Thus, their eigenvalues are nonnegative. \({ }^{\ddagger}\) Their nonzero eigenvalues are the squares of the singular values of \(A .{ }^{\S}\) In addition, the eigenvectors of \(A^{T} A\) are the columns of

\footnotetext{
\({ }^{\dagger} \mathrm{Q} \in \mathbb{R}^{m \times m}\) is orthogonal if \(\mathrm{Q}^{-1}=\mathrm{Q}^{\mathrm{T}} .\left(\mathrm{Q} \in \mathbb{C}^{m \times m}\right.\) is unitary if \(\left.\mathrm{Q}^{-1}=\mathrm{Q}^{\mathrm{H}}.\right)\)
\({ }^{\ddagger}\) The eigenvalues of a real square symmetric matrix are nonnegative. (The eigenvalues of a complex square Hermitian matrix are real and nonnegative.)
\({ }^{\S}\) For example, if \(m>n\) there are \(n\) singular values and their squares are the eigenvalues of \(\mathrm{A}^{\mathrm{T}} \mathrm{A}\). The \(m\) eigenvalues of \(\mathrm{AA}^{\mathrm{T}}\) consist of the squares of these \(n\) singular values and \(m-n\) additional zero eigenvalues.
}
\(V\) and those of \(A A^{T}\) are the columns of \(U\). (If \(A\) is complex, the eigenvectors of \(A^{H} A\) are the columns of \(V\) and those of \(A A^{H}\) are the columns of \(U\).)

The best numerical method to determine the rank of A is to use its singular values. For example, to see that
\[
\mathrm{A}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right)
\]
has rank 2, use the svd command to find that the singular values of A are \(25.4368,1.7226\), and \(8.1079 \times 10^{-16}\). Clearly the third singular value should be 0 and so A has 2 nonzero singular values and so has a rank of 2 . On the other hand, the Hilbert matrix of order 15 has singular values
\[
\begin{aligned}
& 1.8 \times 10^{0}, 4.3 \times 10^{-1}, 5.7 \times 10^{-2}, 5.6 \times 10^{-3}, 4.3 \times 10^{-4}, 2.7 \times 10^{-5}, 1.3 \times 10^{-6}, 5.5 \times 10^{-8} \\
& 1.8 \times 10^{-9}, 4.7 \times 10^{-11}, 9.3 \times 10^{-13}, 1.4 \times 10^{-14}, 1.4 \times 10^{-16}, 1.2 \times 10^{-17}, \text { and } 2.4 \times 10^{-18}
\end{aligned}
\]
according to MATLAB. Following Principle 1.2, you can see there is no separation between the singular values which are clearly not zero and the ones which are "close to" eps. Thus, you cannot conclude that any of these singular values should be set to 0 . Our "best guess" is that the rank of this matrix is \(15 .{ }^{\dagger}\)


\footnotetext{
\({ }^{\dagger}\) In fact, it can be proven that the Hilbert matrix of order \(n\) is nonsingular for all \(n\), and so its rank is truly \(n\). However, if you enter
\(\gg \operatorname{rank}(\mathrm{hilb}(15))\)
you obtain 12, so that MATLAB is off by three.
}

\section*{8. Programming in MATLAB}

Using the commands we have already discussed, MATLAB can do very complicated matrix operations. However, sometimes there is a need for finer control over the elements of matrices and the ability to test, and branch on, logical conditions. Although prior familiarity with a high-level programming language is useful, MATLAB's programming language is so simple that it can be learned quite easily and quickly.

\subsection*{8.1. Flow Control and Logical Variables}

MATLAB has four flow control and/or branching instructions: for loops, while loops, if-else branching tests, and switch branching tests.
Notation: All of these instructions end with an end statement, and it is frequently difficult to determine the extent of these instructions. Thus, it is very important to use indentation to indicate the structure of a code, as we do in the remainder of this tutorial. This greatly increases the readability of the code for human beings.
The general form of the for loop is
> for <variable> = <expression>
```

 <statement>
    ```
    ...
    <statement>
    end
where the variable is often called the index of the loop. The elements of the row vector <expression> are stored one at a time in the variable and then the statements up to the end statement are executed. \({ }^{\dagger}\) For example, you can define the vector \(\mathrm{x} \in \mathbb{R}^{n}\) where \(x_{i}=i \sin \left(i^{2} \pi / n\right)\) by
```

> x = zeros(n, 1);
> for i = 1:n
x(i) = i * sin(i^2 *pi/n);
end

```
(The first line is not actually needed, but it allows MATLAB to know exactly the size of the final vector before the for loops begin. This saves computational time and makes the code more understandable; it is discussed in more detail in section 8.5.) In fact, the entire for loop could have been entered on one line as
```

> for i = 1:n x(i) = i * sin(i^2 *pi/n); end

```

However, for readability it is best to split it up and to indent the statements inside the loop. Of course, you can also generate the vector by
```

> x = [1:n]' .* sin([1:n]' .^2 * *pi/n)

```
which is certainly "cleaner" and executes much faster in MATLAB.
Warning: In using i as the index of the for loop, i has just been redefined to be \(n\) instead of \(\sqrt{-1}\). Caveat emptor!
A more practical example of the use of a for loop is the generation of the Hilbert matrix of order \(n\), which we have already discussed a number of times. This is easily done using two for loops by
```

> H = zeros(n);
> for i = 1:n
for j = 1:n
H(i,j) = 1/(i + j - 1);
end
end

```

Warning: In using \(i\) and \(j\) as the indices of the for loops, \(i\) and \(j\) have just been redefined to be \(n\) instead of \(\sqrt{-1}\). Caveat emptor!

\footnotetext{
\({ }^{\dagger}\) <expression> can be a matrix in which case each column vector is stored one at a time in \(i\).
}
for loops often have branches in them. For this we need the if branch, which we now describe. The simplest form of the if statement is
```

> if <logical expression>
<statement>
...
<statement>
end

```
where the statements are evaluated as long as the <logical expression> is true. The
<logical expression> is generally of the form
```

<arithmetic expression-left> rop <arithmetic expression-right>

```
where rop is one of the relational operators shown below. Some examples of logical expressions are
```

i == 5
$x(i)>=i$
imag(A(i,i)) ~= 0
$\sin (1)-1>x(1)+x(i) \wedge 3$

```

Warning: String variables cannot be easily compared by \(==\) or \(\sim=.^{\dagger}\) Instead, if a and b are text variables, enter
\(\gg \operatorname{strcmp}(\mathrm{a}, \mathrm{b})\)

The result is true if the two character strings are identical and false otherwise.
\begin{tabular}{|c|c|c|}
\hline & Relational Operators & \\
\hline \[
\begin{array}{ll}
< & \text { Less than. } \\
<= & \text { Less than or equal to. } \\
== & \text { Equal. }
\end{array}
\] & \[
\begin{aligned}
& > \\
& >= \\
& \sim= \\
& \operatorname{strcmp}(\mathrm{a}, \mathrm{~b})
\end{aligned}
\] & \begin{tabular}{l}
Greater than. \\
Greater than or equal to. Not equal to. Compares strings.
\end{tabular} \\
\hline
\end{tabular}
```

A second form of the if statement is
> if <logical expression>
<statement group 1>
else
<statement group 2>
end

```
where statement group 1 is evaluated if the <logical expression> is true and statement group 2 is evaluated if it is false. The final form of the if statement is
```

> if <logical expression 1>
<statement group 1>
elseif <logical expression 2>
<statement group 2>
elseif <logical expression 3>
<statement group 3>
elseif <logical expression r>
<statement group r>
else
<statement group r+1>
end

```
where statement group 1 is evaluated if the <logical expression \(1>\) is true, statement group 2 is evalu-

\footnotetext{
\({ }^{\dagger}\) Compare the results of
    \(>{ }^{\prime} \mathrm{Yes}^{\prime}==\) ' \(\mathrm{yes}^{\prime}\)
and
    \(>{ }^{\prime} \mathrm{Yes}^{\prime}=={ }^{\prime} \mathrm{no}^{\prime}\)
}
ated if the <logical expression \(2>\) is true, etc. The final else statement is not required. If it occurs and if none of the logical expressions is true, statement group \(\mathrm{r}+1\) is evaluated. If it does not occur and if none of the logical expressions is true, then none of the statement groups are executed.

When a logical expression such as
```

> i == 5

```
is evaluated, the result is either the logical value "TRUE" or "FALSE". MATLAB calculates this as a numerical value which is returned in the variable ans. The value is 0 if the expression is false and 1 if it is true.

MATLAB also contains the logical operators "AND" (denoted by "\&"), "OR" (denoted by " \("\) ), "NOT" (denoted by " \(\sim\) "), and "EXCLUSIVE OR" (invoked by the function xor ). These act on false or true statements which are represented by numerical values: zero for false statements and nonzero for true statements. Thus, if \(a\) and \(b\) are real numbers then
- the relational equation
\[
\gg c=a \& b
\]
means that \(c\) is true (i.e., 1 ) only if both \(a\) and \(b\) are true (i.e., nonzero); otherwise \(c\) is false (i.e., 0 ).
- the relational equation
\[
\gg \mathrm{c}=\mathrm{a} \mid \mathrm{b}
\]
means that \(c\) is true (i.e., 1 ) if \(a\) and/or \(b\) is true (i.e., nonzero); otherwise \(c\) is false (i.e., 0 ).
- the relational equation
\(\gg c=\sim a\)
means that \(c\) is true (i.e., 1 ) if \(a\) is false (i.e., 0 ); otherwise \(c\) is false (i.e., 0 ).
- the relational command
\[
\gg c=\operatorname{xor}(\mathrm{a}, \mathrm{~b})
\]
means that \(c\) is true (i.e., 1 ) if exactly one of \(a\) and \(b\) is true (i.e., nonzero); otherwise \(c\) is false (i.e., 0 ).

In the above statements c is a logical variable which has the logical value "TRUE" or "FALSE". Frequently - but not always - the variable can be set by \(c=1\) or \(c=0\); but \(c\) is now not a logical variable, but a numerical variable. Frequently - but not always - a numerical variable can be used instead of a logical variable. The preferred ways to set a logical variable are the following. The logical variable can be set by \(c=\operatorname{logical}(1)\) or \(c=\operatorname{logical(0)}-\) and now \(c\) is a logical variable. A simpler way to set the logical variable \(c\) is \(c=\) true or \(c=\) false.


The second MATLAB loop structure is the while statement. The general form of the while loop is
```

> while <logical expression>
<statement>
.
<statement>
end

```
where the statements are executed repeatedly as long as the <logical expression> is true. For example, eps can be calculated by
\(\gg \mathrm{eps}=1\);
\(\gg\) while \(1+\mathrm{eps}>1\) eps = eps/2;
end
\(\gg \mathrm{eps}=2 * \mathrm{eps}\)

It is possible to break out of a for loop or a while loop from inside the loop by using the break command as in C. This terminates the execution of the innermost for loop or while loop.

The continue statement is related to break. It causes the next iteration of the for or while loop to begin immediately.

The switch command executes particular statements based on the value of a variable or an expression. Its general form is
```

> switch <variable or expression>
case <Value 1>,
<statement group 1>
case {<Value 2a>, <Value 2b>, <Value 2c>, ..., <Value 2m>},
<statement group 2>
case <value n>,
<statement group r>
otherwise,
<statement group r+1>
end

```
where statement group 1 is evaluated if the variable or expression has <Value 1\(\rangle\), where statement group 2 is evaluated if the variable or expression has values <Value \(2 \mathrm{a}>\) or <Value 2 b\(\rangle\) or <Value 2 c\(\rangle\), etc. (Note that if a case has more than one value, then all the values must be surrounded by curly brackets.) The final otherwise is not required. If it occurs and if none of the values match the variable or expression, then statement group \(r+1\) is evaluated. If it does not occur and if none of the values match, then none of the statement groups are executed.
Warning: The switch command is different in MATLAB than in C in two ways:
First, in MATLAB the case statement can contain more than one value; in C it can only contain one.
And, second, in MATLAB only the statements between the selected case and the following one or the following otherwise or end (whichever occurs first) are executed; in C all the statements following the selected case are executed up to the next break or the end of the block.


Elementary Logical Matrices
\begin{tabular}{|ll}
\hline true & Generates a logical matrix with all elements having the logical value true. \\
& Use true or true \((n)\) or true \((m, n)\).
\end{tabular}

\subsection*{8.2. Matrix Relational Operators and Logical Operators}

Although MATLAB does have a quite powerful programming language, it is needed much less frequently than in typical high-level languages. Many of the operations and functions that can only be applied to scalar quantities in other languages can be applied to vector and matrices in MATLAB. For example, MATLAB's relational and logical operators can also be applied to vectors and matrices. In this way, algorithms that would normally require flow control for coding in most programming languages can be coded using simple MATLAB commands.

If \(\mathrm{A}, \mathrm{B} \in \mathbb{R}^{m \times n}\) then the relational equation
\(\gg \mathrm{C}=\mathrm{A} \operatorname{rop} \mathrm{B}\)
is evaluated as \(c_{i j}=a_{i j}\) rop \(b_{i j}\), where rop is one of the relational operators defined previously. C is a logical array, that is, its data type is "logical" not "numeric". The elements of \(C\) are all 0 or 1: 0 if \(a_{i j}\) rop \(b_{i j}\) is a false statement and 1 if it is a true one. Also, the relational equation
\(\gg \mathrm{C}=\mathrm{A}\) rop c
is defined when \(c\) is a scalar. It is evaluated as if we had entered
\(\gg \mathrm{C}=\mathrm{A}\) rop \(\mathrm{c} *\) ones \((\operatorname{size}(\mathrm{A}))\)
Similar behavior holds for logical operators:
\(>\quad \mathrm{C}=\mathrm{A} \& \mathrm{~B}\)
means \(c_{i j}=a_{i j} \& b_{i j}\),
\(\gg \mathrm{C}=\mathrm{A} \mid \mathrm{B}\)
means \(c_{i j}=a_{i j} \mid b_{i j}\),
\(\gg \quad \mathrm{C}=\sim \mathrm{A}\)
means \(c_{i j}=\sim a_{i j}\), and
\(>\quad \mathrm{C}=\operatorname{xor}(\mathrm{A}, \mathrm{B})\)
means \(c_{i j}=\operatorname{xor}\left(a_{i j}, b_{i j}\right)\). Again the elements of C are all 0 or 1.
To show the power of these MATLAB commands, suppose we have entered
\(>\quad \mathrm{F}=\operatorname{rand}(\mathrm{m}, \mathrm{n})\)
and now we want to know how many elements of \(F\) are greater than 0.5 . We can code this as
```

> nr_elements = 0;
> for i= 1:m
for j = 1:n
if F(i,j) > 0.5
nr_elements = nr_elements + 1;
end
end
end
> nr_elements

```

However, it can be coded much more simply, quickly, and efficiently since the relational expression
\[
\gg C=F>0.5
\]
or, to make the meaning clearer,
\(>\quad C=(F>0.5)\);
generates the matrix \(C\) where
\[
c_{i j}= \begin{cases}1 & \text { if } f_{i j}>0.5 \\ 0 & \text { otherwise }\end{cases}
\]

Since the number of ones is the result we want, simply enter
\(>\operatorname{sum}(\operatorname{sum}(F>0.5))\)
or
> sum (sum (C))
or
\(\gg \operatorname{sum}(C(:))\)
And suppose we want to replace all the elements of F which are \(\leq 0.5\) by zero. This is easily done by
\(\gg \mathrm{F}=\mathrm{F} . *(\mathrm{~F}>0.5)\)

The relational expression \(\mathrm{F}>0.5\) generates a matrix with zeroes in all the locations where we want to zero the elements of \(F\) and ones otherwise. Multiplying this new matrix elementwise with \(F\) zeroes out all the desired elements of F . We can also replace all the elements of F which are \(\leq 0.5\) by \(-\pi\) using
```

C = (F > 0.5)
> F = F.*C - pi*(~C)

```

Shortly we will present two easier ways to do this.
There is even a MATLAB function which determines the location of the elements of a vector or a matrix where some property is satisfied. The command
```

> find(x)

```
generates a column vector containing the indices of x which are nonzero. (Recall that nonzero can also mean "TRUE" so that this command finds the elements where some condition is true.) For example, if \(\mathrm{x}=(0,4,0,1,-1,0, \pi)^{\mathrm{T}}\) then the resulting vector is \((2,4,5,7)^{\mathrm{T}}\). We can add 10 to every nonzero element of x by
```

> ix = find(x);
> x(ix) = x(ix) + 10;

```

Note: If no element of the vector is nonzero, the result is the empty matrix [].
find can also be applied to a matrix. The command

\section*{\(\gg\) find (A)}
first transforms A to a column vector (i.e., A(:)) and then determines the locations of the nonzero elements. Instead we can work with the matrix directly by entering
\(>\quad[i A, j A]=\) find \((A)\)
The two column vectors iA and \(j A\) contain the rows and columns, respectively, of the nonzero elements. We can also find the locations of the nonzero elements and their values by
\(\gg \quad[i A, j A\), valueA] \(=\) find \((A)\)
As a simple example of the power of this command we can add 10 to every nonzero element of A by
\(\gg i j A=f i n d(A) ; A(i j A)=A(i j A)+10\)
Note: ijA contains the locations of the nonzero elements of A when considered to be a column vector. Since \(A(k)\) has no meaning in linear algebra if \(k\) is a scalar (since an element of \(A\) requires both a row and a column number), MATLAB assumes that this is the element number of A as a column vector.
We can also find the elements of a vector or a matrix which satisfy a more general property than being nonzero. For example, to find the locations of all the elements of x which are greater than 5 enter
\(\gg\) find \((x>5)\)
and to find the locations of all the elements of \(x\) which are greater than 5 and less than 8 enter
\(\gg\) find ( \((x>5) \&(x<8)\) )
We can find the number of elements which satisfy this last property by entering
\(\gg\) length ( find ( \((x>5) \&(x<8))\) )
Previously, we showed how to replace all the elements of F which are \(\leq 0.5\) by \(-\pi\). A method which does not require any multiplication is
\(\gg \mathrm{ijF}=\mathrm{find}(\mathrm{F}<=0.5)\);
\(>F(i j F)=-p i\)
or even
\(>\mathrm{F}(\) find \((\mathrm{F}<=0.5))=-\mathrm{pi}\)
The "beauty" of MATLAB commands such as these is they are so easy to use and to understand (once you get the hang of it) and they require so few keystrokes.

Another, slightly different method uses the matrix
```

> D = (F <= 0.5)

```
rather than the vector ijF. Recall that \(i j F\) is a vector which contains the actual locations of the elements we want to zero out, whereas D is a matrix of ones and zeroes which explicitly shows which elements should be zeroed. We can use D to determine which elements of \(F\) should be replaced by zero by
\(\gg F(D)=-p i\)
(We can even use
```

> F(F<= 0.5) = -pi

```
to combine everything into a single statement.) This requires some explanation. The matrix D is being used here as a "mask" to determine which elements of F should be replaced by \(-\pi\) : for every element of \(D\) which is nonzero, the corresponding element of \(F\) is replaced by \(-\pi\); for every element of \(D\) which is zero, nothing is done.

How does MATLAB know that D should be used to "mask" the elements of F? The answer is that D is a logical matrix because it was defined using a logical operator, and only logical matrices and vectors can be used as "masks". To see that D is a logical variable and F is not, enter
```

> islogical(D)
> islogical(F)

```

And to see what happens when you try to use a non-logical variable as a "mask", enter
\(>\mathrm{F}(2 * \mathrm{D})\)
We can also convert a non-logical variable to a logical one by using the MATLAB command logical.
To explain logical arrays more clearly, we take a specific and very simple example. Enter
```

> v = [0:.25:1];
> c = (v >= .5);

```
so that \(\mathrm{v}=\left[\begin{array}{lllll}0 & .25 & .5 & .75 & 1.0\end{array}\right]\) and \(\mathrm{c}=\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}\right]\) where " 0 " denotes false and " 1 " denotes true. The result of
\(>\mathrm{v}(\mathrm{c})\)
is [.5 . 75 1.0]. That is, \(c\) is a logical vector and \(v(c)\) deletes the elements of \(v\) which are "false". On the other hand
\(\gg i v=\) find (v < . 5 );
returns iv = [1 2] and
\(\gg \mathrm{v}(\mathrm{iv})=[] ;\)
returns \(v=[.5\). 75 1.0]. The difference between \(c\) and \(i v\) is that \(c\) is a logical vector and iv is a scalar vector. If you enter
\(>\mathrm{v}\left(\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}\right]\right) \quad\) \% WRONG
instead of
```

> v(c)

```
you obtain the error message
??? Subscript indices must either be real positive integers or logicals.
because [ \(\left.\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}\right]\) is a numeric vector and so must contain the numbers of the elements of \(v\) which are desired - but there is no element " 0 ".

MATLAB also has two functions that test vectors and matrices for logical conditions. The command > any ( x )
returns 1 if any element of the vector x is nonzero (i.e., "TRUE"); otherwise 0 is returned. When applied to a matrix, it operates on each column and returns a row vector. For example, we can check whether or not a matrix is tridiagonal by
\(\gg \operatorname{any}(\operatorname{any}(\operatorname{triu}(A, 2)+\operatorname{tril}(A,-2)))\)
Here we check all the elements of A except those on the main diagonal and on the two adjacent ones. A result of 1 means that at least one other element is nonzero. If we want a result of 1 to mean that \(A\) is tridiagonal we can use
\(>\sim \sim \operatorname{any}(\operatorname{any}(\operatorname{triu}(A, 2)+\operatorname{tril}(A,-2)))\)
instead. The command
\(\gg \operatorname{any}(A)\)
operates columnwise and returns a row vector containing the result of any as applied to each column.
The complementary function all behaves the same as any except it returns 1 if all the entries are nonzero (i.e., "TRUE"). For example, you can determine if a matrix is symmetric by
\(\gg \operatorname{all}\left(\operatorname{all}\left(\mathrm{A}==\mathrm{A} .^{\prime}\right)\right.\) )
A result of 1 means that \(A\) is identical to \(A^{T}\).
For completeness we mention that MATLAB has a number of other functions which can check the status of variables, the status of the elements of vectors and matrices, and even of their existence. For example, you might want to zero out all the elements of a matrix A which are Inf or NaN. This is easily done by
\(>A(\) find ( ~isfinite (A) ) \()=0\)
where isfinite(A) generates a matrix with 1 in each element for which the corresponding element of \(A\) is finite. To determine if the matrix \(A\) even exists, enter
```

exist('A')

```

See the table below for more details and more functions.


\subsection*{8.3. Function M-files}

We have already discussed script m-files, which are simply an easy way to collect a number of statements and execute them all at once. Function m-files, on the other hand, are similar to functions or procedures or subroutines or subprograms in other programming languages. Ordinarily, variables which are created in a function file exist only inside the file and disappear when the execution of the file is completed - these are called local variables. Thus you do not need to understand the internal workings of a function file; you only need to understand what the input and output arguments represent.
Note: The generic term for script files and function files is \(M\)-files, because the extension is " m ".
Unlike script files, function files must be constructed in a specific way. The first line of the file <file name>.m must begin with the keyword function. Without this word, the file is a script file. The complete first line, called the function definition line, is
function <out> \(=\) <function name>(<in 1>, ..., <in n>)
or
```

function [<out 1>, ..., <out m>] = <file name>(<in 1>, ..., <in n>)

```
where the name of the function must be the same as the name of the file (but without the extension). The input arguments are <in 1>, <in 2>,... The output arguments must appear to the left of the equal sign: if there is only one output argument, i.e., <out>, it appears by itself; if there is more than one, i.e., <out 1>, etc., they must be separated by commas and must be enclosed in square brackets.

Variables in MATLAB are stored in a part of memory called a workspace. The base workspace contains all the variables created during the interactive MATLAB session, which includes all variables created in script m-files which have been executed. Each function m-file contains its own function workspace which is independent of the base workspace and every other function workspace. The only way to "connect" these workspaces is through the arguments of a function or by using the global command (which we will discuss shortly).

There is great flexibility in the number and type of input and output arguments; we discuss this topic in great detail later. The only detail we want to mention now is that the input arguments are all passed "by value" as in C. (That is, the values of the input arguments are stored in temporary variables which are local to the function.) Thus, the input arguments can be modified in the function without affecting any input variables in the calling statement. \({ }^{\dagger}\)
Warning: The name of the file and the name of the function must agree. This is also the name of the command that executes the function.
Comment lines should immediately follow. A comment line begins with the percent character, i.e., "\%". All comment lines which immediately follow the function definition line constitute the documentation for this function; these lines are called the online help entry for the function. When you type
> help <function name>
all these lines of documentation are typed out. If you type
type <function name>
the entire file is printed out. In addition, the first line of documentation, i.e., the second line of the file, can be searched for keywords by entering
> lookfor <keyword>
Make sure this first comment line contains the name of the command and important keywords which describe its purpose.
Note: Comments can be placed anywhere in an M-file, including on a line following a MATLAB statement. The initial comment lines in a script file and the comment lines in a function file which immediately follow the first line are special: they appear on the screen when you type
```

> help <function name>

```

Before discussing functions at great length, there is one technical detail it is important to consider before it trips you up: how does MATLAB find the M-files you have created? Since MATLAB contains thousands of functions, this is not an easy task. Once MATLAB has determined that the word is not a variable, it searches for the function in a particular order. We show the order here and then discuss the items in detail throughout this subsection.
(1) It checks if <function name> is a built-in function (i.e., coded in C).
(2) It checks if <function name> is a function, i.e., the primary function, a subfunction, or a nested function in the current scope, in the current file. (We discuss all these terms shortly.)
(3) It checks if the file <function name>.m exists in the current directory.
(4) It checks if the current directory has a subdirectory called "private"; if it does, MATLAB checks if the file <function name>.m exists in this subdirectory.
(5) It searches the directories in the search path for the file <function name>.m.

Note from (3) that MATLAB searches in the current directory for the function by searching for the Mfile with the same name. If the M-file is not in the current directory, the simplest way to enable MATLAB to find it is have the subdirectory in your search path. If you type
\(\gg\) path
you will see all the directories that are searched. If you have created a subdirectory called "matlab" in your main directory, this is usually the first directory searched (unless the search path has been modified). Thus, you can put your M-files in this subdirectory and be sure that MATLAB will find them. You can also add directories to the search path by
```

> path('new_directory', path)

```
or
```

> path(path, 'new_directory')

```

\footnotetext{
\({ }^{\dagger}\) If you are worried because passing arguments by value might drastically increase the execution time of the function, we want to reassure you that this does not happen. To be precise, MATLAB does not actually pass all the input arguments by value. Instead, an input variable is only passed by value if it is modified by the function. If an input variable is not modified, it is passed "by reference". (That is, the input argument is the actual variable used in the calling statement and not a local copy.) In this way you get the benefit of "call by value" without any unnecessary overhead. And how does MATLAB know if an input argument is modified? It can only be modified if it appears on the left-hand side of an equal sign inside the function!
}
(The former puts "new_directory" at the beginning of the search path while the latter puts it at the end.) Warning: When you begin a MATLAB session, it always checks if the subdirectory "matlab" exists in your main directory. If you create this subdirectory after you start a MATLAB session, it will not be in the search path.
Now we return to our discussion of creating functions. We begin with a simple example of a function file which constructs the Hilbert matrix (which we have already used a number of times).
```

function H = hilb_local(n)
% hilb_local: Hilbert matrix of order n (not from MATLAB)
% hilb_local(n) constructs the n by n matrix with elements 1/(i+j-1).
% This is one of the most famous examples of a matrix which is
% nonsingular, but which is very badly conditioned.
H = zeros(n);
for i = 1:n
for j = 1:n
H(i,j) = 1/(i+j-1);
end
end

```

The input argument is n and the output argument is H . The first line of the documentation includes the name of the function as well as a brief description that lookfor uses. The following lines of documentation also appear on the screen if we enter
```

>> help hilb_local

```

Note: The above code is not presently used in MATLAB (although it was in early versions.) The actual MATLAB code for this function is shown in subsection 8.5.
We follow by defining \(H\) to be an \(n \times n\) matrix. Although not essential, this statement can greatly increase the speed of the function because space can be preallocated for the matrix. For example, consider the following code.
```

function a = prealloc(n, which)
% prealloc: testing how well preallocating a vector works
% n = the size of the vector
% which = 1 - preallocate the vector
% = 2 - do not
if which == 1
a = zeros(n,1);
end
a(1) = 1;
for i = 2:n
a(i) = a(i-1) + 1;
end

```

If which \(=0\) the vector a is not preallocated, while if which \(=1\) it is. We find that
\(\gg\) prealloc \((100000,1)\)
runs over 4000 (that's right, four thousand) times as fast as
\(\gg\) prealloc \((100000,0)\)

Note that \(i\) and \(j\) are redefined from \(\sqrt{-1}\) since they appear as for loop indices. However, since i and \(j\) are local to this function, this does not have any effect when this command is executed. Also, the variable \(H\) is local to the function. If we type
\(\gg Z=h i l b \_l o c a l(12)\)
then the matrix Z contains the Hilbert matrix and H is undefined.
Normally functions are completed when the end of the file is reached (as above). If the flow control in a function file is complicated enough, this might be difficult to accomplish. Instead, you can use the return command, which can appear anywhere in the function and force an immediate end to the function. In addition, you can force the function to abort by entering
```

error(<string>)

```

If the string is not empty, the string is displayed on the terminal and the function is aborted; if the string is empty, the statement is ignored.

One feature of function files which is occasionally very useful is that they can have a variable number of input and output variables. For example, the norm of a vector \(x\) can be calculated by entering
\(>\operatorname{norm}(\mathrm{x}, \mathrm{p})\)
if \(p=1,2\), or inf or, more simply, by
\(>\operatorname{norm}(\mathrm{x})\)
if \(p=2\). Similarly, if only the eigenvalues of a matrix \(\mathrm{A} \in \mathbb{C}^{n \times n}\) are desired, enter
> eigval \(=\operatorname{eig}(A)\)
However, if both the eigenvalues and eigenvectors are desired, enter
\(>\quad[V, D]=\operatorname{eig}(A)\)
where \(\mathrm{D} \in \mathbb{C}^{n \times n}\) is a diagonal matrix containing the \(n\) eigenvalues on its diagonal and the corresponding eigenvectors are found in the same columns of the matrix \(\mathrm{V} \in \mathbb{C}^{n \times n}\).
Note: On the right side of an equation, [V D] or [V, D] is the matrix whose initial columns come from V and whose final columns come from D . This requires that V and D be matrices which have the same number of rows. On the left side, [V, D] denotes the two output arguments which are returned by a function. V and D can be completely different variables. For example, one can be a character variable and the other a matrix.
MATLAB can also determine the number of input and output arguments: nargin returns the number of input arguments and nargout returns the number of output arguments. For example, suppose we want to create a function file which calculates
\[
f(x, \xi, a)=e^{-a(x-\xi)^{2}} \sin x
\]

We can "spruce" this function up to have default values for \(\xi\) and \(a\) and also to calculate its derivative with the following function file.
```

function [out1, out2] = spruce(x, xi, a)
% spruce: a silly function to make a point, f(x,b,a) = sin(x)*exp(-a*(x-b)^2)
% if only x is input, xi = 0 and a = 1
% if only x and xi are input, a = 1
% if only one output argument, f(x,xi,a) is calculated
% if two output arguments, f(x,xi,a) and f'(x,xi,a) are calculated
if nargin == 1
xi = 0;
a = 1;
elseif nargin == 2
a = 1;
end
out1 = exp(-a.*(x-xi).^2).*sin(x);
if nargout == 2
out2 = exp(-a.*(x-xi).^2).*(cos(x) - 2.*a.*(x-xi).*sin(x));
end

```

If there is only one input argument then \(\xi\) is set to 0 and \(a\) is set to 1 (which are useful default values) while if there are only two input arguments then \(a\) is set to 1 . If there is only one output argument then only \(f(x)\) is calculated, while if there are two output arguments then both \(f(x)\) and \(f^{\prime}(x)\) are calculated.

Also, note that \(x\) can be a scalar (i.e., a single value) or it can be a vector. Similarly, \(\xi\) and \(a\) can each be a scalar or a vector. If \(x\) is a vector, i.e., \(\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}\), while \(\xi\) and \(a\) are scalars, then the function is
\[
f\left(x_{i}, \xi, a\right)=\sin \left(x_{i}\right) e^{-a\left(x_{i}-\xi\right)^{2}} \quad \text { for } i=1,2, \ldots, n
\]
and all the values can be calculated in one call to spruce. If, on the other hand, \(x, \xi\), and \(a\) are all vectors, then the function is
\[
f\left(x_{i}, \xi_{i}, a_{i}\right)=\sin \left(x_{i}\right) e^{-a_{i}\left(x_{i}-\xi_{i}\right)^{2}} \quad \text { for } i=1,2, \ldots, n
\]
and, again, all the values can be calculated in one call to spruce.
We have now presented all the essential features of the MATLAB programming language, and it certainly is a "minimal" language. MATLAB can get away with this because most matrix operations can be performed directly - unlike in most other programming languages. You only need to write your own function if MATLAB cannot already do what you want. If you want to become proficient in this language, simply use the type command to look at the coding of some functions.
Now that we have discussed the essentials of programming in MATLAB, it is necessary to discuss how to program correctly. When you are entering one statement at a time in the text window, you immediately see the result of your calculation and you can determine whether or not it is correct. However, in an M-file you have a sequence of statements which normally end with semicolons so that you do not see the intermediate calculations. What do you do if the result is incorrect? In other words, how do you debug your M-file?

There are a number of simple techniques you can use and we discuss them in turn. In a script M-file intermediate calculations are normally not printed out, but they are still available to look at. This can frequently lead to an understanding of where the calculation first went wrong. However, this is not true of function M-files since all the local variables in the function disappear when the function ends. Of course, with any M-file you can selectively remove semicolons so that intermediate results are printed out. This is probably the most common method of debugging programs - no matter what programming language is being used.

When loops are involved (either using for or while statements), the printed output can seem to be endless (and it is endless if you are in an infinite loop). And it is usually impossible to read the output since it is zipping by at (what appears to be) nearly the speed of light! The pause command can slow down or even stop this output. By itself pause stops the M-file until some key is pressed while pause(<floating-point number>) pauses execution for this many seconds - or fractions of a second. (This is computer dependent, but pause ( 0.01 ) should be supported on most platforms.) You can even turn these pauses on and off by using pause on and pause off.

The echo command is also useful for debugging script and function files, especially when if statements are involved. Typing
```

> echo on

```
turns on the echoing of statements in all script files (but not printing the results if the statements end with semicolons), and echo off turns echoing off again. However, this does not affect function files. To turn echoing on for a particular function, type
> echo <function name> on
and to turn echoing on for all functions, type
\(\gg\) echo on all
The keyboard command is also very useful for debugging M-files. It stops execution of the M-file, similar to the pause command. However, it returns complete control to the user to enter any and all MATLAB commands. In particular, you can examine any variables in the function's workspace. If desired, you can also change the value of any of them variables. The only way you will recognize this is not a "standard" MATLAB session is that the prompt is

K>
for Keyboard. To terminate the "keyboard" session and return control to the M-file, enter
K> return
To terminate both the "keyboard" session and the execution of the M-file, enter
K> dbquit
We will not discuss the commands in this debugger in detail, but only provide a brief description of each one, because these are similar to commands in any debugger. If you have experience with using a debugger, help or doc will give you complete details.

\section*{Debugging Commands}
\begin{tabular}{|lll}
\hline keyboard & Turns debugging on. \\
dbstep & Execute one or more lines. \\
dbcont & Continue execution. \\
dbstop & Set a breakpoint. \\
dbclear & Remove a breakpoint. \\
dbup & Change the workspace to the calling function or the base workspace. \\
dbdown & Change the workspace down to the called function. \\
dbstack & Display all the calling functions. \\
dbstatus & List all the breakpoints. \\
dbtype & List the current function, including the line numbers. \\
dbquit & Quit debugging mode and terminate the function. \\
return & Quit debugging mode and continue execution of the function.
\end{tabular}

Now we want to discuss the arguments in a MATLAB function, since they are are used somewhat differently than in other programming languages. For example, in
function out \(=\) funct1 (a, t)
\(a\) and \(t\) are the input arguments and out is the output argument. Any and all input variables are local to the function and so can be modified without affecting the arguments when the function funct1 is called. (This is true no matter what type of variables they are.) In function [out1, out2, out3] = funct2(z)
\(z\) is the only input argument and there are three output arguments, each of which can be any type of variable. There is no requirement that all three of these output arguments actually be used. For example, the calling statement might be any of the following:
```

> art = funct2(1.5)
> [physics, chemistry] = funct2([$$
\begin{array}{lll}{1}&{2}&{3}\end{array}
$$])
> [math, philosophy, horticulture] = funct2(reshape([1:30], 6, 5))

```
(just to be somewhat silly).
In a programming language such as C, Fortran, or Pascal funct1 would be written in a form such as function funct1(a, \(t\), out)
or even as
function funct1 (a, out, t)
Similarly, funct2 would be written as
function funct2(z, out1, out2, out3)
or even as
function funct2(out3, out2, \(z\), out1)
It would be up to the user to control which were the input arguments, which were the output arguments, and which were both (i.e., one value on input and another on output). In MATLAB input arguments occur on the right side of the equal sign and output arguments occur on the left. Arguments which are to be modified by the function must occur on both sides of the equal sign in the calling statement. For example, in funct2 if \(z\) is modified and returned in out1 then the calling sequence should be
\(>\quad[\mathrm{a}, \mathrm{b}, \mathrm{c}]=\) funct2 \((\mathrm{a})\)
where a appears on both sides of the equal sign. (There is an alternative to this awkward use of parameters which are modified by the function: you can make a variable global, as we discuss at the end of this section. However, this is not usually a good idea.)

There is another difference between MATLAB and most other programming languages where the type of each variables has to be declared, either explicitly or implicitly. For example, a variable might be an integer, a single-precision floating-point number, a double-precision floating-point number, a character string, etc. In MATLAB, on the other hand, there is no such requirement. For example, the following statements can follow one another in order and define x to be a string variable, then a vector, then a
scalar, and finally a matrix.
```

> x = 'WOW?'
> x = x + 0
> x = sum(x)
> = x*[llllll

```

It is particularly important to understand this "typelessness" when considering output arguments. For example, there are three output arguments to funct2 and any of them can contain any type of variable. In fact, you can let the type of these arguments depend on the value or type of the input argument. This is probably not something you should want to do frequently, but it is sometimes very useful.

Occasionally, there is a need to pass values from the workspace to a function or to pass values between different functions without using the input arguments. (As we discussed earlier, this may be desirable if a variable is modified by a function.) In C this is done by using global variables. MATLAB also has global variables which are defined by declaring the variables to be global using
>> global <variable 1> <variable 2> <variable 3>...
By the way, a variable is a global variable if it appears in a global statement and a local variable if it does not. (Note that a variable can be a local variable in one function and a global variable in another.)
Warning: Spaces, not commas, must separate the variables in a global statement
This statement must appear in every function which is to share the variables. If the workspace is also to share these variables, you must type this statement (or be put into a script file which you execute) before these variables are used.

Instead of using a global variable, it is frequently preferable to save the value of a local variable between calls to the function. Normally, local variables come into existence when the function is called and disappear when the function ends. Sometimes it is very convenient to be able to "save" the value of a local variable between calls to the function. In C, this is done by declaring the variable static. In MATLAB it is done by declaring the variable persistent using
> persistent <variable 1> <variable 2> <variable 3>...
Warning: Spaces, not commas, must separate the variables.
Note: The first time you enter the function, a persistent variable will be empty, i.e., [], and you can test for this by using isempty.
We now present a simple example where persistent variables are very helpful. Suppose we want to write a function \(m\)-file to evaluate
\[
\mathrm{z}(\mathrm{y})=\binom{y_{2}}{y_{1}\left(1-\beta y_{1}^{2}\right)-\alpha y_{2}+\Gamma \cos \omega t}
\]
where \(\alpha, \beta, \Gamma\), and \(\omega\) are parameters which will be set initially and then left unchanged during a run. We might be studying a mathematical model where this function will be evaluated many, many times for different values of y. For each experiment these parameters will be fixed, but they will be different for each experiment. We do not want to "hardcode" the values in the function because we would have to repeatedly change the function - which is very undesirable. Certainly we can write the function as
function \(z=\) fncz1(y, alpha, beta, Gamma, omega)
\(z=[y(2) ;-y(1) *(1-\operatorname{beta} * y(1) \wedge 2)-a l p h a * y(2)+G a m m a * \cos (\) omega*t) \(]\);
but then we have to include these four parameters in each call to the function. We can always simplify
this function by combining the four parameters into one vector by
```

function z = fncz2(y, par)
% alpha = par(1), beta = par(2), Gamma = par(3), omega = par(4)
z = [y(2) ; -y(1)*(1-par(2)*y(1)^2) - par(1)*y(2)+par(3)*cos(par (4)*t)];

```
but then it is harder to read the equation. (If this function was more complicated it would be much harder to read.) To make this last function easier to read we could write it as
```

function z = fncz3(y, par)
alpha = par(1)
beta = par(2)
Gamma = par(3)
omega = par(4)
z = [y(2) ; -y(1)*(1-beta*y(1)^2)-alpha*y(2)+Gamma*cos(omega*t)];

```
but we want to propose another alternative.
There are many reasons that evaluating \(\mathrm{z}(\mathrm{y})\) using fncz1, fncz2, or fncz3 might not be desirable - or even practical. As one example, this function might be called repeatedly inside a general purpose function m-file, say general, which we have written. In general we only want to call the function as \(\mathbf{z}\) \(=\operatorname{fnctn}(y)\) and not have to worry about how parameters are passed to the function. If we instead write the function \(m\)-file for \(z(y)\) as
```

 function z = fncz4(y, alpha, beta, Gamma, omega)
 persistent alpha_p beta_p Gamma_p omega_p
 if nargin > 1
 alpha_p = alpha;
 beta_p = beta;
 Gamma_p = Gamma;
 omega_p = omega;
 end
z = [y(2) ; -y(1)*(1-beta_p*y(1)^2)-alpha_p*y(2)+Gamma_p*cos(omega_p*t)];

```
we will initially call the function as fncz4 (y, alpha, beta, Gamma, omega) and then afterwards call it as \(\mathrm{fncz2}(\mathrm{y})\). In the initial call all the parameters are saved in persistent variables. Later calls do not need to input these parameters because they have been saved in the function. That is, we would call general by
fncz4(y, alpha, beta, Gamma, omega);
general('fncz4', ...)
where general would be written as
function general(fnctn, ...)
...
\(z=\) feval (fnctn, \(y\) )
The function feval (fnctn, y), which is discussed in the next section, means fnctn(y). It is used when the name of a function has been passed as an argument into another function. Our discussion of saving parameters in function has been somewhat lengthy, but it has many uses.

The final technical detail about function m-files concerns an important element of programming style in any computer language. It frequently happens that a block of code occurs two or more times in a function. Sometimes these blocks can be combined by using a loop, but, even if possible, this often makes the code unwieldly. Instead, this block of code can be put into a new function and called from the original function. Another reason for splitting a block of code off into a new function is when the function has grown large enough to be hard to comprehend. The remedy is to split the code up into a number of functions, each of which can be easily understood and debugged. In MATLAB functions normally have to be separated into different files so that each function and its file name agree; otherwise, MATLAB cannot find the function. This can be annoying if a number of files have to be created: for example, it can be difficult to remember the purpose of all these functions, and it can be difficult to debug the primary function. MATLAB has a feature to handle this proliferation of files; function M-files can contain more than one function. The first function in the file is called the primary function and its name must agree with the name of the file. There are two further types of functions: Any remaining functions are called subfunctions and nested functions. (At the end of subsection 10.2 we code the function gravity using subfunctions and then code the function gravity2 using a number of nested functions.)
Note: The primary function or a subfunction begins with the function definition line (i.e., the line which begins with the keyword function ). It is possible to end the primary function and each subfunction with the command end, but this is not necessary because MATLAB recognizes that a function has ended when it encounters the next function statement. However, if a nested function is used then it - and all other functions - must end with the end statement.
First, we discuss subfunctions, which are quite simple. They are placed following the primary function and between or following other subfunctions. They are only visible to the primary function and to other subfunctions in the same file. Thus, different M-files can contain subfunctions with the same name. Also, the help, lookfor, and type commands can only access the primary file. It is crucial to understand that variables in the primary function or in a subfunction are local to that function and unknown outside it (unless they are declared to be global). The only way to pass variables between these functions is
through the argument list.
Usually, subfunctions are sufficient - and they are much easier to describe. When they are not sufficient, we have nested functions. Its main advantage (as far as we are concerned) is that variables can be passed into and out of a nested function without being in the argument list. Nested functions are more complicated than subfunctions and we will only provide a brief discussion. \({ }^{\dagger}\)

To make this discussion specific, consider the following function m-file.
```

function [p1, p2, p3] = nested_ex(x, y, z) % 1
p1 = x; % 2
p2 = y; % 3
nest_1; %4
function nest_1 % 5
n1a = p1 + z; % 6
n1b = p2 + z; % %
p1 = n1a + n1b; % 8
p2 = n1a*n1b; % %
p3 = sub_1(p1, p2); % 10
nest_2; % 11
end % 12
function nest_2 % 13
n2a = p1; % 14
p1 = n2a^2; % % 15
p2 = p2^2; % % 16
% p3 = n1a; % WRONG % 17
end % 18
end % 19
function s3 = sub_1(a, b) % 20
s1 = 10; % % 21
s2 = a + b; % % 22
s3 = s2 + nest_3(s1); % 23
function n3b = nest_3(n3a) % 24
n3b = s1^2 + n3a; % 25
end % 26
end % 27

```

A nested function is within another function. For example, the nested functions nest_1 and nest_2 are nested within the primary function nested_ex, and the nested function nest_3 is nested within the subfunction sub_1. (Nested functions can have other nested functions within them, but enough is enough.)

The important concept to understand when using nested functions is the scope of variables in the function m-file. The scope of a variable is the context within which it is defined, i.e., where it can be set, modified, and used. Now let us consider a function workspace. The workspace of the primary function is also independent of the workspace of each subfunction. However, since a nested function is within one or more other functions, it is within the workspace of this function or these functions. In the function nested_ex the nested functions nest_1 (lines 5-12) and nest_2 (lines 13-19) have access to the variables p1, p2, and p3 of the primary function (lines 1-20). They also have access to the subfunction sub_1 (lines 20-27) as shown in line 10. Note that nest_2 also has access to nest_1 as shown in line 11. It is very important to understand that a nested function also has its own workspace. For example, the variables n1a and n1b in nest_1, n2a in nest_2, and n3a and n3b in nest_3 are local to their respective functions. In particular, n1a cannot be accessed in nest_2 as shown in line 17. (If n1a really needs to be passed to nest_2, then it must be in the workspace of nested_ex. This could be done by adding n1a \(=0\) after line 3.) Finally, note that nested functions can also have arguments passed in the argument list as in nest_3 on line 24.

Now let us return to the topic of how MATLAB finds a function. As we stated previously (but did not

\footnotetext{
\({ }^{\dagger}\) They are similar to internal functions in Fortran 95, and they are somewhat related to internal classes in Java - but not in \(\mathrm{C}++\).
}
discuss), when a function is called from within an M-file, MATLAB first checks if the function named is the primary function or a subfunction in the current file. If it is not, MATLAB searches for the M-file in the current directory. Then MATLAB searches for a private function by the same name (described below). Only if all this fails does MATLAB use your search path to find the function. Because of the way that MATLAB searches for functions, you can replace a MATLAB function by a subfunction in the current M -file - but make sure you have a good reason for doing so! \({ }^{\dagger}\)

In the previous paragraph we described how to create a subfunction to replace one function by another of the same name. There is another, more general, way to handle this replacement: you can create a subdirectory in your current directory with the special name "private". Any M-files in this subdirectory are visible only to functions in the current directory. The functions in this subdirectory are called private functions. For example, suppose we are working in the directory "personal" and have created a number of files which use rref to solve linear systems. And suppose we have written our own version of this command, because we think we can calculate the reduced row echelon of a matrix more accurately. The usual way to test our new function would be to give it a new name, say myrref, and to change the call to rref in every file in this directory to myrref. This would be quite time-consuming, and we might well miss some. Instead, we can code and debug our new function in the subdirectory "private", letting the name of our new function be rref and the name of the M-file be rref.m. All calls in the directory to rref will use the new function we are testing in the subdirectory "private", rather than MATLAB's function. Even more important, any function in any other directory which calls rref will use the MATLAB function and not our "new, improved version".
\begin{tabular}{|ll|}
\multicolumn{1}{l|}{} & \multicolumn{1}{c|}{ Function Commands } \\
\hline function & \begin{tabular}{l} 
Begins a MATLAB function. \\
end \\
Ends a function. This statement is only required if the function m-file con- \\
tains a nested function, in which case it must be used by all the functions in \\
the file.
\end{tabular} \\
error('<message>') & \begin{tabular}{l} 
Displays the error message on the screen and terminates the M-file \\
immediately.
\end{tabular} \\
echo & \begin{tabular}{l} 
Turns echoing of statements in M-files on and off. \\
global
\end{tabular} \\
Defines a global variable (i.e., it can be shared between different functions \\
and/or the workspace). \\
persistent & \begin{tabular}{l} 
Defines a local variable whose value is to be saved between calls to the \\
function. \\
Seyboard
\end{tabular} \\
\begin{tabular}{l} 
Stops execution in an M-file and returns control to the user for debugging \\
purposes. The command return continues execution and dbquit aborts \\
execution.
\end{tabular} \\
return & \begin{tabular}{l} 
Terminates the function immediately. \\
nargin
\end{tabular} \\
Number of input arguments supplied by the user. \\
nargout & Number of output arguments supplied by the user. \\
pause & Halts execution until you press some key.
\end{tabular}

\subsection*{8.4. Odds and Ends}

In MATLAB it is possible for a program to create or modify statemennts "on the fly", i.e., as the program is running. Entering

\footnotetext{
\({ }^{\dagger}\) Since MATLAB contains thousands of functions, this means you do not have to worry about one of your subfunctions being "hijacked" by an already existing function. When you think up a name for a primary function (and, thus, for the name of the M-file) it is important to check that the name is not already in use. However, when breaking a function up into a primary function plus subfunctions, it would be very annoying if the name of every subfunction had to be checked - especially since these subfunctions are not visible outside the M-file.
}
```

> eval(<string>)

```
executes whatever statement or statements are contained in the string. For example, entering
```

> = 'x = linspace(0, 10, n); y = x.*sin(x).*exp(x/5); plot(x, y)'
> eval(s)

```
executes all three statements contained in the string s. In addition, if an executed statement generates output, this is the output of eval. For example, if we type
```

> A = zeros(5,6);
> [m, n] = eval('size(A)');

```
then m is 5 and n is 6 .
There is a very practical applications for this command since it can can combine a number of statements into one. For example, suppose we want to work with the columns of the Hilbert matrix of size n and we want to create variables to hold each column, rather than using \(\mathrm{H}(:, \mathrm{i})\). We can do this by hand by typing
```

> c1=H(:,1);
> c2=H(:,2);

```
which gets tiring very quickly. Instead, we can do this by typing
```

\gg for $i=1: n$
eval(['c' num2str(i) $\left.\left.=\mathrm{H}(:, i)^{\prime}\right]\right)$
end

```

This requires some explanation. It might be a little clearer if we separate the statement inside the for loop into two statements by
```

s = ['c', num2str(i), '=H(:,i)']
eval(s)

```
(where we include commas in the first statement for readability). \(s\) is a text variable which contains \(\mathrm{c} 1=\mathrm{H}(:, 1)\) the first time the loop is executed, then \(\mathrm{c} 2=\mathrm{H}(:, 2)\) the second time, etc. (To understand how \(s\) is created, recall that \(s\) is really just a row vector with each element containing the ASCII representation of the corresponding character.)

Finally, there is a very esoteric application for this command that allows it to catch errors. This is similar to the "catch" and "throw" commands in C++ and Java. To use this feature of eval, call it using two arguments as
```

>> eval(<try_string>, <catch_string>)

```

The function executes the contents of <try_string> and ignores the second argument if this execution succeeds. However, if it fails then the contents of <catch_string> are executed. (This might be a call to a function which can handle the error.) If there is an error, the command lasterr returns a string containing the error message generated by MATLAB.

A MATLAB command which is occasionally useful in a function is feval. It executes a function, usually defined by an M-file, whose name is contained in a string by
```

>> feval(<string>, x1, x2, ..., xn)

```
(See below for other ways to pass the function in the argument list.) Here x1, x2, ..., xn are the arguments to the function. For example, the following two statements are equivalent
```

> A = zeros(5,6)
> A = feval('zeros', 5, 6)

```

Suppose that in the body of one function, say sample, we want to execute another function whose name we do not know. Instead, the name of the function is to be passed as an argument to sample.
Then feval can be used to execute this text variable. For example, suppose in function sample we want to generate either linear or logarithmic plots. We can input the type of plot to use by
```

function sample(<type of plot>)
feval(<type of plot>, x, y1, x, y2, '--', xx, y3, ':')

```

There are two common ways to pass the function <type of plot> in the argument list:
(1) use a character string, e.g., feval(' \(\log \log { }^{\prime}, \ldots\) ), or
(2) use a function handle, e.g., feval (@logval, ...), or

Note: eval and feval serve similar purposes since they both evaluate something. In fact, feval can always be replaced by eval since, for example, feval ('zeros' \(, 5,6\) ) can always be replaced by eval ('zeros \(\left.(5,6)^{\prime}\right)\). However, there is a fundamental difference between them: eval requires the MATLAB interpreter to completely evaluate the string, whereas feval only requires MATLAB to evaluate an already existing function. feval is much more efficient, especially if the string must be evaluated many times inside a loop.

\section*{Odds and Ends}
\begin{tabular}{|ll|}
\hline eval & \begin{tabular}{l} 
Executes MATLAB statements contained in a text variable. Can also \\
feval \\
"catch" an error in a statement and try to fix it. \\
lasterr
\end{tabular} \\
\begin{tabular}{l} 
Executes a function specified by a string. (Can be used to pass a function \\
name by argument.)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.5. Advanced Topic: Vectorizing Code}

As long as your MATLAB code executes "quickly", there is no need to try to make it faster. However, if your code is executing "slowly", you might be willing to spend some time trying to speed it up. \({ }^{\dagger}\) There are three standard methods to speed up a code:
(0) Preallocate matrices as shown in the function prealloc on page 78 . This is very simple and very effective if the matrices are "large".
(1) Use MATLAB functions, whenever possible, rather than writing your own. If a MATLAB function is built-in, then it has been written in C and is faster than anything you can do. Even if it is not, much time has been spent optimizing the functions that come with MATLAB; you are unlikely to do better.
(2) Replace flow control instructions with vector operations. We have already discussed this topic at length in subsection 8.2. Here we will focus on some advanced techniques.
As a simple example of method (0), consider the function hilb on page 78. hilb_local(2000) runs over 300 times slower if the line \(H=z e r o s(n)\) is omitted.

Continuing with this example, currently the MATLAB function hilb is written as
\(\mathrm{J}=1: \mathrm{n}\); \(\quad \% \mathrm{~J}\) is a row vector
\(\mathrm{J}=\mathrm{J}\) (ones \((\mathrm{n}, 1),:\) ); \(\% \mathrm{~J}\) is now an n by n matrix with each row being \(1: \mathrm{n}\)
\(\mathrm{I}=\mathrm{J}^{\prime} ; \quad \% \mathrm{I}\) is an n by n matrix with each column being \(1: \mathrm{n}\)
\(\mathrm{E}=\) ones ( \(\mathrm{n}, \mathrm{n}\) );
\(\mathrm{H}=\mathrm{E} . /(\mathrm{I}+\mathrm{J}-1)\);
as you can see by entering
> type hilb
In the past this code ran nearly 20 times as fast as hilb_local. However, now hilb_local runs \(50 \%\) faster. The reason is that MATLAB has greatly improved its handling of for and while statements. Thus, it is frequently not necessary to convert simple loops into complicated vector code.

As a realistic example of method (2), suppose you have a large vector y which is the discretization of a smooth function and you want to know some information about it. In particular, consider the intervals in y where \(y_{i}>R\). What is the average length of these intervals and what is their standard deviation? Also, only include intervals which lie completely within y (i.e., ignore any intervals which begin or

\footnotetext{
\({ }^{\dagger}\) We have put "quickly" and "slowly" in quotes because this is quite subjective. Remember that your time is valuable: if it takes you longer to optimize your code than you will save in running it more quickly, stifle the urge to muck around with it. Also remember that the amount of time it actually takes to optimize a code is usually a factor of two or three or ... longer than the time you think it will take before you get started.
}
end y ). It is not difficult to write such a code using flow control statements:
```

function ylen_intvl = get_intervals_slow(y, R)
n = length(y);
if y(1) > R % check if the first point is in an interval
in_intvl = 1; % yes
intvl_nr = 1;
yin(intvl_nr) = 1;
else
in_intvl = 0; % no
intvl_nr = 0;
end
for i = [2: n] % check the rest of the points
if in_intvl == 1 % we are currently in an interval
if y(i) <= R % check if this point is also in the interval
yout(intvl_nr) = i; % no, so end the interval
in_intvl = 0;
end
else % we are currently not in an interval
if y(i) > R % check if this point is in the next interval
intvl_nr = intvl_nr + 1; % yes, so begin a new interval
yin(intvl_nr) = i;
in_intvl = 1;
end
end
end
if y(1) > R % check if we have begun in an interval
yin(1) = []; % yes, so delete it
yout(1) = [];
end
if length(yin) > length(yout) % check if we have ended in an interval
yin(length(yin)) = []; % yes, so delete it
end
ylen_intvl = yout - yin;

```

When completed, yin and yout contain the element numbers where an interval begins and where it ends, respectively. This is straightforward - but very slow if y has millions of elements.

To write a vectorized code, we have to think about the problem differently:
(1) We do not care about the actual values in y, only whether they are greater than \(R\) or not. So we construct a logical matrix corresponding to \(y\) by \(\mathrm{yr}=(\mathrm{y}>\mathrm{R})\).
(2) We do not actually care about the 0 's and 1 's - only about where the value changes because these mark the boundaries of the intervals. So we take the difference between adjacent elements of yr by \(y d=\operatorname{diff}(y r)\).
(3) We actually only need to know the elements which contain nonzero values so we find the element numbers by \(y=\) find \((y d)\), i.e., ye \(=\) find \((y d \sim=0)\).
(4) We do not care about the actual locations of the beginning and end of each interval, only the lengths of these intervals. So we take the difference again by ylen = diff(ye).
(5) Finally, ylen contains the lengths of both the intervals and the distances between successive intervals. So we take every other element of ylen. We also have to be a little careful and check whether y begins and/or ends in an interval.
Here is the code:
```

function ylen_intvl = get_intervals_fast(y, R)
yr = (y > R); % (1)
yd = diff(yr); % (2)
ye = find(yd); % (3)
ylen = diff(ye); % (4)
if y(1) > R % (5), check if we begin in an interval
ylen(1) = []; % yes
end
ylen_intvl = ylen(1:2:length(ylen)); % get every other length

```

Finally, the question remains: is the time savings significant? For "large" y the CPU time is reduced by approximately 50 .

\section*{9. Sparse Matrices}

Many matrices that arise in applications only have a small proportion of nonzero elements. For example, if \(\mathrm{T} \in \mathbb{C}^{n \times n}\) is a tridiagonal matrix, then the maximum number of nonzero elements is \(3 n-2\). This is certainly a small proportion of the total number of elements, i.e., \(n^{2}\), if \(n\) is "large" (which commonly means in the hundreds or thousands or ...)

For full matrices (i.e., most of the elements are nonzero) MATLAB stores all the elements, while for sparse matrices (i.e., most of the elements are zero) MATLAB only stores the nonzero elements: their locations (i.e., their row numbers and column numbers) and their values. Thus, sparse matrices require much less storage space in the computer. In addition, the computation time for matrix operations is significantly reduced because zero elements can be ignored.
Once sparse matrices are generated, MATLAB is completely responsible for handling all the details of their use: there are no special commands needed to work with sparse matrices. However, there are a number of commands which are inappropriate for sparse matrices, and MATLAB generally generates a warning message and refers you to more appropriate commands. For example, cond(S) has to calculate \(\mathrm{S}^{-1}\), which is generally a full matrix; instead, you can use condest which estimates the condition number by using Gaussian elimination. You have two alternatives: first, use full to generate a full matrix and use the desired command; or, second, use the recommended alternative command.

There are two common commands in MATLAB for creating sparse matrices. You can enter all the nonzero elements of \(\mathrm{S} \in \mathbb{C}^{m \times n}\) individually by

\footnotetext{
\(\gg S=\operatorname{sparse}(i, j, s, m, n)\)
}
where \(i\) and \(j\) are vectors which contain the row and column indices of nonzero elements and \(s\) is the vector which contains the corresponding values. For example, the square bidiagonal matrix
\[
\mathrm{S}=\left(\begin{array}{ccccc}
n & -2 & & & \\
\\
& n-1 & -4 & & \\
\\
& & n-2 & -6 & \\
\\
& & & \ddots & \cdot \\
0 & & & 2 & -2 n+2 \\
& & & & \\
1
\end{array}\right)
\]
has the following nonzero elements
\begin{tabular}{c|c|cc|c|c}
\(i\) & \(j\) & \(s_{i, j}\) & \(i\) & \(j\) & \(s_{i, j}\) \\
\hline 1 & 1 & \(n\) & 1 & 2 & -2 \\
2 & 2 & \(n-1\) & 2 & 3 & -4 \\
3 & 3 & \(n-2\) & 3 & 4 & -6 \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(n-1\) & \(n-1\) & 2 & \(n-2\) & \(n-1\) & \(-2 n+4\) \\
\(n\) & \(n\) & 1 & \(n-1\) & \(n\) & \(-2 n+2\)
\end{tabular}

A simple way to generate this matrix is by entering
```

> S = sparse([1:n], [1:n], [n:-1:1], n, n) + ...
sparse([1:n-1], [2:n], [-2:-2:-2*n+2], n, n)

```

We could, of course, generate \(S\) using one sparse command, but it would be more complicated. The above command is easier to understand, even if it does require adding two sparse matrices. Since the output from this command is basically just the above table, it is difficult to be sure that S is precisely what is desired. We can convert a sparse matrix to full by
```

full(S)

```
and check explicitly that S is exactly what is shown in the above matrix.
In addition, a full (or even an already sparse) matrix A can be converted to sparse form with all zero elements removed by
```

> S = sparse(A)

```

Finally, a zero \(m \times n\) matrix can be generated by
```

> SZ = sparse(m, n)

```
which is short for
```

> SZ = sparse([], [], [], m, n)

```

The second common command for generating sparse matrices is
```

> S = spdiags(B, d, m, n)

```
which works with entire diagonals of S . B is an \(\min \{m, n\} \times p\) matrix and its columns become the diagonals of S specified by \(\mathrm{d} \in \mathbb{C}^{p}\). (For example, if \(\mathrm{d}=(0,1)^{\mathrm{T}}\) then the first column of \(B\) contains the elements on the main diagonal and the second column contains the elements on the diagonal which is one above the main diagonal.) Thus, we can also generate the matrix \(S\) given above by
```

> B = [[n:-1:1]' [0:-2:-2*n+2]']
> S = spdiags(B, [0 1]', n, n)

```

Warning: Be Careful! The command spdiags is somewhat similar to diag but must be handled more carefully. Note that the element \(b_{1,2}\) is 0 , which does not appear in \(S\). The difficulty is that the number of rows of \(B\) is generally larger than the lengths of the diagonals into which the columns of \(B\) are to be placed and so some padding is required in B. The padding is done so that all the elements in the \(k\)-th row of B come from the \(k\)-th column of S .
For example, the matrix
\[
\mathbf{S} 1=\left(\begin{array}{lllll}
0 & 0 & 6 & 0 & 0 \\
1 & 0 & 0 & 7 & 0 \\
0 & 2 & 0 & 0 & 8 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 4 & 0
\end{array}\right)
\]
can be generated as a sparse matrix by
\(>A=\operatorname{diag}([1: 4],-1)+\operatorname{diag}([6: 8], 2)\)
\(>\quad\) S1 \(=\operatorname{sparse}(A)\)
or by
\(>B=\left[\begin{array}{lllll}{[1: 4]} & 0 ; 0 & 0 & {[6: 8]}\end{array}\right]^{\prime}\)
\(>S 1=\operatorname{spdiags}\left(B,\left[\begin{array}{ll}-1 & 2\end{array}\right], 5,5\right)\)
In the latter case note that the columns of \(B\) have to be padded with zeroes so that each column has five elements, whereas in the former case the vector which becomes the particular diagonal precisely fits into the diagonal. The element \(s_{1,3}\) of S 1 contains the value 6 . It appears in the 3 -rd row of B because it occurs in the 3-rd column of S 1 . Note that the element \(b_{n, 2}\) is not used since it would go into the element \(s_{n, n+1}\).
A slight variation of the above command is
\(>\mathrm{T}=\operatorname{spdiags}(\mathrm{B}, \mathrm{d}, \mathrm{S})\)
where \(T\) is equated to \(S\) and then the columns of \(B\) are placed in the diagonals of \(T\) specified by \(d\).
Thus, a third way to generate the matrix \(S\) given above is
```

> S = spdiags([n:-1:1]', [0], n, n)

```
\(>S=\operatorname{spdiags}\left([0:-2:-2 * \mathrm{n}+2]^{\prime}\right.\), [1], S\()\)
Just as with the diag command, we can also extract the diagonals of a sparse matrix by using
spdiags. For example, to extract the main diagonal of S , enter
\(>B=\operatorname{spdiags}(S,[0])\)
The number of nonzero elements in the sparse matrix \(S\) are calculated by
\(>\mathrm{nnz}(\mathrm{S})\)
(Note that this is not necessarily the number of elements stored in \(S\) because all these elements are checked to see if they are nonzero.) The locations and values of the nonzero elements can be obtained by
\(>\quad[i A, j A, \operatorname{value} A]=\) find \((A)\)
The locations of the nonzero elements is shown in the graphics window by entering
\(\gg \operatorname{spy}(\mathrm{S})\)
These locations are returned as dots in a rectangular box representing the matrix which shows any structure in their positions.

All of MATLAB's intrinsic arithmetic and logical operations can be applied to sparse matrices as well as full ones. In addition, sparse and full matrices can be mixed together. The type of the resulting matrix depends on the particular operation which is performed, although usually the result is a full matrix. In addition, intrinsic MATLAB functions often preserve sparseness.

You can generate sparse random patrices by sprand and sparse, normally distributed random matrices by sprandn. There are a number of different arguments for these functions. For example, you can generate a random matrix with the same sparsity structure as S by
\(\gg\) sprand (S)
or you can generate an \(m \times n\) matrix with the number of nonzero random elements being approximately \(\rho m n\) by
> sprand(m, n, rho)
Finally, you can generate sparse random symmetric matrices by sprandsym; if desired, the matrix will also be positive definite. (There is no equivalent command for non-sparse matrices so use full(sprandsym(...))

Additionally, sparse matrices can be input from a data file with the spconvert command. Use csvread or load to input the sparsity pattern from a data file into the matrix <sparsity matrix>. This data file should contain three columns: the first two columns contain the row and column indices of the nonzero elements, and the third column contains the corresponding values. Then type
```

> S = spconvert(<sparsity matrix>)

```
to generate the sparse matrix \(S\). Note that the size of \(S\) is determined from the maximum row and the maximum column given in <sparsity matrix>. If this is not the size desired, one row in the data file should be " m n 0 " where the desired size of S is \(m \times n\). (This element will not be used, since its value is zero, but the size of the matrix will be adjusted.)

\section*{Sparse Matrix Functions}
\begin{tabular}{|c|c|}
\hline speye & Generates a sparse identity matrix. The arguments are the same as for eye. \\
\hline spra & iformly distributed random matrix. \\
\hline sprand & Sparse uniformly distributed random symmetric matrix; the matrix can also be positive definite. \\
\hline sprandn & Sparse normally distributed random matrix. \\
\hline spars & Generates a sparse matrix elementwise. \\
\hline spdiags & Generates a sparse matrix by diagonals or extracts some diagonals of a sparse matrix. \\
\hline full & Converts a sparse matrix to a full matrix. \\
\hline find & Finds the indices of the nonzero elements of a matrix \\
\hline n & Returns the number of nonzero elements in a matrix. \\
\hline spfun('<function name>', A) & Applies the function to the nonzero elements of A. \\
\hline spy & Plots the locations of the nonzero elements of a matrix. \\
\hline spconvert & Generates a sparse matrix given the nonzero elements and their indices. \\
\hline sprandsym & Generates a sparse uniformly distributed symmetric random matrix; the matrix can also be positive definite. \\
\hline
\end{tabular}

\section*{10. Initial-Value Ordinary Differential Equations}

Most initial-value ordinary differential equations cannot be solved analytically. Instead, using MATLAB we can obtain a numerical approximation to the ode system
\[
\frac{d}{d t} \mathrm{y}=\mathrm{f}(t, \mathrm{y}) \quad \text { for } t \geq t_{0}
\]
where \(\mathrm{y} \in \mathbb{R}^{n}\) with initial condition \(\mathrm{y}\left(t_{0}\right)=\mathrm{y}_{0}\). The basic MATLAB commands are easily learned. However, the commands become more involved if we want to explore the trajectories in more detail. Thus, we divide this section into the really basic commands which are needed to generate a simple trajectory and into a more advanced section that goes into many technical details. We also provide a large number of examples, many more than in other sections of this overview, to provide a template of how to actually use the advanced features. For more details, consult MATLAB - The Language of Technical Computing: Using MATLAB by The MathWorks, Inc. There is an entire chapter on this topic.

\subsection*{10.1. Basic Commands}

In this subsection we focus on the particular example
\[
y^{\prime \prime}+\alpha y^{\prime}-y\left(1-\beta y^{2}\right)=\Gamma \cos \omega t
\]
which is called Duffing's equation. This ode has many different types of behavior depending on the values of the parameters \(\alpha, \beta, \Gamma\), and \(\omega\).

As written, this is not in the form of a first-order system. To transform it we define \(y_{1}=y\) and \(y_{2}=y_{1}^{\prime}=y^{\prime}\) so that
\[
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=y_{1}^{\prime \prime}=y^{\prime \prime}=y_{1}\left(1-\beta y_{1}^{2}\right)-\alpha y_{2}+\Gamma \cos \omega t
\end{aligned}
\]
or
\[
\binom{y_{1}}{y_{2}}^{\prime}=\binom{y_{2}}{y_{1}\left(1-\beta y_{1}^{2}\right)-\alpha y_{2}+\Gamma \cos \omega t}
\]

Note: This same "trick" can be applied to an \(n\)-th order by defining \(y_{1}=y, y_{2}=y_{1}^{\prime}, y_{3}=y_{2}^{\prime}, \ldots\), \(y_{n}=y_{n-1}^{\prime}\).
Then we create a MATLAB function file which calculates the right hand side of this ode system.
```

function deriv = duffing(t, y)
% duffing: Duffing's equation, first try
% y' + alpha*y' - y*(1 - beta*y^2) = Gamma*cos(omega*t)
alpha = 0.05;
beta = 1.0;
Gamma = 0.5;
omega = 1.0;
deriv = [y(2) ; y(1)*(1-beta*y(1)^2)-alpha*y(2)+Gamma*cos(omega*t)];

```

Note that all the parameters are defined in the M-file so that it will have to be modified whenever we want to modify the parameters. (At the end of this subsection we will show how to pass the parameters to the M-file in the argument list to the ode solver.)
Warning: Recall that no spaces are allowed in an element of a matrix and so in the statement
deriv = [ y (2) ; ... ]
there cannot be any spaces in entering the second row (except between parentheses).
To obtain a numerical solution to an ode system, enter
\(>\quad[t, Y]=\) <ode solver>(<function name>, tspan, \(y 0\) )
First, we have to choose which of the ode solvers shown in the table below to use. It is possible for MATLAB itself to decide which numerical method to use. However, there are good reasons (which we will discuss shortly) why the decision should be left in the hand of the user.
Warning: Make sure you understand how to enter the name of the function. This is discussed at length in section 3.2.
All of the solvers use the same input and output arguments, which we now discuss. The input parameters are:
function The name of the function file that calculates \(f(t, y)\).
tspan The vector that specifies the time interval over which the solution is to be calculated. If this vector contains two elements, these are the initial time and the final time; in this case the ode solver determines the times at which the solution is output. If this vector contains more than two elements, these are the times at which the solution is output.
Note: the final time can be less than the initial time, in which case the trajectory is moving backwards in time.
y0 The vector of the initial conditions for the ode.
The output parameters are:
t The column vector of the times at which the solution is calculated. \({ }^{\dagger}\)
Y The matrix which contains the numerical solution at the times corresponding to \(t . \ddagger\) The first column of y contains \(y_{1}\), the second column \(y_{2}\), etc.
Note: If you do not include a left-hand side, then t and Y cannot be returned. Since MATLAB assumes that it should output the numerical trajectory somehow, it plots the solution as \(y_{1}, y_{2}, \ldots, y_{n}\) vs. \(t\). (For more control over the plot, see OutputFen and OutputSel in the table "ODE Solver Parameters" in the advanced section.)
Alternately, you can enter
>> sol = <ode solver>(<function name>, tspan, y0)
where sol is a structure. The output is now

\footnotetext{
\({ }^{\dagger}\) The \(t\) in [t, \(Y\) ] is unrelated to the \(t\) argument in the function duffing.
\({ }^{\ddagger}\) We have capitalized the Y in \([\mathrm{t}, \mathrm{Y}]\) to indicate that the output is a matrix whereas the argument y is a vector in the function. It might be helpful to write the function as
function deriv \(=\) duffing(tnow, ynow)
.....
deriv \(=[\) ynow (2) ; -ynow(1)*(1-beta*y (1)^2)-alpha*ynow(2)+Gamma*cos(omega*tnow) ];
to indicate that ynow is y at the present time, i.e., tnow.
}
sol. x The column vector of the times at which the solution is calculated.
sol.y The matrix which contains the numerical solution at the times corresponding to \(t\).

ODE Solvers
```

ode45 Non-stiff ode solver; fourth-order, one-step method.
ode23 Non-stiff ode solver; second-order, one-step method.
ode113 Non-stiff ode solver; variable-order, multi-step method.
ode15s Stiff ode solver; variable-order, multi-step method.
ode23s Stiff ode solver; second-order, one-step method.
ode23t Stiff ode solver; trapezoidal method.
ode23tb Stiff ode solver; second-order, one-step method.

```

All these ode solvers use an adaptive step size to control the error in the numerical solution. Each time step is chosen to try to keep the local error within the prescribed bounds as determined by the relative error and the absolute error tolerances (although it does not always succeed). That is, \(e_{i}\), which is the error in \(y_{i}\), is supposed to satisfy
\[
e_{i} \leq \max \left\{\operatorname{RelTol} \cdot\left|y_{i}\right|, \operatorname{AbsTol}(\mathrm{i})\right\}
\]
where the default value of RelTol is \(10^{-3}\) and of the vector AbsTol is \(10^{-6}\) for each element. (However, there is no guarantee that the error in the numerical calculation actually satisfies this bound.)

It is up to you to decide which ode solver to use. As a general rule, unless you believe that the ode is stiff \({ }^{\dagger}\) try ode45 or ode113. For a given level of accuracy, these methods should run "fast". (Which one runs faster is very dependent on the ode.) If you know (or believe) that the ode is stiff, or if these two non-stiff solvers fail, then try ode15s. The difficulty with a stiff solver is that you may well have to supply the Jacobian of the ode yourself. The Jacobian of \(f(t, y)\) is the \(n \times n\) matrix
\[
\mathrm{J}(t, \mathrm{y})=\left(\frac{\partial f_{i}}{\partial y_{j}}(t, \mathrm{y})\right)
\]
i.e., the element in the \(i\)-th row and \(j\)-th column of J is
\[
\frac{\partial f_{i}}{\partial y_{j}}
\]

Any of the stiff methods can approximate this matrix numerically. However, if the ode is "bad" enough, this may not be enough. You may have to calculate all these partial derivatives yourself and include them in your function file - we show an example of this later.

\footnotetext{
\({ }^{\dagger}\) There is no precise definition of when an ode is stiff. Instead, we say it is stiff if the time step required to obtain a stably and accurate solution is "unreasonably" small. For example, the solution to the ode
\[
y^{\prime \prime}+\left(\frac{1}{\epsilon}-1\right) y^{\prime}-\frac{1}{\epsilon} y=0 \quad \text { for } t \in[0,1]
\]
with boundary conditions \(y(0)=0\) and \(y(1)=1\) is
\[
y(t)=\frac{e^{t}-e^{-t / \epsilon}}{e-e^{-1 / \epsilon}}
\]

If \(\epsilon \ll 1\) the trajectory quickly approaches \(e^{t} /\left(e-e^{-1 / \epsilon}\right)\) for \(t \gtrsim \epsilon\) because \(e^{-t / \epsilon}\) quickly becomes negligible compared to \(e^{t}\). We would like to choose the time step based on the \(e^{t}\) term so that we want the time step \(\Delta t \ll 1\). However, unless we use a stiff ode solver, we will have to choose \(\Delta t \ll \epsilon\) because of numerical instabilities that arise in non-stiff ode solvers. (In chemical reaction models, it is not uncommon for \(\epsilon\) to be \(10^{-5}\) or even \(10^{-10}\).) A stiff solver allows us to use a "reasonable" \(\Delta t\) but at a cost: the Jacobian of f (which we will discuss shortly) must be calculated repeatedly and a linear system of equations must be solved repeatedly.
}

The reason for this large choice of ode solvers is that some odes are very, very, very NASTY. It is possible that most of the ode solvers will fail and only one, or maybe two, will succeed. If you discover such an ode, check the reference book; it discusses and contrasts each of the methods in detail.

To conclude this subsection, we return to Duffing's equation. Suppose we want to solve the ode for \(t \in[0,100]\) with initial conditions \(\mathrm{y}=(2,1)^{\mathrm{T}}\) and plot the results. Since this is a very well behaved ode for the parameters given, enter
```

> [t, Y] = ode45(@duffing, [0 100], [2 1]);
> figure(1)
> plot(t, Y)
> figure(2)
> plot(Y(:,1), Y(:,2))

```

This results in a plot of \(y\) and \(y^{\prime}\) vs. \(t^{\dagger}\) and a separate plot of \(y^{\prime}\) vs. \(y\). If you only want to plot the trajectory, enter
```

> ode45(@duffing, tspan, y0, params)

```
(This plot is rather "cluttered" because, not only is the trajectory plotted, but in addition markers are put at each of the points of the numerical solution.)

Finally, it is very inconvenient that the parameters in Duffing's equation are determined in the function. We should be able to "explore" the rich behavior of Duffing's equation without having to constantly modify the function - in fact, once we have the function exactly as we want it, we should never touch it again. (This is not only true for esthetic reasons; the more we fool around with the function, the more likely we are to screw it up!)

This is easily done by adding parameters to the ode solver itself as
```

[t, Y] = ode45(@duffing1, tspan, y0, [], alpha, beta, Gamma, omega);

```
where the function file duffing1.m is
```

function deriv = duffing1(t, y, al, be, Ga, om)
% duffing1: Duffing's equation, with coefficients passed through arguments
% y' + alpha*y' - y*(1 - beta*y^2) = Gamma*cos(omega*t)
deriv = [y(2) ; y(1)*(1-be*y(1)^2)-al*y(2)+Ga*\operatorname{cos(om*t)];}

```

Warning: The minimum number of arguments to ode45 is three: the function name, the time interval, and the initial conditions. If there are four or more arguments passed to the ode solver, then this fourth argument modifies the properties of the ode solver. It is discussed in the advanced section. The fifth, and any following arguments, are passed directly to the function.
We have changed the parameter names in duffing1.m just to show that there is does not need to be any relationship between the names in the calling statement and the names in the function file. Note that we are not passing any parameters to the ode solver, just to the function duffing1. Similarly, if the function has three or more input arguments, the third and any following arguments are passed directly from the ode solver, beginning with the fifth argument. The fourth argument is not used and so it is set to the empty matrix - but it has to be there.

To see a sampling of the different type of behavior in Duffing's equation, enter
```

> [t, Y] = ode45(@duffing1, [0 200], [0 1], [], 0.15, 1, 0.3, 1);

```
\(\gg \operatorname{plot}(\mathrm{t}, \mathrm{Y}(:, 1))\)
so that \(\alpha=0.15, \beta=1, \Gamma=0.3\) and \(\omega=1\). The initial condition is \(\mathrm{y}(0)=(0,1)^{\mathrm{T}}\). After a short time, the solution looks completely regular: it appears to be exactly periodic with a period of \(2 \pi\) due to the 0.3 cost term. (In fact, to the accuracy of the computer it is exactly periodic.) However, if we merely change the initial condition to \(\mathrm{y}=(1,0)^{\mathrm{T}}\) by
```

> [t, Y] = ode45(@duffing1, [0 200], [1 0], [], 0.15, 1, 0.3, 1)
plot(t, Y(:,1))

```
the behavior appears to be chaotic. If we increase the time we plot by
```

> [t, Y] = ode45(@duffing1, [0 1000], [1 0], [], 0.15, 1, 0.3, 1)
plot(t, Y(:,1))

```

\footnotetext{
\({ }^{\dagger}\) The only difficulty is remembering which curve is \(y\) and which is \(y^{\prime}\). The ordering of the colors is: blue, green, red, blue-green, purple.
}
the behavior appears to still be completely irregular. Here is an example of a ode which has periodic motion for one initial condition and is chaotic for another! If we change \(\alpha\) from 0.15 to 0.22 by
```

> [t, Y] = ode45(@duffing1, [0 200], [0 0.5], [], 0.22, 1, 0.3, 1)
plot(t, Y(:,1))

```
we find periodic motion with a period of \(6 \pi\). This is just a sampling of the behavior of Duffing's equation in different parameter regions.

\subsection*{10.2. Advanced Commands}

There are a number of parameters that we can use to "tune" the particular ode solver we choose. The MATLAB function odeset is used to change these parameters from their default values by
 where each parameter has a particular name and it is followed by the desired value. The result of this command is that the parameters are contained in the variable params. You include these parameters in the ode solver by adding this variable to the argument list of the ode solver function as
```

> [t, Y] = <ode solver>(<function name>, tspan, y0, params)

```

Some of the more common parameters are shown in the table below; they will be discussed further later. To determine all the parameters, their possible values and the default value, enter
```

> odeset

```

\section*{Initial-Value ODE Solver Parameters}
```

odeset('<Prop 1>', Assigns values to properties; these are passed to the ode solver when it is
<Value 1>, ...) executed.

```
AbsTol The absolute error tolerance. This can be a scalar in which case it applies to all the
    elements of \(y\) or it can be a vector where each element applies to the corresponding
    element of \(y\). (Default value: \(10^{-6}\).)
Events A handle to a function which determines when an event occurs.
Jacobian A handle to a function which returns the Jacobian.
JPattern A sparse matrix whose nonzero elements (which should be 1) correspond to the possi-
    ble nonzero elements of the Jacobian. This is only used when the Jacobian is calculated
    numerically, i.e., when the Jacobian property is not used.
OutputFen A handle to a function which is called after each successful time step. For example, a
        plot of the trajectory can be generated automatically as it is being calculated.
        Useful MATLAB functions are:
        'odeplot' which generates a plot of time versus all the components of the trajectory,
        i.e., \(t\) vs. \(y_{1}, y_{2}, \ldots, y_{n}\);
        'odephas2' which generates a plot of \(y_{1}\) vs. \(y_{2}\), i.e., \(\mathrm{Y}(:, 1)\) vs. \(\mathrm{Y}(:, 2)\);
        'odephas 3 ' which generates a plot of \(y_{1}\) vs. \(y_{2}\) vs. \(y_{3}\), i.e., \(\mathrm{Y}(:, 1)\) vs. \(\mathrm{Y}(:, 2)\)
        vs. \(Y(:, 3)\).
        It is possible to plot different components of y using OutputSel.
OutputSel A vector containing the components of \(Y\) which are to be passed to the function speci-
        fied by the OutputFcn parameter.
Refine Refines the times which are output in \(t\). This integer value increases the number of
        times by this factor. (Default value: 1 for all ode solvers except ode45, 4 for ode45.)
RelTol The relative error tolerance. (Default value: \(10^{-3}\) ).
Stats Whether statistics about the run are returned (value: 'on') or they are not (value:
        'off'). (Default value: 'off'.)

For example, if you want to use ode45 with the relative error tolerance set to \(10^{-6}\) for Duffing's equation, enter
```

> params = odeset('RelTol', 1.e-6)
> [t, Y] = ode45(@duffing, tspan, y0, params)

```

The trajectory will be more accurate - but the command will run slower. If you also want the statistics on the performance of the particular ode solver used, enter
```

> params = odeset('RelTol', 1.e-6, 'Stats', 'on')
> [t, Y] = ode45(@duffing, tspan, y0, params)

```
and the number of successful steps, the number of failed steps, and the number of times \(f(t, y)\) was evaluated will be returned. This might be useful in "optimizing" the performance of the ode solver if the command seems to be running excessively slowly. For implicit methods where the Jacobian needs to be calculated, the number of times the Jacobian was evaluated, the number of LU decompositions, and the number of times the linear system was solved will also be returned.

The ode solver can also record the time and the location when the trajectory satisfies a particular condition: this is called an event. For example, if we are calculating the motion of the earth around the sun, we can determine the position of the earth when it is closest to the sun and/or farthest away; or, if we are following the motion of a ball, we can end the calculation when the ball hits the ground - or we can let it continue bouncing. Enter
> ballode
to see a simple example.
As a specific example, suppose we want to record where and when a specific solution to Duffing's equation passes through \(y_{1}= \pm 0.5\). That is, we define an "event" to be whenever the first component of y passes through -0.5 or +0.5 . The function, which we discuss in detail below, follows.
```

> params = odeset('RelTol', 1.e-6, 'Events', '@duffing_event')
> [t, Y, tevent, Yevent, indexevent] = ode45(@duffing, tspan, y0, params)

```
where we have to create a new file duffing_event.m as
```

function [value, isterminal, direction] = duffing_event(t, y)
value = [y(1)+0.5; y(1)-0.5]; % check whether y(1) passes through }\pm0.
isterminal = [0; 0]; % do not halt when this occurs
direction = [0; 0]; % an event occurs when y(1) passes through
% zero in either direction

```

There are a number of steps we have to carry out to turn "events" on. First, we have to use the odeset command. However, this only tells the ode solver that it has to watch for one or more events; it does not state what event or events to watch for. Instead, we describe what an event is in this new function. Three vector arguments are output:
value - A vector of values which are checked to determine if they pass through zero during a time step. No matter how we describe the event, as far as the ode solver is concerned an event only occurs when an element of this vector passes through zero. In some cases, such as this example it is easy to put an event into this form. In other cases, such as determining the apogee and perigee of the earth's orbit, the calculation is quite involved.
isterminal - A vector determining whether the ode solver should terminate when this particular event occurs: 1 means yes and 0 means no.
direction - A vector determining how the values in value should pass through zero for an event to occur:

1 means the value must be increasing through zero for an event to occur,
-1 means the value must be decreasing through zero for an event to occur, and
0 means that either direction triggers an event.
The final step is that the left-hand side of the calling statement must be modified to
[t, Y, tevent, Yevent, index_event]
Any and all events that occur are output by the ode solver through these three additional variables:
tevent is a vector containing the time of each event,
Yevent is a matrix containing the location of each event, and
index_event is a vector containing which value in the vector value passed through zero.

If the result is stored in the structure sol, the new output is
sol.xe is a vector containing the time of each event,
sol.ye is a matrix containing the location of each event, and
sol.ie is a vector containing which value in the vector value passed through zero.
Since the function duffing_event might appear confusing, we will discuss how an event is actually calculated. At the initial time, \(t\) and y are known and duffing_event is called so that the vector
\[
\mathrm{e}^{(0)}=\binom{y_{1}^{(0)}+0.5}{y_{1}^{(0)}-0.5}
\]
i.e., value, can be calculated. In addition, isterminal and direction are returned. Next, duffing is called and the solution \(\mathrm{y}^{(1)}\) is calculated at time \(t^{(1)}\). duffing_event is called again and \(\mathrm{e}^{(1)}\) is calculated and compared elementwise to \(e^{(0)}\). If the values have different signs in some row, then direction is checked to determine if the values are passing through zero in the correct direction or if either direction is allowed. If so, the time at which the element is exactly zero is estimated and duffing is called again to calculate the solution at this time, say \(t^{(z, 1)}\) and \(\mathrm{y}^{(z, 1)}\). Again, duffing_event is called and \(\mathrm{e}^{(z, 1)}\) is generated. It is compared to \(\mathrm{e}^{(0)}\) as before and the time at which the element is exactly zero is estimated again, say \(t^{(z, 2)}\). Again, \(\mathrm{y}^{(z, 2)}\) is calculated and then \(\mathrm{e}^{(z, 2)}\) is generated. This procedure continues until the zero is found to the desired accuracy. Then isterminal is checked to see if the run should be continued or should be stopped.

Another interesting ode is van der Pol's equation
\[
y^{\prime \prime}-\mu\left(1-y^{2}\right) y^{\prime}+y=0
\]
where \(\mu>0\) is the only parameter. As a first order system it is
\[
\binom{y_{1}}{y_{2}}^{\prime}=\binom{y_{2}}{\mu\left(1-y_{1}^{2}\right) y_{2}-y_{1}}
\]
and its Jacobian is
\[
\mathrm{J}=\left(\begin{array}{cc}
0 & 1 \\
-2 \mu y_{1} y_{2}-1 & \mu\left(1-y_{1}^{2}\right)
\end{array}\right)
\]

The right-hand side is coded as
```

function deriv $=\mathrm{vdp}(\mathrm{t}, \mathrm{y}, \mathrm{mu})$
\% vdp: van der Pol's equation
$\% \mathrm{y}^{\prime \prime}-\mathrm{mu} *\left(1-\mathrm{y}^{\wedge} 2\right) * \mathrm{y}^{\prime}+\mathrm{y}=0$
deriv $=[y(2) ; \operatorname{mu*}(1-y(1) \wedge 2) * y(2)-y(1)] ;$

```
and is called by
```

> [t, Y] = <ode solver>(@vdp, tspan, y0, [], mu)

```

This is not stiff unless \(\mu\) is "large". \(\dagger\)
There is no need to use the ode solver parameters JPattern or Jacobian in this example because this ode is so "nice". However, since they might be needed for a NASTIER ode, we include them by
```

> Vdp = sparse([llll
> params = odeset('Jacobian', @vdpj, 'JPattern', Vdp)
> [t, Y] = <ode solver>(@vdp, tspan, y0, opt, mu)

```
where the Jacobian is calculated numerically using

\footnotetext{
\({ }^{\dagger}\) For example, using \(\mu=1\) solve the ode with initial conditions \(y(0)=1\) and \(y^{\prime}(0)=0\) for \(t \in[0,100]\) using ode45. Then, plot the result and note the number of elements in \(t\). Repeat this procedure using \(\mu=1000\) (but you might want to reduce the final time to 10 or even 1 if the time for the calculation seems excessive). Then use ode15s and see the difference in the time required.
}
```

function J = vdpj(t, y, mu)
% vdpj: Jacobian for van der Pol's equation
% y' - mu*(1 - y^2)*y' + y = 0
J = [0 1; -2*mu*y(1)*y(2)-1 mu*(1-y(1)^2)];
end

```
for the elements determined by Vdp. By the way, if we use the property JPattern but not Jacobian then the Jacobian is calculated numerically just for the elements determined by the sparse matrix.
Warning: Plotting the trajectory by
\[
\gg \operatorname{plot}(\mathrm{t}, \mathrm{Y})
\]
is not very instructive. Instead, use
```

> subplot(2,1,1)
> plot(t,Y(:,1))
> subplot(2,1,2)
plot(t,Y(:,2))

```

Our final example is slightly more complicated so we have a reason to use subfunctions or nested functions. Suppose we kick a ball into the air with initial speed \(s\) and at an angle of \(\alpha\), and we want to follow its motion until it hits the ground. Let the \(x\) axis be the horizontal axis along the direction of flight and \(z\) be the vertical axis. Using Newton's laws we obtain the ode system
\[
x^{\prime \prime}=0 \quad \text { and } \quad z^{\prime \prime}=-g
\]
where \(g=9.8\) meters/second is the acceleration on the ball due to the earth's gravity. The initial conditions are
\[
x(0)=0, x^{\prime}(0)=s \cos \alpha, z(0)=0, \text { and } z^{\prime}(0)=s \sin \alpha
\]
where we assume, without loss of generality, that the center of our coordinate system is the initial location of the ball. We also want to determine four "events" in the ball's flight: the highest point of the trajectory of the ball and the time it occurs, the distance it travels and the time it hits the ground, and the \(x\) values and times when the ball reaches the height \(h>0\). But beware because the ball may never attain this height!

Although these odes can be solved analytically (consult any calculus book), our aim is to give an example of how to use many of the advanced features of MATLAB's ode solvers. (If we would include the effects of air resistance on the ball, then these odes would become nonlinear and would not be solvable analytically.) We convert Newton's laws to the first-order system
\[
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)^{\prime}=\left(\begin{array}{c}
y_{2} \\
0 \\
y_{4} \\
-g
\end{array}\right)
\]
by letting \(y_{1}=x, y_{2}=x^{\prime}, y_{3}=z\), and \(y_{4}=z^{\prime}\) The initial conditions are
\[
y_{1}(0)=0, y_{2}(0)=s \cos \alpha, y_{3}(0)=0, \text { and } y_{4}(0)=s \sin \alpha .
\]

One complication with solving this system numerically is that we do not know when the ball will hit the ground, so we cannot give the final time. Instead, we use a time, \(10 s / g\) which is much greater than needed and we let the program stop itself when the ball hits the ground. In addition, we want the relative error to be \(10^{-6}\). Finally, we want the trajectory (i.e., \(z\) vs. \(x\) ) to be plotted automatically.

The following is a completely self-contained example so that we do not have a number of function mfiles that we have to keep track of. The function m-file gravity_all is
```

function [times, values] = gravity_all(speed, angle, height)
% gravity_all: The trajectory of a ball thrown from (0,0) with initial
% speed and angle (in degrees) given.
% times: (1) = time ball at peak, (2) = time ball hits ground
% (3,4) = time ball attains height
% values: (1) = z value at peak, (2) = x value when ball hits ground
% (3,4) = x values when ball attains height
% Note: (3,4) will not be used if height > z value at peak
global height
if sin(angle) <= 0
error 'error: ball is not thrown upward'
end
g = 9.8;
[tspan, y0, params] = gravity_init(g, speed, angle);
[t, Y, tevent, Yevent, index_event] = ode45(@gravity, tspan, y0, params, g);
if length(t) == 2
times = tevent;
values = [Yevent(3,1) Yevent(1,2)];
else
times = tevent([[2 4 1 1 3]);
values = [Yevent(3,2) Yevent(1,4) Yevent(1,1) Yevent(1,3)];
end
%%%%% subfunctions follow
function [tspan, y0, params] = gravity_init(g, speed, angle)
% gravity_init: Initialize everything
tspan = [0 10*speed/g];
y0 = [0; speed*cos(angle*pi/180); 0; speed*sin(angle*pi/180)];
params = odeset('RelTol', 1.e-6, ...
'Events', @gravity_event, ...
'Refine', 20, ...
'OutputFcn', @odephas2, ...
'OutputSel', [1 3]);
function deriv = gravity(t, y, g)
% gravity: Calculates the right-hand side of the ode
deriv = [y(2); 0; y(4); -g];
function [value, isterminal, direction] = gravity_event(t, y)
% gravity_event: determine when events occur, height is passed in global
global height
value = [y(3) y(3)-height y(4)]; % z = 0, z-height = 0, z' = 0
isterminal = [1 0 0]; % halt only when z = 0
direction = [-1 0 -1]; % an event occurs when z or z' decrease through 0
% or z-height passes through 0 in either direction

```

We need the two subfunctions gravity and gravity_event to solve the ode and register the events. Note that the parameter height must be a global variable to appear in gravity_event. We only include the subfunction gravity_init to make a point concerning the function gravity2_all below. Since this function is so short, it would make sense to include its code following the \(\mathrm{g}=9.8\) statement.

Note that in odeset the relative error is set to \(10^{-6}\), that the location of certain events is to be calculated, that many more data points are calculated on the numerical trajectory than needed so that the solution looks smooth, and finally the output is to be plotted using the graphics function odephas2 which calculates the phase plane. Also, first and third components of y , i.e., \(x\) and \(z\), are to be plotted (rather than the first and second, which is the default). (We have included each parameter on a separate line
simply for readability.)
The following function m-file gravity2_all is the same as gravity_all except that it replaces subfunctions by nested functions.
```

function [times, values] = gravity2_all(speed, angle)
% gravity2_all: The trajectory of a ball thrown from (0,0) with initial
% speed and angle (in degrees) given.
% times: (1) = time ball at peak, (2) = time ball hits ground
% (3,4) = time ball attains height
% values: (1) = z value at peak, (2) = x value when ball hits ground
% (3,4) = x values when ball attains height
% Note: (3,4) will not be used if height > z value at peak
g = 9.8;
gravity_init()
[t, Y, tevent, Yevent, index_event] = ode45(@gravity, tspan, y0, params);
if length(t) == 2
times = tevent;
values = [Yevent (3,1) Yevent (1,2)];
else
times = tevent([[2 [4 1 3]);
values = [Yevent(3,2) Yevent(1,4) Yevent(1,1) Yevent(1,3)];
end
%%%%% nested functions follow
function gravity_init
% gravity_init: Initialize everything
tspan = [0 10*speed/g];
y0 = [0; speed*cos(angle*pi/180); 0; speed*sin(angle*pi/180)];
params = odeset('RelTol', 1.e-6, ...
'Events', @gravity_event, ...
'Refine', 20, ...
'OutputFcn', 'odephas2', ...
'OutputSel', [1 3]);
end
function deriv = gravity(t, y)
% gravity: Calculates the right-hand side of the ode
deriv = [y(2); 0; y(4); -g];
end
function [value, isterminal, direction] = gravity_event(t, y)
value = [y(3) y(3)-height y(4)]; % z = 0, z-height = 0, z' = 0
isterminal = [1 0 0]; % halt only when z = 0
direction = [-1 0-1]; % an event occurs when z or z' decrease through 0
% or z-height passes through 0 in either direction
end
end

```

Note that the parameters g, speed, angle, and height do not need to be passed into the nested functions (and so height need not be a global variable). Similarly, tspan, y0, and params do not need to be passed out. In this tutorial we cannot show examples where nested functions are very, very useful. This is the best we can do.

MATLAB also has the function ode15i which solves fully implicit odes. It is very similar to the functions we have already discussed, but there is one important difference. Although it is a very powerful function, we only provide a very simple example to show how to use it.

We consider a linear second-order ode in a neighborhood of a regular singular point. Consider the ode
\[
P(t) y^{\prime \prime}(t)+Q(t) y^{\prime}(t)+R(t) y(t)=0
\]
where \(P(t), Q(t)\), and \(R(t)\) are polynomials with no common factors. The singular points of this ode are the values of \(t\) for which \(P(t)=0\). If \(t_{0}\) is a singular point, it is a regular singular point if \(\lim _{t \rightarrow t_{0}}\left(t-t_{0}\right) Q(t) / P(t)\) and \(\lim _{t \rightarrow t_{0}}\left(t-t_{0}\right)^{2} R(t) / P(t)\). A "common" ode of this type is Bessel's equation
\[
\begin{equation*}
t^{2} y^{\prime \prime}(t)+t y^{\prime}(t)+\left(t^{2}-n^{2}\right) y(t)=0 \quad \text { for } t \geq 0 \tag{10.1}
\end{equation*}
\]
with the initial condition given at \(t=0\). The solution is denoted by \(J_{n}(t)\) and, for specificity, we will concentrate on \(n=1\). At \(t=0\) the ode reduces to \(-y(0)=0\) and so we require \(y(0)=0\). The free initial condition is \(y^{\prime}(0)\) and for this example we choose \(y^{\prime}(0)=1\).

If we write Bessel's equation as
\[
\begin{equation*}
y^{\prime \prime}(t)+\frac{1}{t} y^{\prime}(t)+\left(1-\frac{n^{2}}{t^{2}}\right) y(t)=0 \tag{10.2}
\end{equation*}
\]
we clearly have a problem at \(t=0\) and for \(t \approx 0\). The ode solvers we discussed previously can handle (10.2) for \(t \geq 1\) with the initial conditions that \(y(1)\) and \(y^{\prime}(1)\) are given. However, a completely different method of solution is required for \(t \geq 0\) and the form (10.1) is preferred to (10.2).

When we convert Bessel's equation to the first order system we again let \(y_{1}(t)=y(t)\) and \(y_{2}(t)=y^{\prime}(t)\) and leave the \(t^{2}\) in the numerator to obtain
\[
\binom{y_{1}^{\prime}}{t^{2} y_{2}^{\prime}}=\binom{y_{2}}{-t y_{2}-\left(t^{2}-1\right) y_{1}}
\]

Previously, we have always written the first-order system as \(\mathrm{y}^{\prime}=\mathrm{f}(t, y)\), but this form has a problem when \(t=0\). Instead, we write it as \(\mathrm{g}\left(t, \mathrm{y}, \mathrm{y}^{\prime}\right)=\mathbf{0}\) so that
\[
\mathrm{g}\left(t, \mathrm{y}, \mathrm{y}^{\prime}\right)=\binom{y_{1}^{\prime}-y_{2}}{t^{2} y_{2}^{\prime}+t y_{2}+\left(t^{2}-1\right) y_{1}}
\]

Finally, we not only have to input the initial condition \(\mathrm{y}(0)=(0,1)^{\mathrm{T}}\), but we also have to input \(\mathrm{y}^{\prime}(0)=\left(y_{1}^{\prime}(0), y_{2}^{\prime}(0)\right)^{\mathrm{T}}\). It is easy to calculate \(y_{1}^{\prime}(0)=y_{2}(0)\), but \(y_{2}^{\prime}(0) \equiv y^{\prime \prime}(0)\) is more complicated. Differentiate (10.1) with respect to \(t\) to obtain
\[
t^{2} y^{\prime \prime \prime}(t)+3 t y^{\prime \prime}(t)+t^{2} y^{\prime}(t)+2 t y(t)=0
\]
and differentiate it again to obtain
\[
t^{2} y^{\prime \prime \prime \prime}(t)+5 t y^{\prime \prime \prime}(t)+\left(t^{2}+3\right) y^{\prime \prime}(t)+4 t y^{\prime}(t)+2 y(t)=0
\]

Now set \(t=0\) to obtain \(y^{\prime \prime}(0)=0\). We can solve Bessel's equation for \(t \in[0,10]\) by
```

> g =@(t, y, yp) [yp(1)-y(2);t^2 *yp(2)+t*y(2)+(t^2 -1)*y(1)];
> tspan = [0 10]
> y0 = [0;1]
> yp0 = [1;0]
> [t,Y] = ode15i(g, tspan, y0, yp0)
> plot(t, Y(:,1))

```

\section*{Implicit ODE Solver}
ode15i Stiff ode solver for the fully implicit ode \(\mathrm{f}\left(t, y, y^{\prime}\right)=\mathbf{0}\).

\section*{11. Boundary-Value Ordinary Differential Equations}

In addition to initial-value ordinary differential equations there is a second type of odes that MATLAB can solve numerically. Boundary-value odes are also odes of the form
\[
\frac{d}{d x} \mathrm{y}=\mathrm{f}(x, \mathrm{y}) \quad \text { for } x \in[a, b]
\]
where \(\mathrm{y} \in \mathbb{R}^{n}\) but conditions are given at both ends of the interval. If the boundary conditions are separated, then \(k\) conditions are given at \(x=a\) and \(n-k\) other conditions are given at \(x=b\). If the boundary conditions are non-separated, then the conditions at \(x=a\) and at \(x=b\) are related. To allow any of these boundary conditions we write the boundary conditions as \(\phi(\mathrm{y}(a), \mathrm{y}(b))=\mathbf{0}\) where \(\phi \in \mathbb{R}^{n}\).

For simplicity, we will only consider two closely related second-order odes, i.e., \(n=2\). This example should enable you to study any boundary-value ode. Consider the two nonlinear boundary-value ordinary differential equations
\[
\begin{equation*}
\frac{d^{2} y}{d x^{2}}(x)+2 \frac{d y}{d x}(x)+\epsilon e^{y(x)}=0 \tag{11.1a}
\end{equation*}
\]
and
\[
\begin{equation*}
\epsilon \frac{d^{2} y}{d x^{2}}(x)+2 \frac{d y}{d x}(x)+e^{y(x)}=0 \tag{11.1b}
\end{equation*}
\]
for \(x \in[0,1]\) where \(\epsilon>0\). Our boundary conditions are
\[
\begin{equation*}
\phi(y(0), y(1))=\binom{y(0)}{y(1)}=\mathbf{0} \tag{11.2}
\end{equation*}
\]
which are called Dirichlet boundary conditions. These two odes are quite simple, but also quite interesting and challenging to solve for certain intervals in \(\epsilon\).

We could use the Neumann boundary conditions \(y^{\prime}(0)=4\) and \(y^{\prime}(1)=-7\) by
\[
\begin{equation*}
\phi(y(0), y(1))=\binom{y^{\prime}(0)-4}{y^{\prime}(1)+7}=\mathbf{0} . \tag{11.3}
\end{equation*}
\]

Or we could use the mixed boundary conditions \(y(0)-y^{\prime}(0)=1\) and \(y(1)+2 y^{\prime}(1)=3\) by
\[
\begin{equation*}
\phi(y(0), y(1))=\binom{y(0)-y^{\prime}(0)-1}{y(1)+2 y^{\prime}(1)-3}=\mathbf{0} . \tag{11.4}
\end{equation*}
\]

Finally, we could use periodic boundary conditions, which are non-separated, by
\[
\begin{equation*}
\phi(y(0), y(1))=\binom{y(1)-y(0)}{y^{\prime}(1)-y^{\prime}(0)}=\mathbf{0} \tag{11.5}
\end{equation*}
\]

The primary MATLAB function is bvp4c. However, the functions bvpinit and deval are also needed. We solve the boundary value problem by
```

 > sol = bvp4c(<right-hand side>, <boundary conditions>, <initial guess>)
    ```

There are two functions we need to write: odefun is \(\mathrm{f}(x, \mathrm{y})\) and bcfun is the boundary conditions. For our example the ode given by
```

function yp = nlode(x, y)
global which_ode eps
if which_ode == 1
yp = [y(2); -eps*exp(y(1))-2*y(2)];
else
yp = [y(2); - (exp(y(1))+2*y(2))/eps];
end

```
where we use global to input which ode to use and \(\epsilon\). The boundary condition is given by
```

function bc = nlode_bc(ya, yb)

```
\(\mathrm{bc}=[\mathrm{ya}(1)\); \(\mathrm{yb}(1)]\);

Since these boundary conditions are particularly simple, we also include the function
```

function bc = nlode_bc2(ya, yb)
bc = [ya(1)-ya(2)-1; yb(1)+2*yb(2)-3];

```
for mixed boundary conditions (11.4). In addition, we have to choose an initial guess for \(\mathrm{y}(x)\) using
bvpinit by either
> bvpinit(x, y_init)
or
```

> bvpinit(x, <initial guess function>)

```

For example, if we want the initial iterate to be a parabola which is zero at \(x=0\) and 1 and has maximum value \(A\) then \(y(x)=y_{1}(x)=4 A x(1-x)\) and \(y^{\prime}(x)=y_{2}(x)=4 A(1-2 x)\) then we can write
> \(\mathrm{x}=\operatorname{linspace}(0,1,21)\);
\(\gg\) solinit \(=\) bvpinit(x, @nlode_y_ic);
where nrode_y_ic is written as
function y_ic = nlode_y_ic (x)
global A
y_ic \(=[4 * A * x . *(1-x) ; 4 * A *(1-2 * x)] ;\)
The only alternative is to write
```

> x = linspace(0, 1, 21);
> y1_val = ???;
> y2_val = ???;
> solinit = bvpinit(x, [y1_val; y2_val]);

```
where \(y 1 \_v a l\) and \(y 2 \_v a l\) are scalar values. Thus the initial guess is \(y 1=y 1 \_v a l * o n e s(s i z e(x))\) and \(y 2\) \(=y 2 \_v a l * o n e s(\operatorname{size}(x))\). This is often unacceptable because constant initial guesses may be so far from the solution that convergence cannot be obtained. What we would like to do is
```

> x = linspace(0, 1, 21);
> y1 = 4*A*x.*(1 - x);
> y2 = 4*A*(1 - 2*x);
> solinit = bvpinit(x, [y1; y2]); % WRONG

```

This fails because y1 and y2 must be scalar variables and not vectors. If you really, really need y1 and y2 to be vectors, then do not use bvpinit. Instead, specify the structure solinit directly by entering
```

> x = linspace(0, 1, 21);
> y1 = 4*A*x.*(1 - x);
> y2 = 4*A*(1 - 2*x);
> solinit.x = x;
> solinit.y = [y1;y2];

```

Warning: This is dangerous because future versions of Matlab might change the fieldnames of the structure solinit. However, it works for now.
We are finally ready to solve this ode by
```

> global which_ode eps
> global A
> which_ode = 1;
> A = 1;
> eps = 3;
> x = linspace(0, 1, 21);
> solinit = bvpinit(x, @nlode_y_ic);
> sol = bvp4c(@nlode, @nlode_bc, solinit);

```

The solution is contained in sol and is extracted by deval. For example, if \(x_{i}=(i-1) \Delta x\) where \(x_{1}=0\) and \(x_{n}=1\) then we determine, and plot, the numerical solution y by
```

> xpt = linspace(0, 1, 101);
> ypt = deval(sol, xpt);
> plot(xpt,ypt(1,:), xpt, ypt(2,:), 'r')

```

Having done all this work, we now combine everything into the function m-file nlode_all to show how much easier it is to use nested functions and to combine everything into one primary function.
```

function sol = nlode_all(which_ode, eps, A, nr_points)
% nlode_all: boundary-value solver using bvp4c
x = linspace(0, 1, 21);
solinit = bvpinit(x, @nlode_y_ic);
sol = bvp4c(@nlode, @nlode_bc, solinit);
xpt = linspace(0, 1, 101);
ypt = deval(sol, xpt);
plot(xpt,ypt(1,:), xpt, ypt(2,:), 'r')
%%%%% nested functions follow
function y_ic = nlode_y_ic(x)
y_ic = [4*A*x.*(1 - x); 4*A*(1-2*x)];
end
function yp = nlode(x, y)
if which_ode == 1
yp = [y(2); -eps*exp(y(1))-2*y(2)];
else
yp = [y(2); - (exp(y(1))+2*y(2))/eps];
end
end
function bc = nlode_bc(ya, yb)
bc = [ya(1); yb(1)];
end
end

```

This m-file is easy to read and easy to debug and easy to modify. Also, the solution is returned so it can be used in the MATLAB workspace.

The reason we chose these particular odes is to "check out" bvp4c. For the ode (11.1a) there are two solutions for \(0 \leq \epsilon \lesssim 3.82\) and no solutions for \(\epsilon \gtrsim 3.82\). This is a good test of any boundary-value solver. For the ode (11.1a) there is one solution for any \(\epsilon>0\). The "interesting" feature of this ode is that for \(\epsilon \ll 1\) the solution rises rapidly from \(y(0)=0\) to \(y(x) \approx \log 2\) for \(x=\mathcal{O}(\epsilon)\) and then decays gradually so that \(y(1)=0\). It is very challenging for a boundary-value solver to be able to capture this rapid rise.

One final point needs to be emphasized. Sometimes, any "halfway decent" initial choice of y will converge to a solution. In fact, this is true for our example - but it is not true for many examples. Sometimes it takes a "good" initial choice to obtain convergence; a "bad" choice will never converge to the desired solution. The standard method to use to obtain a "good" initial iterate is the continuation method. Frequently there are values of the parameter(s) for which "good" initial iterates are known. For example, for the ode (11.1a) if \(\epsilon \ll 1\) we can approximate \(\epsilon e^{y}\) by the Taylor series expansion \(\epsilon(1+y)\) and solve the resulting linear ode. If \(\epsilon=0.1\) the resulting analytical solution is a very good approximation to the numerical solution. You can use this solution as the initial guess for \(\epsilon=0.2\). The numerical solution can then be used as an initial guess for a larger value of \(\epsilon\), etc.

The only difficulty with this method is that there might be more solutions. When \(\epsilon=0.1\) there is a second solution whose maximum is over 8 . For this solution \(y^{\prime}(0) \approx 35\) which indicates how rapidly the solution is growing at the left endpoint. This solution can only be found by trying "large" initial guesses (e.g., choosing A to be large in nlode_y_ic ).

For the ode (11.1b) it is very difficult to determine "good" initial guesses when \(\epsilon \ll 1\) since the solution grows so rapidly. Again, the continuation method is very helpful. Start with a "large" value of \(\epsilon\), say \(\epsilon=1\), and choose a "reasonable" initial guess. (Since the two odes are identical when \(\epsilon=1\) you can use the solution you found to ode (11.1a).) Then slowly decrease \(\epsilon\). For example, when \(\epsilon=0.01\) we have \(y^{\prime}(0) \approx 130\) and when \(\epsilon=0.001\) we have \(y^{\prime}(0) \approx 1300\). In conclusion, we want to remind you that for
the odes we have discussed here almost any "halfway reasonable" initial choice for the ode (11.1a) will converge to one of the two solutions and for the ode (11.1b) will converge to the single solution. However, you might well find an ode for which this is not true.


\section*{12. Polynomials and Polynomial Functions}

In MATLAB the polynomial
\[
p(x)=c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n-1} x+c_{n}
\]
is represented by the vector \(\mathrm{q}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\mathrm{T}}\). You can easily calculate the roots of a polynomial by
\(>\quad r=\operatorname{roots}(q)\)
Conversely, given the roots of a polynomial you can recover the coefficients of the polynomial by
\(\gg q=\operatorname{poly}(r)\)
Warning: Note the order of the coefficients in the polynomial. \(c_{1}\) is the coefficient of the highest power of \(x\) and \(c_{n}\) is the coefficient of the lowest power, i.e., 0.
The polynomial can be evaluated at x by
> \(\mathrm{y}=\operatorname{polyval(q,~x)}\)
where x can be a scalar, a vector, or a matrix. If A is a square matrix, then
\[
p(A)=c_{1} A^{n-1}+c_{2} A^{n-2}+\cdots+c_{n-1} A+c_{n}
\]
is calculated by
> polyvalm(q, A)
(See section 15 for more details on this type of operation.)
A practical example which uses polynomials is to find the "best" fit to data by a polynomial of a particular degree. Suppose the data points are
\[
\{(-3,-2),(-1.2,-1),(0,-0.5),(1,1),(1.8,2)\}
\]
and we want to find the "best" fit by a straight line. Defining the data points more abstractly as \(\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \ldots, n\right\}\) and the desired straight line by \(y=c_{1} x+c_{2}\), the matrix equation for the straight line is
\[
\left(\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
\]

In general, there is no solution to this overdetermined linear system. Instead, we find the least-squares
solution \(\mathrm{c}=\left(c_{1}, c_{2}\right)^{\mathrm{T}}\) by
\[
\gg c=[x \operatorname{ones}(n, 1)] \backslash y
\]

We can plot the data points along with this straight line by
```

>x = linspace(min(x), max(x), 100);
> yy = polyval(c, xx);
> plot(xx, yy, x, y, 'o')

```

We can find the "best" fit by a polynomial of degree \(m<n\), i.e., \(y=c_{1} x^{m}+c_{2} x^{m-1}+\cdots+c_{m+1}\), by calculating the least-squares solution to
\[
\mathrm{Vc}=\mathrm{y}
\]
where
\[
\mathrm{V}=\left(\begin{array}{ccccc}
x_{1}^{m} & x_{1}^{m-1} & \cdots & x_{1} & 1 \\
x_{2}^{m} & x_{2}^{m-1} & \cdots & x_{2} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
x_{n}^{m} & x_{n}^{m-1} & \cdots & x_{n} & 1
\end{array}\right) \quad \text { and } \quad \mathrm{c}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
\]

The matrix V is called a Vandermonde matrix. The statement
\(>\mathrm{V}=\) vander (x);
generates the square Vandermonde matrix with \(m=n-1\). To generate the \(n \times(m-1)\) Vandermonde matrix we want, enter
\(\gg V=\operatorname{vander}(\mathrm{x})\)
\(\gg V(: 1: m-1)=[] ;\)
This entire procedure can be carried out much more easily by entering
\(\gg q=\operatorname{polyfit}(x, y, m-1)\)
where the third argument is the order of the polynomial (i.e., the number of coefficients in the polynomial).
Warning: The Vandermonde matrix is approximately as badly conditioned as the Hilbert matrix which was discussed in section 5.2 . For example, cond \((\operatorname{vander}([1: 10]))=2 \times 10^{12}\) whereas \(\operatorname{cond}(\operatorname{hilb}(10))=2 \times 10^{13}\).
You can also find a local maximum or minimum of the polynomial \(p(x)\) by finding the zeroes of \(p^{\prime}(x)\). The coefficients of \(p^{\prime}(x)\) are calculated by
\(\gg\) polyder (q)
where q is the vector of the coefficients of \(p(x)\).
Given a set of data points \(\left\{\left(x_{i}, y_{i}\right)\right\}\) there is sometimes a need to estimate values that lie within these data points (this is called interpolation) or outside them (this is called extrapolation). This estimation is generally done by fitting data which is "near" the desired value to a polynomial and then evaluating this polynomial at the value.

There are a number of commands to interpolate data points in any number of dimensions. The simplest command in one dimension to interpolate the points \(\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq n\right\}\) is
```

> yvalues = interp1(x, y, xvalues, <method>)

```
where xvalues is a vector of the values to be interpolated, yvalues is the vector of the interpolated values, and <method> is an optional argument specifying the method to be used. One additional requirement for this command is that the elements of x are monotonic, i.e., either all in increasing order or in decreasing order, to make it easy for the function to determine which data points are "near" the desired value. Five of the interpolation methods which can be used are the following:
'nearest': The interpolated value is the value of the nearest data point.
'linear': Linear splines are used to connect the given data points. That is, straight lines connect each pair of adjacent data points. (This is the default.)
'spline': Cubic splines are used to connect the given data points. That is, cubic polynomials connect each pair of adjacent data points. The additional constraints needed to obtain unique polynomials are that the the two polynomials which overlap at each interior data point have the same first and second derivatives at this point.
'pchip': Piecewise cubic Hermite polynomials connect each pair of adjacent data points. This is similar to spline but the second derivatives need not be continuous at the interior data points. Instead, this interpolation is better at preserving the shape of the data. In particular, on intervals where the data is monotonic so is the piecewise polynomial, and on intervals where the data is concave up or down so is the piecewise polynomial.
'cubic': The same as pchip.
An alternate way to interpolate these points is by using the two commands
```

> pp = spline(x, y)
> yvalues = ppval(pp, xvalues)

```
to generate and interpolate the cubic spline or
\(\gg \mathrm{pp}=\operatorname{pchip}(\mathrm{x}, \mathrm{y})\)
> yvalues = ppval(pp, xvalues)
to generate and interpolate the piecewise cubic Hermite polynomials. The first command generates the structure pp which contains all the information required to obtain a unique piecewise polynomial. The second command interpolates the piecewise polynomial at the \(x\) values given by the vector xvalues.

Interpolation really means interpolation. If a value lies outside the interval \(\left[x_{1}, x_{n}\right]\) then, by default, NaN is returned. This can be changed by adding a fifth argument:
- If the fifth argument is a number, this value is returned whenever the value lies outside the interval.
- If the fifth argument is 'extrap', extrapolation (using the same method) is used.

The command spline can be used instead of using interp1 with the method spline. With it you can specify precisely the boundary conditions to use. Similarly, the command pchip can be used instead of using interp1 with the method pchip or cubic.

Polynomial Functions
```

interp1(x, y, xvalues, <method>)
interp2
interp3 Interpolates in three dimensions.
interpn Interpolates in }n\mathrm{ dimensions.
pchip Cubic Hermite interpolation.
poly(<roots>) Calculates the coefficients of a polynomials given its roots.
polyder(q)
polyfit(x,y, <order>) Calculates the coefficients of the least-squares polynomial of
a given order which is fitted to the data {(}\mp@subsup{x}{i}{},\mp@subsup{y}{i}{})}\mathrm{ .
polyval(q, x)
polyvalm(q, A)
ppval
roots(q)
spline
vander
Interpolates any number of values using the given data points and the given method.
Interpolates in two dimensions.
Interpolates in three dimensions.
Interpolates in n dimensions.
Cubic Hermite interpolation.
Calculates the coefficients of a polynomials given its roots.
Calculates the derivative of a polynomial given the vector of the coefficients of the polynomial.
polyfit(x, y, <order>) Calculates the coefficients of the least-squares polynomial of a given order which is fitted to the data $\left\{\left(x_{i}, y_{i}\right)\right\}$.
Evaluates the polynomial $p(\mathrm{x})$.
Evaluates the polynomial $p(\mathrm{~A})$ where A is a square matrix. evaluates the piecewise polynomial calculated by pchip or spline.
Numerically calculates all the zeroes of a polynomial given the vector of the coefficients of the polynomial.
Cubic spline interpolation.
Generates the Vandermonde matrix.

```

\section*{13. Numerical Operations on Functions}

MATLAB can also find a zero of a function by
> fzero(<function name>, x0)
> fzero(<function name>, x0)
\(x 0\) is a guess as to the location of the zero. Alternately, > fzero(<function name>, [xmin xmax])
finds a zero in the interval \(x \in\) (xmin, xmax) where the signs of the function must differ at the endpoints of the interval.
Note: The function must cross the \(x\)-axis so that, for example, fzero cannot find the zero of the function \(f(x)=x^{2}\).
The full argument list is
> fzero(<function name>, xstart, <options>, <arg 1>, <arg 2>, ...)
where xstart is either \(x 0\) or [xmin xmax], as we discussed previously. The remaining arguments are optional. We can "tune" the zero finding algorithm by using the function optimset to create a structure which changes some of the default parameters for fzero. That is,
\(\gg\) opt \(=\) optimset ('<Prop \(1>^{\prime}\), <Value \(1>\), '<Prop 2>', <Value 2>, ...)
changes the options included in the argument list and
> fzero(<function name>, xstart, opt, <arg 1>, <arg 2>, ...)
executes fzero with the new options. Enter
> help optimset
for a discussion of how optimset works and
> optimset(@fzero)
to see the default parameters. If desired, we can also pass arguments to <function name>. The initial
line of <function name> is then
function \(y=\) <function name>(x, <arg 1>, <arg 2>, ...)
For example, we can find a zero of the function \(f(x)=\cos a x+b x\) by
\(\gg y z e r o=\) fzero(@fcos, xstart, [], a, b)
where the function is defined in the function \(m\)-file
```

function y = fcos(x, a, b)
% fcos: f(x) = cos(a*x) + b*x
y = a*\operatorname{cos}(x) + b*x;

```

Instead, we can use the anonymous function
```

> F_anonymous =@(x) cos(a*x) + b*x;
> fzero(F_anonymous, 0)

```
so that we do not have to define a function \(m\)-file. Also, we can find a zero of a particular function, such as \(f(x)=\cos 2 x+3 x\) by using the anonymous function
\(\gg \mathrm{F}=@(\mathrm{x}) \cos (2 * \mathrm{x})+3 * \mathrm{x}\);
\(\gg f z e r o(F, 0)\)
or even (but this is harder to read)
\(\gg f z e r o(@(x) \cos (2 * x)+3 * x, 0)\)
Note: There is a fundamental difference between the function m-file and the anonymous function. In the former a and b can be changed at will in the fzero function. In the latter a and b are frozen when the anonymous function is defined. To change the parameters the anonymous function must be redefined.
MATLAB can also find a local minimum of a function of a single variable in an interval by
> fminbnd(<function name>, xmin, xmax)
As with fzero, the full argument list is
> fminbnd(<function name>, xmin, xmax, options, <arg 1>, <arg 2>, ...)
and <function name> can be a string containing the function rather than the name of a function file.
MATLAB can also find a local minimum of a function of several variables by
> fminsearch(<function name>, iterate0)
where iterate0 is a vector specifying where to begin searching for a local minimum. For example, if we enter
> fminsearch(@fnctn, [0 0]')
on the function defined in a function M -file by
```

function y = fnctn(x)
% fnctn: y = (x1 - 1)^2 + (x2 + 2)^4
y = (x(1) - 1)^2 + (x(2) + 2)^4;

```
we obtain \((1.0000-2.0003)^{\mathrm{T}}\left(\right.\) actually \(\left.(1.00000004979773,-2.00029751371046)^{\mathrm{T}}\right)\). The answer might
not seem to be very accurate. However, the value of the function at this point is \(1.03 \times 10^{-14}\), which is
quite small. If our initial condition is \((1,1)^{\mathrm{T}}\), the result is \((0.99999998869692,-2.00010410231166)^{\mathrm{T}}\).
Since the value of funct at this point is \(2.45 \times 10^{-16}\), the answer is about as accurate as can be expected.
In other words, the location of a zero and/or a local minimum of a function might not be as accurate as
you might expect. Be careful. To determine the accuracy MATLAB is using to determine the minimum
value type
>> optimset(@fminsearch)

The value of TolX, the termination tolerance on x , is \(10^{-4}\) and the value of TolFun, the termination tolerance on the function value, is the same.

There is no direct way to find zeroes of functions of more than one dimension. However, it can be done by using fminsearch. For example, suppose we want to find a zero of the function
\[
\mathrm{f}(\mathrm{x})=\binom{x_{1}+x_{2}+\sin \left(x_{1}-x_{2}\right)}{x_{1}-x_{2}+2 \cos \left(x_{1}+x_{2}\right)} .
\]

Instead, we can find a minimum of \(g(\mathrm{x})=f_{1}^{2}(\mathrm{x})+f_{2}^{2}(\mathrm{x})\). If the minimum value is 0 , we have found a zero of \(f\) - if it is not zero, we have not found a zero of \(f\). For example, if \(f\) is defined an an anonymous function the result of
```

> xmin = fminsearch(f, [0 0])

```
is \(\mathrm{x}_{\text {min }}=(-.1324 \ldots, 1.0627 \ldots)\). We are not done since we still have to calculate \(g\left(\mathrm{x}_{\min }\right)\). This is
\(\approx 2.4 \times 10^{-9}\) which is small - but is it small enough? We can decrease the termination tolerance by
\(\gg\) opt \(=\operatorname{optimset}\left({ }^{\prime} T o l X^{\prime}, 1 . e-8\right.\), 'TolFun', 1.e-8)
\(\gg \operatorname{xmin}=\) fminsearch (f, [0 0], opt)

Since \(g\left(\mathrm{x}_{\min }\right)=2.3 \times 10^{-17}\) we can assume that we have found a zero of f .
MATLAB can also calculate definite integrals using two functions. The first is quad which uses adaptive Simpson's method. To evaluate \(\int_{a}^{b} f(x) d x\) by Simpson's method enter
```

>> quad(<function name>, a, b)

```

The full argument list is
```

>> quad(<function name>, a, b, tol, trace, <arg 1>, <arg 2>, ...)

```
where tol sets the relative tolerance for the convergence test and information about each iterate is printed if trace is non-zero. The arguments following are passed to the function file which calculates \(f(\mathrm{x})\).

The second is quadl which uses adaptive Gauss-Lobatto quadrature, which is a variant of Gauss quadrature.
quadl uses the more accurate formula and so should require many fewer function evaluations. For example, quad calculates the exact integral (up to round-off errors) for polynomials of degree five whereas quadl calculates the exact integral (up to round-off errors) for polynomials of degree nine.

MATLAB can also calculate the double integral
\[
\int_{x_{\min }}^{x_{\max }} \int_{y_{\min }}^{y_{\max }} f(x, y) d x d y
\]
by
```

> dblquad(<function name>, xmin, xmax, ymin, ymax)

```

It can also calculate the triple integral
\[
\int_{x_{\min }}^{x_{\max }} \int_{y_{\min }}^{y_{\max }} \int_{z_{\min }}^{z_{\max }} f(x, y, z) d x d y d z
\]
by
```

> triplequad(<function name>, xmin, xmax, ymin, ymax, zmin, zmax)
Numerical Operations on Functions
\(\left.$$
\begin{array}{|ll}\hline \text { dblquad(<function name>, a, b, c, d) } \\
\text { fminbnd(<function name>, xmin, xmax) }\end{array}
$$ \quad \begin{array}{l}Numerically evaluates a double integral.

Numerically calculates a local minimum of a one-

dimensional function given the endpoints of the

interval in which to search\end{array}\right]\)| Numerically calculates a local minimum of a multi- |
| :--- |
| dimensional function given the the initial iterate |
| vector. |

```

\section*{14. Discrete Fourier Transform}

There are a number of ways to define the discrete Fourier transform; we choose to define it as the discretization of the continuous Fourier series. In this section we show exactly how to discretize the continuous Fourier series and how to transform the results of MATLAB's discrete Fourier transform back to the continuous case. We are presenting the material in such detail because there are a few slightly different definitions of the discrete Fourier transform; we present the definition which follows directly from the real Fourier series. xdi A "reasonable" continuous function \(f\) which is periodic with period \(T\) can be represented by the real trigonometric series
\[
f(t)=a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos \frac{2 \pi k t}{T}+b_{k} \sin \frac{2 \pi k t}{T}\right) \quad \text { for all } t \in[0, T]
\]
where
\[
\left.\begin{array}{rl}
a_{0} & =\frac{1}{T} \int_{0}^{T} f(t) d t \\
a_{k} & =\frac{2}{T} \int_{0}^{T} f(t) \cos k t d t \\
b_{k} & =\frac{2}{T} \int_{0}^{T} f(t) \sin k t d t
\end{array}\right\} \quad \text { for } k \in \mathbb{N}[1, \infty)
\]

The coefficients \(a_{0}, a_{1}, a_{2}, \ldots\) and \(b_{1}, b_{2}, \ldots\) are called the real Fourier coefficients of \(f\), and \(a_{k}\) and \(b_{k}\) are the coefficients of the \(k\)-th mode. The power of the function \(f(t)\) is \(^{\dagger}\)
\[
P=\frac{1}{T} \int_{0}^{T}|f(t)|^{2} d t
\]

\footnotetext{
\({ }^{\dagger}\) The term "power" is a misnomer because the function \(f\) need not be related to a physical quantity for which the power makes any sense. However, we will stick to the common usage.

To understand the physical significance of power, we begin with the definition of work. Consider a particle which is under the influence of the constant force \(\vec{F}\). If the particle moves from the point \(\mathrm{P}_{0}\) to \(\mathrm{P}_{1}\) then the work done to the particle is \(\vec{F} \bullet \vec{r}\), where \(\vec{r}\) is the vector from \(\mathrm{P}_{0}\) to \(\mathrm{P}_{1}\). The power of the particle is the work
}
so that
\[
P=\left|a_{0}\right|^{2}+\frac{1}{2} \sum_{k=1}^{\infty}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right) .
\]

The power in each mode, i.e., the power spectrum, is
\[
P_{k}= \begin{cases}\left|a_{0}\right|^{2} & \text { if } k=0 \\ \frac{1}{2}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right) & \text { if } k>0\end{cases}
\]
and the frequency of the \(k\)-th mode is \(k / T\) cycles per unit time.
Since
\[
\cos \alpha t=\frac{e^{i \alpha t}+e^{-i \alpha t}}{2} \quad \text { and } \quad \sin \alpha t=\frac{e^{i \alpha t}-e^{-i \alpha t}}{2 i},
\]
we can rewrite the real Fourier series as the complex Fourier series
\[
f(t)=a_{0}+\sum_{k=1}^{\infty}\left[\frac{1}{2}\left(a_{k}-i b_{k}\right) e^{2 \pi i k t / T}+\frac{1}{2}\left(a_{k}+i b_{k}\right) e^{-2 \pi i k t / T}\right]
\]
so that
\[
\begin{equation*}
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{2 \pi i k t / T} \quad \text { for all } t \in[0, T] \tag{14.1}
\end{equation*}
\]
where
\[
\left.\begin{array}{rl}
c_{0} & =a_{0} \\
c_{k} & =\frac{1}{2}\left(a_{k}-i b_{k}\right)  \tag{14.2}\\
c_{-k} & =\frac{1}{2}\left(a_{k}+i b_{k}\right)
\end{array}\right\} \quad \text { for } k>0 .
\]

The coefficients \(\ldots, c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2}, \ldots\) are called the complex Fourier coefficients of \(f\), and \(c_{k}\) and \(c_{-k}\) are the coefficients of the \(k\)-th mode. (Note that these Fourier coefficients are generally complex.) We can also calculate \(c_{k}\) directly from \(f\) by
\[
c_{k}=\frac{1}{T} \int_{0}^{T} f(t) e^{-2 \pi i k t / T} d t \text { for } k=\ldots,-2,-1,0,1,2, \ldots
\]

Note that if \(f\) is real, then \(c_{-k}=c_{k}^{*}\) (by replacing \(k\) by \(-k\) in the above equation). The power of \(f(t)\) is
\[
P=\left|c_{0}\right|^{2}+\sum_{k=1}^{\infty}\left(\left|c_{k}\right|^{2}+\left|c_{-k}\right|^{2}\right)
\]
and the power in each mode is
\[
P_{k}= \begin{cases}\left|c_{0}\right|^{2} & \text { if } k=0 \\ \left(\left|c_{k}\right|^{2}+\left|c_{-k}\right|^{2}\right) & \text { if } k>0 .\end{cases}
\]
done per unit time, i.e., \(\vec{F} \bullet \vec{v}\) where \(\vec{v}=\vec{r} / t\).
Next, consider a charge \(q\) which is moving between two terminals having a potential difference of \(V\). The work done on the charge is \(W=q V=I t V\), where \(I\) is the current and \(t\) is the time it takes for the charge to move between the two terminals. If \(R\) is the resistance in the circuit, \(V=I R\) and the power is
\[
P=\frac{W}{t}=I V=I^{2} R=\frac{V^{2}}{R} .
\]

Thus, if we consider \(f(t)\) to be the voltage or the current of some signal, the instantaneous power in the signal is proportional to \(f^{2}(t)\) and the average power is proportional to
\[
\frac{1}{T} \int_{0}^{T}|f(t)|^{2} d t
\]

We can only calculate a finite number of Fourier coefficients numerically and so we truncate the infinite series at the \(M\)-th mode. We should choose \(M\) large enough that
\[
f(t) \approx \sum_{k=-M}^{M} c_{k} e^{2 \pi i k t / T} \quad \text { for all } t \in[0, T]
\]

There are now
\[
N=2 M+1
\]
unknowns (which is an odd number because of the \(k=0\) mode). We require \(N\) equations to solve for these \(N\) unknown coefficients. We obtain these equations by requiring that the two sides of this approximation be equal at the \(N\) equally spaced abscissas \(t_{j}=j T / N\) for \(j=0,1,2, \ldots, N-1\) (so that \(\left.0=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=T\right) .^{\dagger}\) That is,
\[
f\left(t_{j}\right)=\sum_{k=-M}^{M} \gamma_{k} e^{2 \pi i k t_{j} / T} \quad \text { for } j=0,1,2, \ldots, N-1
\]
or
\[
\begin{equation*}
f_{j}=\sum_{k=-M}^{M} \gamma_{k} e^{2 \pi i j k / N} \quad \text { for } j=0,1,2, \ldots, N-1 \tag{14.3}
\end{equation*}
\]
where \(f_{j} \equiv f\left(t_{j}\right)\). This linear system can be solved to obtain
\[
\begin{equation*}
\gamma_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-2 \pi i j k / N} \quad \text { for } k=-M,-M+1, \ldots, M \tag{14.4}
\end{equation*}
\]

The reason we have replaced the coefficients \(c_{-M}, c_{-M+1}, \ldots, c_{M-1}, c_{M}\) by \(\gamma_{-M}, \gamma_{-M+1}, \ldots, \gamma_{M-1}, \gamma_{M}\) is that the \(c\) 's are the coefficients in the continuous complex Fourier series, eq. (14.1), and are calculated by (14.2). The \(\gamma\) 's are the coefficients in the discrete complex Fourier series, eq. (14.3), and are calculated by (14.4).
Note: To repeat: the discrete Fourier coefficient \(\gamma_{k}\) is a function of \(M\), i.e., \(\gamma_{k}(M)\), and is generally not equal to the continuous Fourier coefficient \(c_{k}\). However, as \(M \rightarrow \infty\) we have \(\gamma_{k}(M) \rightarrow c_{k}\). For a fixed \(M\) we generally only have \(\gamma_{k}(M) \approx c_{k}\) as long as \(|k|\) is "much less than" \(M\). Of course, it takes practice and experimentation to determine what "much less than" means.
We define the discrete Fourier series by
\[
f_{\mathrm{FS}}(t)=\sum_{k=-M}^{M} \gamma_{k} e^{2 \pi i k t / T} \quad \text { for all } t \in[0, T]
\]

It is our responsibility (using our experience) to choose \(M\) large enough that \(f(t) \approx f_{\mathrm{FS}}(t)\). Given \(\mathrm{f}=\left(f_{0}, f_{1}, f_{2}, \ldots, f_{N-1}\right)^{\mathrm{T}}\), the Fourier coefficients are calculated in MATLAB by
\(\gg f c=f f t(f) / N\)
where the coefficients of the discrete Fourier transform are contained in \(f c\) in the order
\[
\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{M-1}, \gamma_{M}, \gamma_{-M}, \gamma_{-M+1}, \ldots, \gamma_{-2}, \gamma_{-1}\right)^{\mathrm{T}}
\]

The original function, represented by the vector \(f\), is recovered by
\(\gg f=N * i f f t(f c)\)
Warning: One of the most common mistakes in using fft is forgetting that the input is in the order
\[
f_{0}, f_{1}, f_{2}, \ldots, f_{N-1}
\]

\footnotetext{
\({ }^{\dagger}\) Note that \(t_{N}\) is not used because \(f\left(t_{N}\right)\) has the same value as \(f\left(t_{0}\right)\) and so does not provide us with an independent equation.
}
while the output is in the order
\[
\gamma_{0}, \gamma_{1}, \ldots, \gamma_{M-1}, \gamma_{M}, \gamma_{-M}, \gamma_{-M+1}, \ldots, \gamma_{-2}, \gamma_{-1}
\]
not
\[
\gamma_{-M}, \gamma_{-M+1}, \ldots, \gamma_{-2}, \gamma_{-1} \gamma_{0}, \gamma_{1}, \ldots, \gamma_{M-1}, \gamma_{M}
\]

There is only one difficulty with our presentation. As we have already stated, the vector \(f\) has \(N=2 M+1\) elements, which is an odd number. The Fast Fourier Transform (FFT, for short), which is the method used to calculate the discrete Fourier coefficients by fft and also to recover the original function by ifft, generally works faster if the number of elements of \(f\) is even, and is particularly fast if it a power of 2 .

The figure below shows the cputime needed to calculate \(f f t(f)\) as a function of \(N\). Since the vertical axis is logarithmic, it is clear that there is a huge difference in the time required as we vary \(N\).The dashed lines show the minimum and maximum asymptotic times as \(c n \log _{2} n\).


For \(N\) to be even, we have to drop one coefficient, and the one we drop is \(\gamma_{M}\). Now
\[
N=2 M
\]
is even. The discrete complex Fourier series is
\[
f_{\mathrm{FS}}(t)=\sum_{k=-M}^{M-1} \gamma_{k} e^{2 \pi i k t / T} \quad \text { for all } t \in[0, T]
\]
and the discrete Fourier coefficients are calculated by
\[
\gamma_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-2 \pi i j k / N} \quad \text { for } k=-M,-M+1, \ldots, M-2, M-1
\]

As before, given \(\mathrm{f}=\left(f_{0}, f_{1}, f_{2}, \ldots, f_{N-1}\right)^{\mathrm{T}}\), the Fourier coefficients are calculated by
\[
\gg f c=f f t(f) / N
\]

The coefficients of the discrete Fourier transform are now contained in fc as
\[
\mathrm{f} \mathrm{c}=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{M-2}, \gamma_{M-1}, \gamma_{-M}, \gamma_{-M+1}, \ldots, \gamma_{-2}, \gamma_{-1}\right)^{\mathrm{T}}
\]

The original function, represented by the vector \(f\), is again recovered by
\[
\gg f=N * i f f t(f c)
\]

Note: Since there are now an even number of Fourier coefficients, we can reorder them by using fftshift, which switches the first half and the last half of the elements. The result is
\[
\operatorname{fftshift}(\mathrm{fc})=\left(\gamma_{-M}, \gamma_{-M+1}, \ldots, \gamma_{-2}, \gamma_{-1}, \gamma_{0}, \gamma_{1}, \ldots, \gamma_{M-2}, \gamma_{M-1},\right)^{\mathrm{T}}
\]

Warning: Remember that if you reorder the elements of fc by
```

 > fc_shift = fftshift(fc)
    ```
you will have to "unorder" the elements by applying
> fc = fftshift(fc_shift)
again before you use ifft.
Note: When \(N\) is even we cannot recover \(\gamma_{M}\) and so we only know one of the two coefficients of the \(M\)-th mode. Thus, we cannot determine the \(M\)-th mode correctly. Although we cannot give a simple example, it occasionally happens that this causes difficulties. The solution is to set \(\gamma_{-M}=0\) so that the \(M\)-th mode is dropped completely.
Here is a simple example of the use of Fourier coefficients from The Student Edition of MATLAB: User's Guide. We begin with a signal at 50 and 120 hertz (cycles per unit time), y0, and then we perturb it by adding Gaussian noise, ypert. We plot the periodic unperturbed signal, and then the perturbed signal, vs. time. (If you enter all these commands into an M-file, put a pause command between each of the plot commands.)
\(\gg\) time \(=.6\);
\(\gg N=600 ;\)
\(\gg \mathrm{t}=\) linspace(0, time, N\()\);
\(\gg y 0=\sin (2 * \mathrm{pi} * 50 * \mathrm{t})+\sin (2 * \mathrm{pi} * 120 * \mathrm{t}) ; \quad \%\) unperturbed signal
\(\gg y p e r t=y 0+2 * r a n d n(\operatorname{size}(t)) ; \quad \%\) perturbed signal
\(>\) figure(1)
\(\gg \operatorname{plot}\left(\mathrm{t}, \mathrm{y} 0, \mathrm{r}^{\prime}\right)\), axis([0 time -8 8])
\(\gg\) hold on
\(\gg \operatorname{plot}\left(t, y p e r t,{ }^{\prime} g^{\prime}\right)\)
Clearly, once the random noise has been added, the original signal has been completely lost - or has it.
We now look at the Fourier spectrum of y0 by plotting the power at each frequency. First, we plot the unperturbed power, power0, and then the perturbed power, powerpert, vs. the frequency at each mode, freq. The two spikes in the plot of the unperturbed power are precisely at 50 and 120 hertz, the signature of the two sine functions in y0. (For simplicity in the discussion, we have deleted the power in the
\(M\)-th mode by \(\mathrm{fc}(\mathrm{N} / 2+1)=[]\) so that power0(k) is the power in the \(k-1\)-st mode.)
```

fcO = fft(y0)/N; % Fourier spectrum of unperturbed signal
> figure(2)
>fcO(N/2 +1) = []; % delete k = N/2 +1 mode
> power0(1) = abs(fc0(1)).^2;
> power0(2:N/2) = abs(fcO(2:N/2)).^2 + abs(fcO(N-1:-1:N/2 +1)).^2;
> freq = [1:N]'/time; % the frequency of each mode
> plot(freq(1:N/2), power0, 'r'), axis([0 freq(N/2) 0 .5])
> fcpert = fft(ypert)/N; % Fourier spectrum of perturbed signal
> hold on
> powerpert(1) = abs(fcpert(1)).^2;
> powerpert(2:N/2) = abs(fcpert(2:N/2)).^2 + abs(fcpert(N-1:-1:N/2 +1)).^2;
> plot(freq(1:N/2), powerpert, 'g')

```

Clearly, the original spikes are still dominant, but the random noise has excited every mode.
To see how much power is in the unperturbed signal and then the perturbed signal, enter
```

> sum(power0)
> sum(powerpert)

```

The perturbed signal has about five times as much power as the original signal, which makes clear how large the perturbation is.

Let us see if we can reconstruct the original signal by removing any mode whose magnitude is "small". By looking at the power plots, we see that the power in all the modes, except for those corresponding to the spikes, have an amplitude \(\lesssim 0.1\). Thus, we delete any mode of the perturbed Fourier spectrum, i.e., fcpert, whose power is less than this value; we call this new Fourier spectrum fcchop. We then construct a new signal ychop from this "chopped" Fourier spectrum and compare it with the original unperturbed signal.
```

> fcchop = fcpert; % initialize the chopped Fourier spectrum
> ip = zeros(size(fcpert)); % construct a vector with 0's
> ip(1:N/2) = (powerpert > 0.1); % where fcchop should be
> ip(N:-1:N/2 +2) = ip(2:N/2); % zeroed out
> fcchop(find(~ip)) = 0; % zero out "small" modes
> ychop = real(N*ifft(fcchop)); % signal of "chopped" Fourier spectrum
> figure(1)
> plot(t, ychop, 'b')

```
( ychop is the real part of \(N * i f f t(f c c h o p)\) because, due to round-off errors, the inverse Fourier transform returns a "slightly" complex result.) The result is remarkably good considering the size of the perturbation. If you have trouble comparing y0 with ychop, reenter
```

> plot(t, y0, 'r')

```

> Discrete Fourier Transform
\begin{tabular}{|ll}
\hline\(f f t(f)\) & The discrete Fourier transform of \(f\). \\
ifft \((f c)\) & The inverse discrete Fourier transform of the Fourier coefficients \(f c\). \\
\(\mathrm{fftshift}(\mathrm{fc})\) & Switches the first half and the second half of the elements of fc.
\end{tabular}

\section*{15. Mathematical Functions Applied to Matrices}

As we briefly mentioned in subsection 2.6 , mathematical functions can generally only be applied to square matrices. For example, if \(\mathrm{A} \in \mathbb{C}^{n \times n}\) then \(e^{\mathrm{A}}\) is defined from the Taylor series expansion of \(e^{a}\). That is, since
\[
e^{a}=1+\frac{a}{1!}+\frac{a^{2}}{2!}+\frac{a^{3}}{3!}+\cdots
\]
we define \(e^{\mathrm{A}}\) to be
\[
e^{\mathrm{A}}=1+\frac{\mathrm{A}}{1!}+\frac{\mathrm{A}^{2}}{2!}+\frac{\mathrm{A}^{3}}{3!}+\cdots
\]
(Thus, if \(\mathrm{A} \in \mathbb{C}^{m \times n}\) where \(m \neq n\) then \(e^{\mathrm{A}}\) does not exist because \(\mathrm{A}^{k}\) does not exist if A is not a square matrix.)

If A is a square diagonal matrix \(e^{\mathrm{A}}\) is particularly simple to calculate since
\[
\mathrm{A}^{p}=\left(\begin{array}{lllll}
a_{11} & & & & 0 \\
& a_{22} & \ddots & & 0 \\
0 & & & a_{n-1, n-1} & \\
& & & a_{n n}
\end{array}\right)^{p}=\left(\begin{array}{lllll}
a_{11}^{p} & & & & 0 \\
& a_{22}^{p} & \ddots & & 0 \\
0 & & & a_{n-1, n-1}^{p} & \\
0 & & & a_{n n}^{p}
\end{array}\right) .
\]

Thus,
\[
e^{\mathrm{A}}=\left(\begin{array}{ccccc}
e^{a_{11}} & & & & 0 \\
& e^{a_{22}} & \cdot & & \\
0 & & & e^{a_{n-1, n-1}} & \\
0 & & & & e^{a_{n n}}
\end{array}\right)
\]

The MATLAB command
\(\gg \operatorname{expm}(A)\)
calculates \(e^{A}\) if A is a square matrix. (Otherwise, it generates an error message.)
A simple example where \(e^{\mathbb{A}}\) occurs is in the solution of first-order ode systems with constant coefficients. Recall that the solution of
\[
\frac{d y}{d t}(t)=a y(t) \quad \text { for } t \geq 0 \text { with } y(0)=y_{\text {ic }}
\]
is
\[
y(t)=y_{\mathrm{ic}} e^{a t} .
\]

Similarly, the solution of
\[
\frac{d}{d t}\left(\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right) \quad \text { for } t \geq 0 \text { with } \mathrm{y}(0)=\mathrm{y}_{\mathrm{ic}}
\]
i.e., \(\mathrm{y}^{\prime}(t)=\operatorname{Ay}(t)\), is
\[
\mathrm{y}(t)=e^{\mathrm{At} t} \mathrm{y}_{\mathrm{ic}} .
\]

To calculate \(\mathrm{y}(t)\) for any time \(t\), you only need enter
\[
\gg \operatorname{expm}(\mathrm{A} * \mathrm{t}) * \text { yic }
\]

Note: The above statement gives the exact solution to the ode system at \(\mathrm{t}=10\) by \(\gg \operatorname{expm}(A * 10) * y i c\)
You could also use numerical methods, as discussed in section 10, to solve it. However, you would have to solve the ode for all \(t \in[0,10]\) in order to obtain a numerical approximation at the final time. This would be much more costly than simply using the analytical solution.
Similarly, \(\sqrt{B}\) is calculated in MATLAB by entering
\(\gg \operatorname{sqrtm}(\mathrm{A})\)
Finally, \(\log B\) is calculated in MATLAB by entering
\(\gg \operatorname{logm}(A)\)
These are the only explicit MATLAB commands for applying mathematical functions to matrices. However, there is a general matrix function for the other mathematical functions. The command
\[
\gg \text { funm (A, <function name>) }
\]
evaluates <function name>(A) for the MATLAB functions exp, sin, cos, sinh, and cosh as well as user-defined functions.
\begin{tabular}{|ll|}
\multicolumn{1}{l|}{} & Matrix Functions \\
\hline \(\operatorname{expm}(\mathrm{A})\) & Calculates \(e^{\mathrm{A}}\) where A must be a square matrix. \\
\(\operatorname{sqrtm}(\mathrm{A})\) & Calculates \(\sqrt{\mathrm{A}}\) where A must be a square matrix. \\
\(\operatorname{logm}(\mathrm{A})\) & Calculates \(\log \mathrm{A}\) where A must be a square matrix. \\
funm (A, <function name>) & Calculates <function name>(A) where A must be a square matrix. \\
\hline
\end{tabular}

\section*{Appendix: Reference Tables}

These tables summarize the functions and operations described in this tutorial. The number (or numbers) shown give the page number of the table where this entry is discussed.

\section*{Arithmetical Operators}
\begin{tabular}{|ll|}
\hline+ & Addition. (p. 7, 27) \\
- & Subtraction. (p. 7, 27) \\
\(*\) & \begin{tabular}{l} 
Scalar or matrix multiplication. (p. 7, 27)
\end{tabular} \\
.\(^{*}\) & \begin{tabular}{l} 
Elementwise multiplication of matrices. (p. 27)
\end{tabular} \\
\(/\) & Scalar division. (p. 7, 27)
\end{tabular}

\section*{Special Characters}
\begin{tabular}{|c|c|}
\hline : & Creates a vector by a:b or a:c:b; subscripts matrices. (p. 24) \\
\hline ; & Ends a statement without printing out the result; also, ends each row when entering a matrix. (p. 9) \\
\hline , & Ends a statement when more than one appear on a line and the result is to be printed out; also, separates the arguments in a function; also, can separate the elements of each row when entering a matrix. (p. 9) \\
\hline & Continues a MATLAB command on the next line. (p. 14) \\
\hline \% & Begins a comment. (p. 14) \\
\hline \(\uparrow\) & The up-arrow key moves backward in the MATLAB workspace, one line at a time. (p. 7) \\
\hline
\end{tabular}

\section*{Getting Help}
\begin{tabular}{|ll|}
\hline demo & Runs demonstrations of many of the capabilities of MATLAB. (p. 16, 52) \\
doc & On-line reference manual. (p. 16) \\
help & On-line help. (p. 16) \\
helpdesk & Loads the main page of the on-line reference manual. (p. 16) \\
load & Loads back all of the variables which have been saved previously. (p. 16) \\
lookfor & Searches all MATLAB commands for a keyword. (p. 16) \\
save & Saves all of your variables. (p. 16) \\
type & Displays the actual MATLAB code. (p. 14, 16) \\
who & Lists all the current variables. (p. 16) \\
whos & \begin{tabular}{l} 
Lists all the current variables in more detail than who. (p. 16) \\
\(\wedge\) C
\end{tabular} \\
& \begin{tabular}{l} 
Abort the command which is currently executing (i.e., hold down the control key \\
and type "c"). (p. 16)
\end{tabular} \\
\hline
\end{tabular}

Predefined Variables
```

ans The default variable name when one has not been specified. (p. 9)
pi }\quad\pi.(p.9
eps Approximately the smallest positive real number on the computer such that
1+ eps =1. (p.9)
Inf }\quad\infty(\mathrm{ as in 1/0).(p.9)
NaN Not-a-Number (as in 0/0). (p.9)
i \sqrt{}{-1}. (р.9)
j \sqrt{}{-1}}\mathrm{ . (p.9)
realmin The smallest "usable" positive real number on the computer. (p.9)
realmax The largest "usable" positive real number on the computer. (p.9)

```
\begin{tabular}{|ll|}
\multicolumn{1}{l|}{} & Format Options \\
\hline \begin{tabular}{l} 
format short \\
format long
\end{tabular} & \begin{tabular}{l} 
The default setting. (p. 11) \\
Results are printed to approximately the maximum number of digits of accuracy in \\
MATLAB. (p. 11)
\end{tabular} \\
\begin{tabular}{ll} 
format short e & Results are printed in scientific notation. (p. 11) \\
format long e & \begin{tabular}{l} 
Results are printed in scientific notation to approximately the maximum number of \\
digits of accuracy in MATLAB. (p. 11)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Input-Output Functions
\(\left.\begin{array}{|ll|}\hline \text { csvread } & \begin{array}{l}\text { Reads data into MATLAB from the named file, one row per line of input. (p. 46) } \\ \text { csvwrite } \\ \text { Writes out the elements of a matrix to the named file using the same format as } \\ \text { csvread. (p. 46) }\end{array} \\ \text { diary } & \begin{array}{l}\text { Saves your input to MATLAB and most of the output from MATLAB to disk. } \\ \text { (p. 7) }\end{array} \\ \text { fopen } & \begin{array}{l}\text { Opens the file with the permission string determining how the file is to be accessed. } \\ \text { (p. 62) }\end{array} \\ \text { fclose } & \begin{array}{l}\text { Closes the file. (p. 62) } \\ \text { fscanf } \\ \text { Behaves very similarly to the C command in reading data from a file using any } \\ \text { desired format. (p. 62) }\end{array} \\ \text { fprintf } & \begin{array}{l}\text { Behaves very similarly to the C command in writing data to a file using any de- } \\ \text { sired format. }\end{array} \\ \text { It can also be used to display data on the screen. (p. 62, 62) }\end{array}\right\}\)

Some Common Mathematical Functions
\begin{tabular}{|c|c|c|c|}
\hline abs & Absolute value (p. 12, 13) & cotd & Cotangent (argument in degrees). \\
\hline acos & Inverse cosine. (p. 12) & & (p. 12) \\
\hline acosd & Inverse cosine (result in degrees). & csc & Cosecant. (p. 12) \\
\hline acosh & \begin{tabular}{l}
(p. 12) \\
Inverse hyperbolic cosine. (p. 12)
\end{tabular} & cscd & Cosecant (argument in degrees).
(p. 12) \\
\hline acot & Inverse cotangent. (p. 12) & exp & Exponential function. (p. 12) \\
\hline acotd & Inverse cotangent (result in de- & factorial & Factorial function. (p. 12) \\
\hline acoth & \begin{tabular}{l}
grees). (p. 12) \\
Inverse hyperbolic cosine. (p.)
\end{tabular} & fix & Round toward zero to the nearest integer. (p. 12) \\
\hline acsc & Inverse cosecant. (p. 12) & floor & Round downward to the nearest \\
\hline acscd & Inverse cosecant (result in degrees). (p. 12) & imag & \begin{tabular}{l}
integer. (p. 12) \\
The imaginary part of a complex
\end{tabular} \\
\hline angle & Phase angle of a complex number.
(p. 13) & \(\log\) & \begin{tabular}{l}
number. (p. 13) \\
The natural logarithm, i.e., to the
\end{tabular} \\
\hline asec & Inverse secant. (p. ) & & base e. (p. 12) \\
\hline asec & Inverse secant (result in degrees). (p.) & \(\log 10\) & The common logarithm, i.e., to the base 10. (p. 12) \\
\hline asin & Inverse sine. (p. 12) & mod & The modulus after division. (p. 12) \\
\hline asin & Inverse sine (result in degrees).
(p. 12) & real & The real part of a complex number. (p. 13) \\
\hline \begin{tabular}{l}
asinh \\
atan
\end{tabular} & Inverse hyperbolic sine. (p. 12) Inverse tangent. (p. 12) & rem & The remainder after division. (p. 12) \\
\hline atand & Inverse tangent (result in degrees). (p. 12) & round sec & Round to the closest integer. (p. 12) Secant. (p. 12) \\
\hline \(\operatorname{atan} 2\) & Inverse tangent using two arguments. (p. 12) & secd & Secant (argument in degrees).
(p. 12) \\
\hline atanh & Inverse hyperbolic tangent. (p. 12) & sign & The sign of the real number. (p. 12) \\
\hline ceil & Round upward to the nearest integer. (p. 12) & \begin{tabular}{l}
sin \\
sind
\end{tabular} & \begin{tabular}{l}
Sine. (p. 12) \\
Sine (argument in degrees). (p. 12)
\end{tabular} \\
\hline conj & Complex conjugation. (p.13) & sinh & Hyperbolic sine. (p. 12) \\
\hline cos & Cosine. (p. 12) & sqrt & Square root. (p. 12) \\
\hline cosd & Cosine (argument in degrees). & tan & Tangent. (p. 12) \\
\hline & (p. 12) & tand & Tangent (argument in degrees). \\
\hline cosh & Hyperbolic cosine. (p. 12) & & (p. 12) \\
\hline cot & Cotangent. (p.12) & tanh & Hyperbolic tangent. (p.12) \\
\hline
\end{tabular}

\section*{Elementary Matrices}
\begin{tabular}{|c|c|}
\hline eye & Generates the identity matrix. (p. 20) \\
\hline false & Generates a logical matrix with all elements having the value false. (p. 72) \\
\hline ones & Generates a matrix with all elements being 1. (p. 20) \\
\hline rand & Generates a matrix whose elements are uniformly distributed random numbers in the interval \((0,1)\). (p. 20) \\
\hline randn & Generates a matrix whose elements are normally (i.e., Gaussian) distributed random numbers with mean 0 and standard deviation 1. (p. 20) \\
\hline randperm(n) & Generates a random permutation of the integers \(1,2, \ldots, n\). (p.) \\
\hline speye & Generates a Sparse identity matrix. (p. 92) \\
\hline sprand & Sparse uniformly distributed random matrix. (p. 92, 92) \\
\hline sprandsym & Sparse uniformly distributed symmetric random matrix; the matrix can also be positive definite. (p. 92) \\
\hline sprandn & Sparse normally distributed random matrix. (p. 92) \\
\hline true & Generates a logical matrix with all elements having the value true. (p. 72) \\
\hline zeros & Generates a zero matrix. (p. 20) \\
\hline
\end{tabular}

\section*{Specialized Matrices}
\begin{tabular}{|ll}
\hline hilb & Generates the hilbert matrix. (Defined on p. 59.) \\
vander & Generates the Vandermonde matrix. (Defined on p. 107.)
\end{tabular}

\begin{tabular}{|c|c|}
\hline & Manipulating Matrices \\
\hline cat & Concatenates arrays; this is useful for putting arrays into a higher-dimensional array. (p. 33) \\
\hline clear & Deletes a variable or all the variables. This is a very dangerous command. (p. 9) \\
\hline diag & Extracts or creates diagonals of a matrix. (p. 24) \\
\hline fliplr & Flips a matrix left to right. (p. 24) \\
\hline flipud & Flips a matrix up and down. (p. 24) \\
\hline spdiags & Generates a sparse matrix by diagonals. (p. 92) \\
\hline repmat & Tiles a matrix with copies of another matrix. (p. 24) \\
\hline reshape & Reshapes the elements of a matrix. (p. 24) \\
\hline rot90 & Rotates a matrix a multiple of \(90^{\circ}\). (p.24) \\
\hline squeeze & Removes (i.e., squeezes out) dimensions which only have one element. (p. 33) \\
\hline triu & Extracts the upper triangular part of a matrix. (p. 24) \\
\hline tril & Extracts the lower triangular part of a matrix. (p. 24) \\
\hline [] & The null matrix. This is also useful for deleting elements of a vector and rows or columns of a matrix. (p. 24) \\
\hline
\end{tabular}

Odds and Ends
\begin{tabular}{ll} 
path & Viewing and changing the search path. (p.) \\
cputime & Approximately the CPU time (in seconds) used during this session. (p. 27) \\
tic, toc & Returns the elapsed time between these two commands. (p. 27) \\
pause & Halts execution until you press some key. (p. 85) \\
rats & Converts a floating-point number to a "close" rational number, which is frequently \\
& the exact value. (p. 61)
\end{tabular}

Two-Dimensional Graphics
\begin{tabular}{|c|c|}
\hline plot & Plots the data points in Cartesian coordinates. (p. 47) \\
\hline fill & Fills one or more polygons. (p. 52) \\
\hline semilogx & The same as plot but the \(x\) axis is logarithmic. (p. 47) \\
\hline semilogy & The same as plot but the \(y\) axis is logarithmic. (p. 47) \\
\hline loglog & The same as plot but both axes are logarithmic. (p. 47) \\
\hline ezplot & Generates an "easy" plot (similar to fplot). It can also plot a parametric function, i.e., \((x(t), y(t))\), or an implicit function, i.e., \(f(x, y)=0\). (p. 47) \\
\hline polar & Plots the data points in polar coordinates. (p. 47) \\
\hline ezpolar & Generates an "easy" polar plot. (p. 47) \\
\hline linspace & Generates equally-spaced points, similar to the colon operator. (p. 47) \\
\hline xlabel & Puts a label on the \(x\)-axis. (p. 47) \\
\hline ylabel & Puts a label on the \(y\)-axis. (p. 47) \\
\hline title & Puts a title on the top of the plot. (p. 47) \\
\hline axis & Controls the scaling and the appearance of the axes. (p. 47) \\
\hline hold & Holds the current plot or release it. (p. 47) \\
\hline hist & Plots a histogram. (p. 47) \\
\hline errorbar & Plots a curve through data points and also the error bar at each data point. (p. 47) \\
\hline subplot & Divides the graphics window into rectangles and moves between them. (p. 47, 49) \\
\hline
\end{tabular}

\section*{Three-Dimensional Graphics}
\begin{tabular}{|ll|}
\hline plot3 & Plots the data points in Cartesian coordinates. (p. 49) \\
ezplot3 & Generates an "easy" plot in 3-D. (p. 49) \\
fill3 & Fills one or more 3D polygons. (p. 52) \\
mesh & Plots a 3-D surface using a wire mesh. (p. 49) \\
ezmesh & Generates an "easy" 3-D surface using a wire mesh. (p. 49) \\
surf & Plots a 3-D filled-in surface. (p. 49) \\
ezsurf & Generates an "easy" 3-D filled-in surface. (p. 49) \\
view & Changes the viewpoint of a 3-D surface plot. (p. 49) \\
meshgrid & Generates a 2-D grid. (p. 49) \\
zlabel & Puts a label on the \(z\)-axis. (p. 49) \\
axis & Controls the scaling and the appearance of the axes. (p. 49) \\
contour & Plots a contour looking down the \(z\) axis. (p. 49) \\
ezcontour & Generates an "easy" contour looking down the \(z\) axis. (p. 49) \\
contour3 & Plots a contour in 3-D. (p. 49) \\
ezcontour3 & \begin{tabular}{l} 
Generates an "easy" contour in 3-D. (p. 49) \\
subplot \\
colorbar
\end{tabular} \\
\begin{tabular}{l} 
Divides the graphics window into rectangles and moves between them. (p. 47, 49) \\
Adds a color bar showing the correspondence between the value and the color. \\
(p. 52)
\end{tabular} \\
colormap & Determines the current color map or choose a new one. (p. 52)
\end{tabular}

\section*{Advanced Graphics Features}
\begin{tabular}{|ll|}
\hline clf & Clear a figure (i.e., delete everything in the figure (p. 52) \\
demo & Runs demonstrations of many of the capabilities of MATLAB. (p. 16, 52) \\
figure & Creates a new graphics window and makes it the current target. (p. 52) \\
fplot & Plots the specified function within the limits given. (p. 47) \\
gtext & Places the text at the point given by the mouse. (p. 52) \\
image & Plots a two-dimensional image. (p. 52) \\
legend & Places a legend on the plot. (p. 52) \\
text & Adds the text at a particular location. (p. 52) \\
ginput & Obtains the current cursor position. (p. 52) \\
get & Returns the current value of the property of an object. (p. 54) \\
set & Sets the value of the property, or properties of an object. (p. 54) \\
gca & The current axes handle. (p. 54) \\
gcf & The current figure handle. (p. 54) \\
\hline
\end{tabular}

\section*{String Functions, Cell Arrays, and Structures}
\begin{tabular}{|ll|}
\hline num2str & \begin{tabular}{l} 
Converts a variable to a string. (p. 40) \\
sprintf \\
Behaves very similarly to the C command in writing data to a text variable using \\
any desired format. (p. 40)
\end{tabular} \\
sscanf & \begin{tabular}{l} 
Behaves very similarly to the C command in reading data from a text variable \\
using any desired format. (p. 40)
\end{tabular} \\
str2num & \begin{tabular}{l} 
Converts a string to a variable. (p. 40) \\
strcmp \\
cell
\end{tabular} \\
\begin{tabular}{l} 
Compares strings. (p. 70) \\
celldisp \\
Preallocate a cell array of a specific size. (p. 40)
\end{tabular} & \begin{tabular}{l} 
Display all the contents of a cell array. (p. 40) \\
Create a structure. (p. 40)
\end{tabular} \\
\hline
\end{tabular}

\section*{Data Manipulation Commands}
\begin{tabular}{|ll|}
\hline errorbar & \begin{tabular}{l} 
Plots a curve through data points and also the error bar at each data point. \\
(p. 47)
\end{tabular} \\
hist & \begin{tabular}{l} 
Plots a histogram of the elements of a vector. (p. 47) \\
max \\
min
\end{tabular} \\
mean & The maximum element of a vector. (p. 32) \\
norm & The minimum element of a vector. (p. 32) \\
prod & The mean, or average, of the elements of a vector. (p. 32) \\
sort & The norm of a vector or a matrix. (p. 32) \\
std & The product of the elements of a vector. (p. 32) \\
sum & \begin{tabular}{l} 
Sorts the elements of a vector in increasing order. (p. 32) \\
The standard deviation of the elements of a vector. (p. 32)
\end{tabular} \\
& The sum of the elements of a vector. (p. 32)
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Some Useful Functions in Linear Algebra \\
\hline chol & Calculates the Cholesky decomposition of a symmetric, positive definite matrix. (p. 68) \\
\hline cond & Calculates the condition number of a matrix. (p. 68) \\
\hline condest & Calculates a lower bound to the condition number of a square matrix. (p.68) \\
\hline det & Calculates the determinant of a square matrix. (p. 68) \\
\hline eig & Calculates the eigenvalues, and eigenvectors if desired, of a square matrix. (p. 68) \\
\hline eigs & Calculates some eigenvalues and eigenvectors of a square matrix. (p. 68) \\
\hline inv & Calculates the inverse of a square invertible matrix. (p. 68) \\
\hline linsolve & Solve a square matrix equation where the matrix can have certain properties to increase the CPU time. (p. 58) \\
\hline 1 l & Calculates the LU decomposition of a square invertible matrix. (p. 68) \\
\hline norm & Calculates the norm of a vector or matrix. (p.68) \\
\hline null & Calculates an orthonormal basis for the null space of a matrix. (p. 68) \\
\hline orth & Calculates an orthonormal basis for the range of a matrix. (p.68) \\
\hline pinv & Calculates the pseudoinverse of a matrix. (p.61) \\
\hline qr & Calculates the QR decomposition of a matrix. (p.68) \\
\hline rank & Estimates the rank of a matrix. (p. 68) \\
\hline rref & Calculates the reduced row echelon form of a matrix. (p. 58) \\
\hline svd & Calculates the singular value decomposition of a matrix. (p. 68) \\
\hline
\end{tabular}
\begin{tabular}{|ll|ll|}
\cline { 3 - 4 } \multicolumn{1}{c|}{} & \multicolumn{2}{l|}{ Logical and Relational Operators } \\
\hline \multicolumn{1}{l|}{} \\
\hline \multirow{2}{l|}{} & Logical AND. (p. 71) & \(<\) & Less than. (p. 70) \\
I & Logical OR. (p. 71) & \(<=\) & Less than or equal to. (p. 70) \\
\(\sim\) & Logical NOT. (p. 71) & \(==\) & Equal. (p. 70) \\
xor & Logical EXCLUSIVE OR. (p. 71) & \(>\) & Greater than. (p. 70) \\
& & \(>=\) & Greater than or equal to. (p. 70) \\
& & \(\sim=\) & Not equal to. (p. 70) \\
& & strcmp & Comparing strings. (p. 70) \\
\hline
\end{tabular}

Flow Control
```

break Terminates execution of a for or while loop. (p. 72)
case Part of the switch command. (p. 72)
continue Begins the next iteration of a for or while loop immediately. (p. 72)
else
elseif
end
error
for
if Executes statements if certain conditions are met. (p. 72)
otherwise Part of the switch command. (p. 72)
switch Selects certain statements based on the value of the switch expression. (p. 72)
while Repeats statements as long as an expression is true. (p. 72)

```

\section*{Logical Functions}
\begin{tabular}{|c|c|}
\hline all & True if all the elements of a vector are true; operates on the columns of a matrix. (p. 76) \\
\hline any & True if any of the elements of a vector are true; operates on the columns of a matrix. (p. 76) \\
\hline exist & False if this name is not the name of a variable or a file. (p. 76) \\
\hline find & The indices of a vector or matrix which are nonzero. (p. 76) \\
\hline ischar & True if a vector or array contains character elements. (p. 76) \\
\hline isempty & True if the matrix is empty, i.e., []. (p. 76) \\
\hline isfinite & Generates a matrix with 1 in all the elements which are finite (i.e., not Inf or NaN ) and 0 otherwise. (p. 76) \\
\hline isinf & Generates a matrix with 1 in all the elements which are Inf and 0 otherwise. (p. 76) \\
\hline islogical & True for a logical variable or array. (p. 76) \\
\hline isnan & Generates a matrix with 1 in all the elements which are NaN and 0 otherwise. (p. 76) \\
\hline logical & Converts a numeric variable to a logical one. (p. 76) \\
\hline
\end{tabular}

\section*{Programming Language Functions}
\begin{tabular}{|c|c|}
\hline echo & Turns echoing of statements in M-files on and off. (p. 85) \\
\hline end & Ends a function. Only required if the function m-file contains a nested function. (p. 72, 85) \\
\hline error & Displays the error message and terminates the function. (p. 85) \\
\hline eval & Executes MATLAB statements contained in a text variable. (p. 87) \\
\hline feval & Executes a function specified by a string. (p. 87) \\
\hline function & Begins a MATLAB function. (p. 85) \\
\hline global & Defines a global variable (i.e., it can be shared between different functions and/or the workspace). (p. 85) \\
\hline lasterr persistent & If eval "catches" an error, it is contained here. (p. 87) Defines a local variable whose value is to be saved between calls to the function. (p. 85) \\
\hline keyboard & Stops execution in an M-file and returns control to the user for debugging purposes. (p. 81, 85) \\
\hline nargin & Number of input arguments supplied by the user. (p. 85) \\
\hline nargout & Number of output arguments supplied by the user. (p. 85) \\
\hline return & Terminates the function immediately. (p. 81, 85) \\
\hline
\end{tabular}
\begin{tabular}{|ll|} 
& \multicolumn{1}{l|}{ Debugging Commands } \\
\hline keyboard & Turns debugging on. (p. 81, 85) \\
dbstep & Execute one or more lines. (p. 81) \\
dbcont & Continue execution. (p. 81) \\
dbstop & Set a breakpoint. (p. 81) \\
dbclear & Remove a breakpoint. (p. 81) \\
dbup & Change the workspace to the calling function or the base workspace. (p. 81) \\
dbdown & Change the workspace down to the called function. (p. 81) \\
dbstack & Display all the calling functions. (p. 81) \\
dbstatus & List all the breakpoints. (p. 81) \\
dbtype & List the current function, including the line numbers. (p. 81) \\
dbquit & Quit debugging mode and terminate the function. (p. 81) \\
return & Quit debugging mode and continue execution of the function. (p. 81, 85)
\end{tabular}

\section*{Discrete Fourier Transform}
\begin{tabular}{|ll|}
\hline fft & The discrete Fourier transform. (p. 116) \\
fftshift & Switches the first half and the second half of the elements of a vector. (p. 116) \\
ifft & The inverse discrete Fourier transform. (p. 116)
\end{tabular}

\section*{Sparse Matrix Functions}
```

speye Generates a Sparse identity matrix. (p. 92)
sprand Sparse uniformly distributed random matrix. (p. 92, 92)
sprandn Sparse normally distributed random matrix. (p. 92)
sparse Generates a sparse matrix elementwise. (p. 92)
spdiags Generates a sparse matrix by diagonals. (p. 92)
full Converts a sparse matrix to a full matrix. (p. 92)
find Finds the indices of the nonzero elements of a matrix. (p. 92)
nnz Returns the number of nonzero elements in a matrix. (p. 92)
spfun Applies the function to a sparse matrix. (p. 92)
spy Plots the locations of the nonzero elements of a sparse matrix. (p. 92)
spconvert Generates a sparse matrix given the nonzero elements and their indices. (p. 92)

```

\section*{Time Evolution ODE Solvers}
\begin{tabular}{|ll|}
\hline ode45 & Non-stiff ode solver; fourth-order, one-step method for the ode \(\mathrm{y}^{\prime}=\mathrm{f}(t, \mathrm{y}) . \quad\) (p. 94) \\
ode23 & Non-stiff ode solver; second-order, one-step method. (p. 94) \\
ode113 & Non-stiff ode solver; variable-order, multi-step method. (p. 94) \\
ode15s & Stiff ode solver; variable-order, multi-step method. (p. 94) \\
ode23s & Stiff ode solver; second-order, one-step method. (p. 94) \\
ode23t & Stiff ode solver; trapezoidal method. (p. 94) \\
ode23tb & Stiff ode solver; second-order, one-step method. (p. 94) \\
ode15i & \begin{tabular}{l} 
Stiff ode solver; variable-order, multi-step method for the fully implicit ode \\
f \(\left(t, y, y^{\prime}\right)=\mathbf{0 . ~ ( p . ~ 1 0 2 ) ~}\) \\
odeset
\end{tabular} \\
& Assigns values to properties of the ode solver. (p. 96)
\end{tabular}

\section*{Boundary-Value Solver}
bvp4c Numerically solves \(\mathrm{y}^{\prime}(x)=\mathrm{f}(x, \mathrm{y})\) for \(x \in[a, b]\) with given boundary conditions and an initial guess for y . (p. 106)
bvpinit Calculates the initial guess either by giving y directly or by using a function \(\mathrm{y}=\) initial_guess_function \((x)\). (p. 106)
deval Interpolate to determine the solution desired points. (p. 106)

\section*{Numerical Operations on Functions}
\begin{tabular}{|ll|}
\hline dblquad & Numerically evaluates a double integral. (p. 111) \\
fminbnd & Numerically calculates a local minimum of a one-dimensional function. (p. ) \\
fminsearch & Numerically calculates a local minimum of a multi-dimensional function. (p. 111) \\
optimset & \begin{tabular}{l} 
Allows you to modify the parameters used by fzero, fminbnd, and fminsearch. \\
(p. 111)
\end{tabular} \\
fzero & \begin{tabular}{l} 
Numerically calculates a zero of a function. (p. 111) \\
quad \\
quadl
\end{tabular} \\
\begin{tabular}{l} 
Numerically evaluates an integral using Simpson's method. (p. 111) \\
Numerically evaluates an integral using the adaptive Gauss-Lobatto method. \\
(p. 111)
\end{tabular} \\
\hline
\end{tabular}

Numerical Operations on Polynomials
\begin{tabular}{|ll|}
\hline interp1 & Does one-dimensional interpolation. (p. 108) \\
interp2 & Does two-dimensional interpolation. (p. 108) \\
interp3 & Does three-dimensional interpolation. (p. 108) \\
interp4 & Does n-dimensional interpolation. (p.) \\
pchip & Cubic Hermite interpolation. (p. 108) \\
poly & Calculates the coefficients of a polynomial given its roots. (p. 108) \\
polyder & \begin{tabular}{l} 
Calculates the derivative of a polynomial. (p. 108) \\
polyfit \\
\\
Calculates the least-squares polynomial of a given order which fits the given data. \\
(p. 108)
\end{tabular} \\
polyval & Evaluates a polynomial at a point. (p. 108) \\
polyvalm & Evaluates a polynomial with a matrix argument. (p. 108) \\
ppval & interpolates a piecewise polynomial calculated by pchip or spline. (p. 108) \\
roots & Numerically calculates all the zeroes of a polynomial. (p. 108) \\
spline & Cubic spline interpolation. (p. 108)
\end{tabular}

Matrix Functions
\begin{tabular}{|ll|}
\hline expm & Matrix exponentiation. (p. 118) \\
funm & Evaluate general matrix function. (p. 118) \\
logm & Matrix logarithm. (p. 118) \\
sqrtm & Matrix square root. (p. 118) \\
\hline
\end{tabular}

\section*{Solutions To Exercises}

These are the solutions to the exercises given in subsections 1.9, 2.9, and 4.5.
```

1.9.1a) >> a = 3.7; b = 5.7; deg = pi/180; ab = 79*deg;
> c = sqrt(a^2 + b^2 - 2*a*b*\operatorname{cos(ab))}
answer: 7.3640
b) >> format long
> c
answer: 7.36398828251259
c) >> format short e
> asin((b/c)*sin(ab)) / deg
answer: 4.9448e+01
d) >> diary 'triangle.ans'
.9.2) > (1.2e20 - i*12^20)^(1/3)
answer: 1.3637e+07 - 7.6850e+06i
1.9.3) >> th = input('th ='); cos(2*th) - (2*\operatorname{cos}(th)^2 - 1)
1.9.4) help fix or doc fix.
2.9.1a) >> A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]
> A = [1:4; 5:8; 9:12; 13:16]
> A = [[1:4:13]' [2:4:14]' [3:4:15]' [4:4:16]']
b) > A(2,:) = (-9/5)*A(2,:) + A(3,:)
2.9.2) > A = 4*eye(n) - diag(ones (n-1,1), 1) - diag(ones(n-1,1), -1)
2.9.3) > A = diag([1:n].^2) - diag(ones(n-1,1), 1) - diag(exp([2:n]), -1)
2.9.4a) > A = [ones(6,4) zeros(6)]; A (6,1) = 5; A (1, 10) = -5
b) > A = A - tril(A,-1)
2.9.5) > x = [0:30]'.^2 % or }\textrm{x}=[0:30].^2'
2.9.6a) > R = rand(5)
b) >> [m,im] = max(R')
c) > mean(mean(R)) % or mean(R(:))
d) >> S = sin(R)
e) >> r = diag(R)
2.9.7a) > A =[ll 2 3; 4 5 6; 7 8 10]
> B = A^.5 % or B = sqrtm(A)
> C = A.^.5 % or C = sqrt(A)
b) >> A - B^2
> A - C.^2
4.5.1a) >> x = linspace(-1, +1, 100);
> y = exp(x);
> plot(x, y)
b) >> z=1+x + x.^2 /2 + x.^6 /6
> hold on
> plot(x, z)

```
c) \(\gg \operatorname{plot}(x, y-z)\)
d) \(\gg\) hold off
\(\gg \operatorname{plot}\left(\mathrm{x}, \mathrm{y},{ }^{\prime} \mathrm{r}\right.\) ', \(\mathrm{x}, \mathrm{z}, \mathrm{g}^{\prime}\), \(\mathrm{x}, \mathrm{y}-\mathrm{z}, \mathrm{m}^{\prime}\) )
\(\gg\) axis equal
\(\gg x\) xlabel('x')
\(\gg y l a b e l\left({ }^{\prime} y^{\prime}\right)\)
\(\gg \operatorname{title}\left({ }^{\prime} \mathrm{e}^{\wedge} \mathrm{i} \backslash \mathrm{pi}=-1\right.\) is profound')
e) \(\gg \operatorname{subplot}(2,1,1)\)
\(\gg\) hold off
\(\gg \operatorname{plot}(x, y, ' r ', x, z, ' g ')\)
> axis equal
\(\gg x l a b e l\left({ }^{\prime} x^{\prime}\right)\)
\(\gg y l a b e l\left({ }^{\prime} y^{\prime}\right)\)
\(>\) title('e^i\pi = -1 is profound')
\(\gg \operatorname{subplot}(2,1,2)\)
\(\gg \operatorname{plot}(x, y-z)\)
4.5.2a) > \(\mathrm{x}=\operatorname{linspace}(-3,3,91)\);
\(>y=x\);
\(\gg \mathrm{X}, \mathrm{Y}]=\operatorname{meshgrid}(\mathrm{x}, \mathrm{y})\); \(\%\) or just do \([\mathrm{X}, \mathrm{Y}]=\operatorname{meshgrid}(\mathrm{x}, \mathrm{x})\);
\(\gg Z=(X . \wedge 2+4 * Y . \wedge 2) . * \sin (2 * \mathrm{pi} * \mathrm{X}) . * \sin (2 * \mathrm{pi} * \mathrm{Y}) ;\)
\(>\operatorname{surf}(X, Y, Z)\);
b) One particular choice is
```

 > view([1 2 5]) % or view([\begin{array}{lll}{66}&{66}\end{array}])
    ```

\section*{ASCII Table}
\begin{tabular}{|c|c|c|c|}
\hline Octal & Decimal & \begin{tabular}{l}
Control \\
Sequence
\end{tabular} & Description \\
\hline 000 & 0 & ^@ & Null character \\
\hline 001 & 1 & \(\wedge\) A & Start of header \\
\hline 002 & 2 & \(\wedge\) B & Start of text \\
\hline 003 & 3 & \(\wedge\) - & End of text \\
\hline 004 & 4 & \(\wedge\) D & End of transmission \\
\hline 005 & 5 & \(\wedge \mathrm{E}\) & Enquiry \\
\hline 006 & 6 & \(\wedge\) F & Acknowledgment \\
\hline 007 & 7 & \(\wedge \mathrm{G}\) & Bell \\
\hline 010 & 8 & \(\wedge \mathrm{H}\) & Backspace \\
\hline 011 & 9 & \(\wedge\) & Horizontal tab \\
\hline 012 & 10 & \(\wedge\) J & Line feed \\
\hline 013 & 11 & \(\wedge\) K & Vertical tab \\
\hline 014 & 12 & \(\wedge\) L & Form feed \\
\hline 015 & 13 & \(\wedge\) M & Carriage return \\
\hline 016 & 14 & \(\wedge\) N & Shift out \\
\hline 017 & 15 & \(\wedge \mathrm{O}\) & Shift in \\
\hline 020 & 16 & \(\wedge \mathrm{P}\) & Data link escape \\
\hline 021 & 17 & \(\wedge\) Q & Device control 1 (often XON) \\
\hline 022 & 18 & \(\wedge\) R & Device control 2 \\
\hline 023 & 19 & \(\wedge\) S & Device control 3 (often XOFF) \\
\hline 024 & 20 & \(\wedge\) T & Device control 4 \\
\hline 025 & 21 & \(\wedge\) U & Negative acknowledgement \\
\hline 026 & 22 & \(\wedge\) V & Synchronous idle \\
\hline 027 & 23 & \(\wedge\) W & End of transmissions block \\
\hline 030 & 24 & \(\wedge\) X & Cancel \\
\hline 031 & 25 & \(\wedge\) & End of medium \\
\hline 032 & 26 & \(\wedge\) Z & Substitute \\
\hline 033 & 27 & \(\wedge[\) & Escape \\
\hline 034 & 28 & \(\wedge\) & File separator \\
\hline 035 & 29 & ^] & Group separator \\
\hline 036 & 30 & ヘ^ & Record separator \\
\hline 037 & 31 & ^- & Unit separator \\
\hline 040 & 32 & & Space \\
\hline 041 & 33 & & ! \\
\hline 042 & 34 & & " Double quote \\
\hline 043 & 35 & & \# Numer sign \\
\hline 044 & 36 & & \$ Dollar sign \\
\hline 045 & 37 & & \% Percent \\
\hline 046 & 38 & & \& Ampersand \\
\hline 047 & 39 & & , Closing single quote (apostrophe) \\
\hline 050 & 40 & & ( Left parenthesis \\
\hline 051 & 41 & & ) Right parenthesis \\
\hline 052 & 42 & & * Asterisk \\
\hline 053 & 43 & & + Plus sign \\
\hline 054 & 44 & & , Comma \\
\hline 055 & 45 & & - Minus sign or dash \\
\hline 056 & 46 & & . Dot \\
\hline 057 & 47 & & / Forward slash \\
\hline 060 & 48 & & 0 \\
\hline 061 & 49 & & 1 \\
\hline 062 & 50 & & 2 \\
\hline 063 & 51 & & 3 \\
\hline 064 & 52 & & 4 \\
\hline 065 & 53 & & 5 \\
\hline 066 & 54 & & 6 \\
\hline 067 & 55 & & 7 \\
\hline 070 & 56 & & 8 \\
\hline 071 & 57 & & 9 \\
\hline 072 & 58 & & : Colon \\
\hline 073 & 59 & & ; Semicolon \\
\hline 074 & 60 & & < Less than sign \\
\hline 075 & 61 & & \(=\) Equal sign \\
\hline 076 & 62 & & \(>\) Greather than sign \\
\hline 077 & 63 & & ? Question mark \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Octal & Decimal & Control Sequence & \multicolumn{2}{|l|}{Description} \\
\hline 100 & 64 & & @ & AT symbol \\
\hline 101 & 65 & & A & \\
\hline 102 & 66 & & B & \\
\hline 103 & 67 & & C & \\
\hline 104 & 68 & & D & \\
\hline 105 & 69 & & E & \\
\hline 106 & 70 & & F & \\
\hline 107 & 71 & & G & \\
\hline 110 & 72 & & H & \\
\hline 111 & 73 & & I & \\
\hline 112 & 74 & & J & \\
\hline 113 & 75 & & K & \\
\hline 114 & 76 & & L & \\
\hline 115 & 77 & & M & \\
\hline 116 & 78 & & \(\widetilde{N}\) & \\
\hline 117 & 79 & & O & \\
\hline 120 & 80 & & P & \\
\hline 121 & 81 & & Q & \\
\hline 122 & 82 & & R & \\
\hline 123 & 83 & & S & \\
\hline 124 & 84 & & T & \\
\hline 125 & 85 & & U & \\
\hline 126 & 86 & & V & \\
\hline 127 & 87 & & W & \\
\hline 130 & 88 & & X & \\
\hline 131 & 89 & & Y & \\
\hline 132 & 90 & & Z & \\
\hline 133 & 91 & & [ & Left bracket \\
\hline 134 & 92 & & \(\backslash\) & Back slash \\
\hline 135 & 93 & & ] & Right bracket \\
\hline 136 & 94 & & ^ & Caret \\
\hline 137 & 95 & & - & Underscore \\
\hline 140 & 96 & & - & Opening single quote \\
\hline 141 & 97 & & a & \\
\hline 142 & 98 & & b & \\
\hline 143 & 99 & & c & \\
\hline 144 & 100 & & d & \\
\hline 145 & 101 & & e & \\
\hline 146 & 102 & & f & \\
\hline 147 & 103 & & g & \\
\hline 150 & 104 & & h & \\
\hline 151 & 105 & & i & \\
\hline 152 & 106 & & j & \\
\hline 153 & 107 & & k & \\
\hline 154 & 108 & & 1 & \\
\hline 155 & 109 & & m & \\
\hline 156 & 110 & & n & \\
\hline 157 & 111 & & o & \\
\hline 160 & 112 & & p & \\
\hline 161 & 113 & & q & \\
\hline 162 & 114 & & r & \\
\hline 163 & 115 & & S & \\
\hline 164 & 116 & & t & \\
\hline 165 & 117 & & u & \\
\hline 166 & 118 & & v & \\
\hline 167 & 119 & & w & \\
\hline 170 & 120 & & x & \\
\hline 171 & 121 & & y & \\
\hline 172 & 122 & & z & \\
\hline 173 & 123 & & \{ & Left brace \\
\hline 174 & 124 & & | & Vertical bar \\
\hline 175 & 125 & & \} & Right brace \\
\hline 176 & 126 & & & Tilde \\
\hline 177 & 127 & ^? & & Delete \\
\hline
\end{tabular}

American Standard Code for Information Interchange (ASCII) specifies a correspondence between bit patterns and character symbols. The octal and decimal representations of the bit patterns are shown along
with a description of the character symbol. The first 32 codes (numbers \(0-31\) decimal) as well as the last (number 127 decimal) are non-printing characters which were initially intended to control devices or provide meta-information about data streams. For example, decimal 10 ended a line on a line printer and decimal 8 backspaced one character so that the preceding character would be overstruck. The control sequence column shows the traditional key sequences for inputting these non-printing characters where the caret ( \(\wedge\) ) represents the "Control" or "Ctrl" key which must be held down while the following key is depressed.

\section*{Index}

Note: In this index MATLAB commands come first, followed by symbols, and only then does the index begin with "A".
Note: All words shown in typewriter font are MATLAB commands or predefined variables unless it is specifically stated that they are defined locally (i.e., in this document).
Note: If an item is a primary topic of a section, an appendix, or a subsection, this is indicated as well as the page number (in parentheses).

\section*{MATLAB functions}
abs, \(12,13,122\)
acos, 12, 122
acosd, 12, 122
acot, 12,122
acotd, 12, 122
acosh, 12, 122
acsc, 12, 122
acscd, 12, 122
all, 75, 76, 127
angle, 13,122
any, \(75,76,127\)
asec, 122
asecd, 122
asin, 12, 122
asind, 12, 122
asinh, 12,122
atan, 12, 122
atand, 12,122
atanh, 12, 122
atan2, 12, 122
axis, \(42,47,49,51,124,125\)
ballode, 97
break, 72, 127
bvp4c, 103, 104, 106, 129
bvpinit, 104, 106, 129
case, 72, 127
different than in C, 72
cat, \(32,33,123\)
ceil, 12, 122
cell, 38, 40, 125
celldisp, 38, 40, 125
chol, \(63,68,126\)
clear, \(8,9,12,29,123\)
danger in using, 8
clf, \(51,52,125\)
colorbar, 51, 52, 125
colormap, 51, 52, 125
cond, 59, 63, 68, 126
condest, \(63,68,126\)
conj, 13, 122
continue, 72, 127
contour, 48, 49, 125
contour3, 48, 49, 125
cos, 12,122
cosd, 12, 122
cosh, 12, 122
cot, 12,122
```

cotd, 12, 122
cputime, 27, 124
csc, 12, 122
cscd, 12, 122
csvread, 44, 45, 46, 61, 121
csvwrite, 44, 46, 61, 121
cumsum, 31, 32
dblquad, 110, 111, 129
dbclear, 81, 128
dbcont, 81, 128
dbdown, 81, 128
dbquit, 80, 81, 128
dbstack, 81, 128
dbstatus, 81, 128
dbstep, 81, 128
dbstop, 81,128
dbtype, 81, 128
dbup, 81, 128
demo, 3, 15, 16, 40, 49, 52, 120, 125
det, 64, 68, 126
deval, 105, 106,129
diag, 22, 24, 123
diary, 6, 7, 121
diff, 31, 32
disp, 8, 9, 37, }6
doc, 4, 15, 16, 120
echo, 80, 85, 128
eig, 27, 64, 68, 79, 126
eigs, 65, 68, 126
else, 70, 72, 127
elseif, 70, 72, 127
end, 69, 70, 71, 72, 83, 85, 127, 128
error, 78, 85, 127, 128
errorbar, 44, 47, 124, 126
eval, 86, 87, 128
exist, 76,127
exp, 12,13, 122
expm, 117, 130
eye, 19, 20, 123
ezcontour, 48, 49, 125
ezcontour3, 48, 49,125
ezmesh, 48, 49, 125
ezplot, 43, 47, 124
ezplot3, 48, 49, 125
ezpolar, 43, 47, 124
ezsurf, 48, 49, 125
factorial, 11, 12, 122
false, 71, 72, 123
fclose, 61, 62, 121

```
feval, \(83,86,87,128\)
fft, \(113,116,128\)
fftshift, \(115,116,128\)
figure, 50, 52, 125
fill, 52,124
fill3, 52,125
find, \(74,76,91,92,127,129\)
fix, 12,122
fliplr, 23, 24, 123
flipud, 23, 24, 123
floor, 12,122
fminbnd, \(109,111,129\)
fminsearch, 109, 111, 129
fopen, 61, 62, 121
for, \(69,72,127\)
format, 10,11 , Subsect. 2.5 (27), 120
fplot, \(36,42,52,125\)
fprintf, 8, 37, 45, 61, 62, 121
fscanf, 45, 61, 62, 121
full, \(90,92,129\)
function, \(76,83,85,128\)
funm, 117, 130
fzero, \(108,109,111,129\)
gca, 54,125
gcf, 54, 125
get, 54, 125
ginput, \(49,52,125\)
global, \(82,85,128\)
gtext, 50, 51, 52, 53, 125
help, \(4,14,16,77,83,120\)
helpdesk, 15,120
hilb, 28, 29, 64, 87, 123
hist, 44, 47, 124, 126
hold, 42, 47, 124
if, \(70,72,127\)
ifft, \(113,116,128\)
imag, 13, 122
image, \(51,52,125\)
inline, 36
input, 10,121
interp1, 108, 130
interp2, 108, 130
interp3, 108, 130
interpn, 108, 130
inv, \(25,65,68,126\)
ischar, 76, 127
isempty, 76, 82, 127
isfinite, 76, 127
isinf, 76, 127
islogical, 75, 76, 127
isnan, 76, 127
keyboard, 80, 81, 85, 128
lasterr, 86, 87, 128
legend, 50, 52, 125
length (number of elements in), 19, 20, 31, 74, 123
linsolve, 55, 58, 126
linspace, 41, 44, 47, 124
load, \(15,16,45,46,51,120,121\)
be careful, 45
log, 12, 122
logical, 75, 76, 127
loglog, 42, 47, 124
logm, 117, 130
\(\log 10,12,122\)
lookfor, \(14,16,77,83,120\)
lu, 66, 68, 126
\(\max , 30,32,126\)
mean, \(30,32,126\)
mesh, \(48,49,51,125\)
meshgrid, 48, 49, 125
min, 32,126
mod, 12, 122
nargin, 79, 85, 128
nargout, 79, 85, 128
nnz, 91, 92, 129
norm, \(31,32,66,68,79,126\)
null, \(66,68,126\)
num2str, \(37,40,45,62,125\)
odeset, 96, 100, 101, 129
ode113, 94, 129
ode15i, 101, 102, 129
ode15s, 94, 129
ode23, 94, 129
ode23s, 94, 129
ode23t, 94, 129
ode23tb, 94, 129
ode45, 94, 129
ones, 19, 20, 123
optimset, 109, 111, 129
orth, \(67,68,126\)
otherwise, 72, 127
path, 77,124
pause, 80, 85, 124
pchip, 108, 130
persistent, \(82,85,128\)
pinv, \(60,61,126\)
plot, 40, 42, 43, 47, 107, 124
plot3, 48, 49, 125
polar, 43, 47, 124
poly, 106, 108, 130
polyder, 107, 108, 130
polyfit, 107, 108
polyval, 106, 107, 108, 130
polyvalm, 106, 108, 130
ppval, 108, 130
print, \(45,46,121\)
prod, 32,126
qr, \(67,68,126\)
quad, \(110,111,129\)
quadl, \(110,111,129\)
rand, \(19,20,44,59,123\)
randn, 19, 20, 44, 123
randperm, 19, 20, 123
rank, \(67,68,126\)
rats, 61,124
real, 13,122
rem, 12,122
repmat, 24,123
reshape, \(22,23,24,123\)
return, \(78,80,81,85,128\)
roots, \(106,108,130\)
rot90, 24,123
```

round, 12, 122
rref, Sect. }5\mathrm{ (55), 58, 85, 126
save, 15, 16, 120
sec, 12, 122
secd, 12, 122
semilogx, 42, 47, 124
semilogy, 42, 47, 124
set, 53, 54, 125
sign, 12,122
sin, 12, 122
sind, 12, 122
sinh, 12, 122
size, 19, 20, 123
sort, 31, 32, 126
sparse, 89, 91, 92, 129
spconvert, 91, 92, 129
spdiags, 90, 92, 129
differences from diag, 90
speye, 92, 123, 129
spfun, 92, 129
spline, 108, 130
sprand, 91, 92, 123, 129
sprandn, 91, 92, 123, 129
sprandsym, 91, 92, 123
sprintf, 37, 40, 125
spy, 92, 129
sqrt, 12, 29, 122
sqrtm, 25,117, 130
squeeze, 33, 123
sscanf, 37, 40, 125
std, 31, 32, 126
strcmp, 70, 125, 126
str2num, 37, 40, 125
struct, 39, 40, 125
subplot, 42,47,49, 124, 125
sum, 32, 73, 126
surf, 48, 49, 51, 125
svd, 67, 68, 126
switch, 72, 127
different than in C, 72
tan, 12, 122
tand, 12
tanh, 12, 122
text, 49, 51, 52, 53, 125
tic, 27, 124
title, 43, 47, 53, 124
toc, 27, 124
tril, 23, 24, 123
triplequad, }11
triu, 23, 24, 123
true, 71, 72, 123
type, 14, 15, 16, 77, 83, 120
vander, 107, 108, 123
vectorize, 36,40
view, 48, 49, }12
while, 71, 72, 127
who, 15, 16, 120
whos, 15, 16, 120
xlabel, 43, 47, 50, 53, 124
xor, 71, 73, 126
ylabel, 43, 47, 50, 53, 124

```
zeros, 19, 20, 123
zlabel, \(49,51,53,125\)

\section*{Symbols}
\(+, \quad 7,25,27,119\)
exception to, 26
-, 7, 25, 27, 119
*, \(7,25,27,119\)
.*, 26, 27, 119
/, 7, 25, 27, 119
warning about matrix division, 25
./, 26, 27, 119
\\, 7, 27, 55, 57, 60, 61, 119
. \(\backslash, 26,27\)
^, \(6,7,25,27,119\)
.^, 26, 27
', 7, 18, 20, 123
.\(^{\prime}\), 18, 20, 123
..., 14, 119
\(\%, \quad 14,119\)
,, 7, 9, 17, 24, 119
; \(\quad 7,9,17,24,119\)
: \(\quad\) 18, Subsect. 2.2 (21), Subsect. 2.3 (21), 24, 119
<, 70, 126
<=, 70, 126
>, 70,126
\(>=, \quad 70,126\)
==, 70, 126
\(\sim=\quad 70,126\)
\&, \(71,73,126\)
।, 71, 73, 126
\(\sim\), 71, 73, 126
!, See factorial
[], 24, 29, 123
©, 35
\(\uparrow\) up-arrow key, 6, 7, 119

\section*{A}
\(\mathrm{A}^{\mathrm{H}}\), See Conjugate transpose
A \(^{\mathrm{T}}\), See Transpose
\(\mathrm{A}^{+}\), See Pseudoinverse
Abort statement, 14
abs, \(12,13,122\)
Accuracy, 10
principle, 11
acos, 12, 122
acosd, 12, 122
acosh, 12, 122
acot, 12,122
acotd, 12, 122
acsc, 12,122
acscd, 12, 122
all, 75, 76, 127
AND (logical operator), 71, 73, 126
angle, 13,122
Anonymous functions, See Function
ans, \(8,9,120\)
any, \(75,76,127\)
Arithmetic progression, 21

Arithmetical operations, Subsect. 1.1 (6), Subsect. 2.4 (25), 119
+, 7, 25, 27, 119
exception to, 26
-, \(7,25,27,119\)
/, 7, 25, 27, 119
warning about matrix division, 25
./, 26, 27, 119
*, 7, 25, 27, 119
.*, 26, 27, 119
\\, 7, 27, 55, 57, 60, 61, 119
. \(\backslash, \quad 26,27\)
^, \(7,25,27,119\)
.^, 26,27
elementwise, 26
Array, Sect. 2 (16)
See also Matrix, Multidimensional array, Vector, or Cell array
ASCII character representation, 36, 49, 133
asec, 122
asecd, 122
asin, 12, 122
asind, 12, 122
asinh, 12,122
atan, 12, 122
atand, 12, 122
atanh, 12,122
atan2, 12, 122
Augmented matrix form, 55-58
See also Matrix
Average value, 30
axis, \(42,47,49,51,124,125\)

\section*{B}

Ball, 99-101
ballode, 97
Bessel's equation, See Initial-value ordinary differential equations
Binary format, 15, 45
Boundary-value ordinary differential equations, Sect. 11 (103), 106, 129
continuation method, 105
break, 72, 127
bvp4c, 103, 104, 106, 129
bvpinit, \(104,106,129\)

\section*{C}
\({ }^{\wedge}\) C, \(14,16,120\)
C (programming language), \(7,21,35,39,40,45,52,61\), \(62,72,81,82,121,125\)
\(\mathrm{C}++\) (programming language), 39, 86
Calculator, Subsect. 1.1 (6)
case, 72, 127
different than in C, 72
Case sensitive, 9
cat, \(32,33,123\)
Catching errors, 86
ceil, 12,122
cell, \(38,40,125\)

Cell array, 34, Subsect. 3.4 (37), 44
celldisp, \(38,40,125\)
Character string, 7, Subsect. 3.3 (36), 125
appending to, 37
concatenating, 37
converting to, 37
comparing strings, 70
executing, 85
multiline, 37
\(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) commands in, \(\quad 50\)
chol, \(63,68,126\)
Cholesky decomposition, 63
clear, \(8,9,12,29,123\)
danger in using, 8
Clear (a figure), 50
See also clf
clf, \(51,52,125\)
Clown, 51
Colon operator, 18, Subsect. 2.2 (21), Subsect. 2.3 (21), 24, 119
possible floating-point errors in, 21, 41 See also linspace
colorbar, 51, 52, 125
Color map, 51
colormap, 51, 52, 125
Colors, See RGB components
Command, 3
See also Function
Comment character, 14, 119
Complex conjugate, 13
Complex numbers, 6, Subsect. 1.6 (13)
Conchoid of Nicodemes
cond, 59, 63, 68, 126
condest, \(63,68,126\)
Condition number, See Matrix
conj, 13, 122
Conjugate transpose, 18
See also Transpose
Continuation (of a line), 14, 119
Continuation method, 105
continue, 72,127
contour, 48, 49, 125
Contour plot, 48
contour3, 48, 49, 125
Control flow, See Programming language
cos, 12,122
cosd, 12, 122
\(\cos z, \quad 13\)
cosh, 12,122
cot, 12,122
cotd, 12, 122
CPU, 27
cputime, 27, 124
csc, 12, 122
cscd, 12, 122
csvread, \(44,45,46,61,121\)
csvwrite, 44, 46, 61, 121
Cubic splines, See Interpolation
cumsum, 31, 32
Cursor
entering current position, 49

\section*{D}

Data
best polynomial fit to, 106
closing files, 61
manipulation, \(\quad\) Subsect. 2.7 (30), 126
opening files, 61
reading into MATLAB, 44, 45, 46, 61, 91, 121
writing from MATLAB, 44, 46, 61, 121
Data types, 34
dblquad, 110, 111, 129
dbclear, 81, 128
dbcont, 81, 128
dbdown, 81, 128
dbquit, \(80,81,128\)
dbstack, 81, 128
dbstatus, 81, 128
dbstep, 81, 128
dbstop, 81, 128
dbtype, 81, 128
dbup, 81, 128
Debugging M-files, See Function files and Script files
demo, \(3,15,16,40,49,52,120,125\)
Demonstration program, 3, 15, 49, 51
det, \(64,68,126\)
Determinant, 64
deval, 105, 106, 129
diag, 22, 24, 123
Diagonals, See Matrix
diary, 6, 7, 121
diff, 31,32
Digits of accuracy, 10
disp, 8, 9, 37, 62
Display
formatting the, Subsect. 1.4 (10)
misinterpreting, Subsect. 2.5 (27)
suppressing, 7, 9, 17, 24, 119
variable, \(8,9,62\)
See also disp, fprintf
doc, \(4,15,16,120\)
Documentation (MATLAB), 15
Dot product, 26
Duffing's equation, See Initial-value ordinary
differential equations
duffing (locally defined), 93
duffing_event (locally defined), 97
duffing1 (locally defined), 95-96

\section*{E}
\(e^{z}, 13\)
Earth, 51
echo, \(80,85,128\)
eig, \(27,64,68,79,126\)
Eigenvalues, 27, 63, 64, 65, 67, 79
definition of, 64
Eigenvectors, 64, 65, 67, 79
eigs, \(65,68,126\)
else, 70, 72, 127
elseif, \(70,72,127\)
end, \(69,70,71,72,83,85,127,128\)
eps, \(9,10,71,120\)
See also Machine epsilon
Erase (a figure), 50
See also clf
error, \(78,85,127,128\)
Error bars, 44
errorbar, 44, 47, 124, 126
Euclidean length, See Length of a vector
eval, 86, 87, 128
EXCLUSIVE OR (logical operator), 71, 73, 126
exist, 76,127
exp, 12, 13, 122
expm, 117, 130
Exponentiation, 6, 7, 25
Extrapolation, 107
See also Interpolation
eye, 19, 20, 123
ezcontour, 48, 49, 125
ezcontour3, 48, 49, 125
ezmesh, 48, 49, 125
ezplot, 43, 47, 124
ezplot3, 48, 49, 125
ezpolar, 43, 47, 124
ezsurf, 48, 49, 125

\section*{F}
factorial, \(11,12,122\)
Factorial function, 11
false, 71, 72, 123
FALSE (result of logical expression), 71
Fast Fourier transform, See Fourier transform
fclose, 61, 62, 121
feval, \(83,86,87,128\)
fft, \(113,116,128\)
fftshift, 115, 116, 128
Field, See Structure
figure, \(50,52,125\)
fill, 52,124
fill3, 52, 125
find, \(74,76,91,92,127,129\)
Finite differences, 31
fix, 12, 122
Floating-point numbers, 9, 21
Floating-point operations, See Flops
fliplr, 23, 24, 123
flipud, 23, 24, 123
floor, 12, 122
Flops (floating-point operations), 27
Flow control, See Programming language
fminbnd, 109, 111, 129
fminsearch, 109, 111, 129
fopen, 61, 62, 121
for, \(69,72,127\)
format, 10, 11, Subsect. 2.5 (27), 120
Format options (in format command), 10, 11, 120
Format specifications (in fprintf, fscanf, sprintf, and sscanf), 61
Fourier series, Sect. 14 (111)
complex, 112
real, 111

Fourier transform, Sect. 14 (111)
discrete, Sect. 14 (111), 116, 128
fast (FFT), 114
fplot, \(36,42,52,125\)
fprintf, 8, 37, 45, 61, 62, 121
printing a matrix, 62
specifications (format), 61
Frequency, See Power
fscanf, 45, 61, 62, 121
specifications (format), 61
full, \(90,92,129\)
function, \(76,83,85,128\)
Function, Subsect. 8.3 (76)
anonymous, Subsect. 3.1 (35), 39
warning, 36
built-in, 11, 14, 15
commands in, 81, 85, 128
comments in, 77
conflict between function and variable name, 11
debugging, 80
definition line, 76
differences from command, 3
end statement, 83
ending, 83
error, \(78,85,127,128\)
example using multiple input and output arguments, 79
function (required word), \(76,83,85,128\)
inline, 36
warning, 36
input and output arguments, 76,81
pass by reference, 77
pass by value, 77
variable number of, 79
name of, 13
warning about user-defined m -files, 14
nested functions in, 77, 83, 84
order in which MATLAB searches for functions, 77, 85
passing function name in argument list, Subsect. 3.2 (36), 86
primary, 83
private, 85
return, \(78,80,81,85,128\)
saving parameters in, \(82-83\)
subfunctions in, 77,83
Function handle, 35, 39
Functions (mathematical)
See also Polynomials
common mathematical, Subsect. 1.5 (11)
definite integrals of, 110
"hijacked", 85
local minimum of, 109
numerical operations on, 108, 111, 129
zeroes of, 108, 110
funm, 117, 130
fzero, \(108,109,111,129\)

Gauss-Lobatto quadrature (for numerical integration), 110
Gaussian elimination, 55,59
gca, 54,125
gcf, 54, 125
Generalized eigenvalue problem, 65
get, 54, 125
get_intervals_fast (locally defined), 89
get_intervals_slowly (locally defined), 88
ginput, 49, 52, 125
global, 82, 85, 128
Graphics, Sect. 4 (40)
advanced techniques, Subsect. 4.3 (49), 125
changing endpoints, 42
customizing lines and markers, 41
demonstration, 40
handle, Subsect. 4.4 (53)
holding the current plot, 42
labelling, 49-52
text properties, 53
using \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) commands, 50
multiple plots, 42
multiple windows, 50
object, 53
handle for an, 53
printing, \(45,46,121\)
properties, Subsect. 4.4 (53)
saving to a file, \(45,46,121\)
two-dimensional, Subsect. 4.1 (40), 124
three-dimensional, Subsect. 4.2 (47)
window, 40
Gravity, 99
gravity_all (locally defined), 100
gravity2_all (locally defined), 101
gtext, 50, 51, 52, 53, 125

\section*{H}
\({ }^{H}\), See Conjugate transpose
Handle, See Function handle
Handle graphics, See Graphics
Helix, 47
help, \(4,14,16,77,83,120\)
Help facility, Subsect. 1.8 (14)
keyword, 14
getting help, 16, 120
helpdesk, 15,120
Hermite polynomials, See Interpolation
hilb, 28, 29, 64, 87, 123
hilb_local (locally defined), 78
Hilbert matrix, \(27,28,59,64,68,78,107\)
function file for, 78,87
hist, 44, 47, 124, 126
Histogram, 44
hold, 42, 47, 124
I
I, See Identity matrix

\section*{K}
i, \(6,9,120\)
Identity matrix, 19
See also eye
if, \(70,72,127\)
ifft, \(113,116,128\)
imag, 13, 122
image, \(51,52,125\)
Imaginary numbers, \(6,9,120\)
Inf, 9, 42, 120
Initial-value ordinary differential equations, Sect. 10 (92)

Bessel's equation, 102
Duffing's equation, \(\quad 92-98\)
first-order system, 92
with constant coefficients, 117
solvers, \(93,94,129\)
ode113, 94, 129
ode15i, 101, 102, 129
ode15s, 94,129
ode23, 94,129
ode23s, 94, 129
ode23t, 94,129
ode23tb, 94,129
ode45, 94, 129
absolute error, 94
adaptive step size, 94
events, 97-98
passing parameters to, 95
properties of, 96
relative error, 94
statistics for, 97
stiff, 94, 98
Van der Pol's equation, 98-99
Inline, 36
Inline functions, See Function
Inner product, 26
input, 10,121
Integration, numerical, 110
Interpolation, 107, 108
cubic, 108
cubic splines, 107,108
Hermite cubic interpolation, 108
how to do extrapolation, 108
linear splines, 107
interp1, 108, 130
interp2, 108, 130
interp3, 108, 130
interpn, 108, 130
inv, \(25,65,68,126\)
ischar, 76, 127
isempty, \(76,82,127\)
isfinite, 76,127
isinf, 76, 127
islogical, 75, 76, 127
isnan, 76,127

\section*{J}
j, \(\quad 6,9,120\)
Java (programming language), 86
keyboard, \(80,81,85,128\)
Keyword, 14
L
lasterr, 86, 87, 128
Left division, See \}
legend, 50, 52, 125
Lemniscate of Bernoulli, 43
length (number of elements in), 19, 20, 31, 74, 123
Length of a vector (i.e., Euclidean length), 31
See also norm
Linear splines, See Interpolation
Linear system of equations, Sect. 5 (55), Subsect. 5.3
(59)
least-squares solution, 60,107
overdetermined, Subsect. 5.3 (59), 107
solving by \(\backslash, 25,55,60\)
solving by linsolve, 55
solving by rref, Sect. 5 (55)
underdetermined, Subsect. 5.3 (59)
linsolve, \(55,58,126\)
linspace, \(41,44,47,124\)
load, \(15,16,45,46,51,120,121\)
be careful, 45
log, 12,122
logical, 73, 75, 76, 127
Logical (data type), 34, 73
Logical expression, 70
result of, 71
Logical functions, 76, 127
Logical operators, 71, 126
AND (\&), 71, 73, 126
applied to matrices, Subsect. 8.2 (73)
result of, 73
EXCLUSIVE OR (xor), 71, 126
NOT (~) , 71, 126
OR (I), 71, 126
loglog, 42, 47, 124
logm, 117, 130
\(\log 10,12,122\)
lookfor, \(14,16,77,83,120\)
lu, 66, 68, 126
LU decomposition, 66

\section*{M}

Machine epsilon (eps), 9, 120
calculation of, 71
Mathematical functions, Subsect. 1.5 (11), 13, Subsect. 2.6 (29), 122

Matrix
augmented, 55-58
is not a matrix, 56
Cholesky decomposition, 63
condition number, 63
approximation to, 63
defective, 64
deleting rows or columns, 24

\section*{N}

Matrix (cont.)
determinant of, See Determinant
diagonals of, 22, 90,91
elementary, 20, 123
elementary operations, 123
empty, See See null below
extracting submatrices, 21
full, 89
generating, Subsect. 2.1 (17), Subsect. 2.3 (21)
individual elements, 19
by submatrices, 20
Hermitian, 18
Hilbert, See Hilbert matrix
identity, 19
inverse of, 65
Jacobian, 94, 98
lower triangular part of, 23, 66 unit, 66
LU decomposition, 66
manipulation, Subsect. 2.3 (21), 123
"masking" elements of, 75
maximum value, 30
minimum value, 30
multidimensional, Subsect. 2.8 (32)
null, 24, 29, 123
orthogonal, 67
QR decomposition, 67
positive definite, 91
preallocation of, 19, 38, 78
pseudoinverse of, 60
replicating, 24
reshaping, 22, 23
singular, \(57,58,63,64\) warning of, 65
singular value decomposition, 67
sparse, Sect. 9 (89), 129
specialized, 123
sum of elements, 30
SVD, See Singular value decomposition (above)
symmetric, 18,91
tridiagonal, 63, 89
unitary, 67
upper triangular part of, 23
Vandermonde, See Vandermonde matrix
\(\max , 30,32,126\)
Maximum value, 30
mean, \(30,32,126\)
Mean value, 30
Memory (of variables), 29
mesh, 48, 49, 51, 125
meshgrid, 48, 49, 125
M-file, 76
min, 32,126
Minimum value, 30
mod, 12,122
Monotonicity, test for, 31
Monty Python, 37
Moore-Penrose conditions, 60
Mouse location, See ginput
Multidimensional arrays, Subsect. 2.8 (32)

NaN, 9,120
nargin, 79, 85, 128
nargout, 79, 85, 128
nested_ex (locally defined), 84
Newton's laws, 99
nlode (locally defined), 103
nlode_all (locally defined), 105
nlode_bc (locally defined), 104
nlode_bc2 (locally defined), 104
nlode_yic (locally defined), 104
nnz, 91, 92, 129
norm, \(31,32,66,68,79,126\)
Norm
matrix, 66 Frobenius, 66 \(p\)-norm, 66
vector, 66
NOT (logical operator), 71, 73, 126
null, 66, 68, 126
Null matrix, 24,123
Null space, 66
num2str, \(37,40,45,62,125\)

\section*{O}

Ode, See Initial-value ordinary differential equations
odeset, 96, 100, 101, 129
ode113, 94, 129
ode15i, 101, 102, 129
ode15s, 94, 129
ode23, 94, 129
ode23s, 94, 129
ode23t, 94,129
ode23tb, 94, 129
ode45, 94, 129
ones, \(19,20,123\)
optimset, 109, 111, 129
OR (logical operator), 71, 73, 126
Ordinary differential equations, See Initial-value ordinary differential equations and Boundary-value ordinary differential equations
orth, \(67,68,126\)
Orthonormal basis, 67
otherwise, 72,127
Outer product, 27
Overdetermined system, See Linear system of equations

\section*{P}

Parentheses, 9
path, 77,124
Path, See Search path
pause, 80, 85, 124
pchip, 108,130
persistent, \(82,85,128\)
uses of, 82
pi, \(8,9,120\)
Piecewise polynomials, See Interpolation
pinv, 60, 61, 126
plot, 40, 42, 43, 47, 107, 124
Plot, generating a, See Graphics
Plotting
a curve, 40, 47
a function, 42, 43
a parametric function, 43
an implicit function, 43
in polar coordinates, 43
plot3, 48, 49, 125
polar, 43, 47, 124
Polar coordinates, 43
poly, 106, 108, 130
polyder, 107, 108, 130
polyfit, 107, 108
Polynomials, Sect. 12 (106), 130
differentiating, 107
evaluating, 106
finding minimum and maximum of, 107
order of, 107
representing by vector, 106
roots of, 106
polyval, 106, 107, 108, 130
polyvalm, 106, 108, 130
Positive definite matrix, See Matrix
Power, 111, 112
average, 112
definition of, 111
frequency of, 112
in each mode, 112
instantaneous, 112
spectrum, 112
ppval, 108, 130
prealloc (locally defined), 78
Predefined variables, See Variables
Principles about computer arithmetic, 9, 11
print, 45, 46, 121
Printing, See Display
prod, 32, 126
Product
dot, See Dot product
inner, See Inner product
outer, See Outer product
Programming language (MATLAB), Sect. 8 (69)
flow control, Subsect. 8.1 (69), 72, 127
break out of, 72
continue loop, 72
for loops, 69
if statement, 69
switch statement, 72,127
different than in C, 72
while loops, 71
needed less frequently, 73
Pseudoinverse, See Matrix
Pseudorandom numbers, See Random numbers
Pythagorean theorem, 11

\section*{Q}

QR decomposition, 67
qr, \(67,68,126\)
quad, \(110,111,129\)

Quadratic polynomial, roots of, 13
quadl, \(110,111,129\)
Quote mark, 7

\section*{R}
rand, \(19,20,44,59,123\)
randn, \(19,20,44,123\)
Random matrix, 19, 23, 59, 92, 129
Random numbers, 19
Gaussian distribution, 19, 44
normal distribution, 19
pseudorandom numbers, 19
seed, 19
state, 19
uniform distribution, 19, 44
randperm, 19, 20, 123
rank, 67, 68, 126
Rank of matrix, 67
rats, 61,124
Rational approximation to floating-point number, 61, 124
RCOND, 59, 64, 65
real, 13,122
realmax, 9,120
realmin, 9, 10, 120
Reduced row echelon form, 56
round-off errors in, 57
Relational operators, 70, 126
<, 70, 126
<=, 70, 126
>, 70,126
\(>=, \quad 70,126\)
\(==, \quad 70,126\)
\(\sim=, 70,126\)
matrix, Subsect. 8.2 (73) result of, 73
rem, 12,122
Remainder, 12, 122
Request input, 10
repmat, 24, 123
reshape, \(22,23,24,123\)
return, \(78,80,81,85,128\)
RGB components (of a color), 51
roots, \(106,108,130\)
rot90, 24,123
round, 12,122
Round-off errors, \(\quad\) Subsect. 1.3 (9), 11, 21, 23, 25, 28, 29,
41, 57, Subsect. 5.2 (58), 59, 65
rref, Sect. 5 (55), 58, 85, 126

\section*{S}
save, \(15,16,120\)
Save terminal commands, 6
Save work, 6
Scientific notation, 6
Scope, See Variables
Script files, 13, 77, 80
debugging, 80
names of, 13

Search path, 77, 85
sec, 12,122
secd, 12, 122
semilogx, 42, 47, 124
semilogy, 42, 47, 124
set, \(53,54,125\)
sign, 12, 122
Simpson's method (of numerical integration), 110
\(\sin , 12,122\)
sind, 12,122
\(\sin z, \quad 13\)
Singular value decomposition, 67
sinh, 12,122
size, \(19,20,123\)
sort, \(31,32,126\)
Sort numbers, 31
sparse, \(89,91,92,129\)
spconvert, 91, 92, 129
spdiags, \(90,92,129\)
differences from diag, 90
speye, \(92,123,129\)
spfun, 92,129
spline, 108,130
Splines, See Interpolation
sprand, 91, 92, 123, 129
sprandn, 91, 92, 123, 129
sprandsym, 91, 92, 123
sprintf, \(37,40,125\)
specifications (format), 61
spruce (locally defined function), 79
spy, 92,129
sqrt, \(12,29,122\)
sqrtm, \(25,117,130\)
squeeze, 33,123
sscanf, \(37,40,125\)
specifications (format), 61
Standard deviation, 31
Statements
executing in text variables, 85
rerunning previous, 10
separating on a line, \(7,9,17,24,119\)
std, \(31,32,126\)
Stiff ode, 94, 98
strcmp, 70, 125, 126
String, See Character string
str2num, 37, 40, 125
struct, \(39,40,125\)
Structure, 34, 39, 109
field, 39
Subfunctions, See Function files
subplot, \(42,47,49,124,125\)
warning, 42
sum, \(32,73,126\)
surf, \(48,49,51,125\)
Surface plot, 48
changing view, 48
filled-in, 48
wire-frame, 48
svd, \(67,68,126\)
SVD, See Singular value decomposition
switch, 72,127

\section*{T}
\({ }^{\mathrm{T}}\), See Transpose
tan, 12, 122
tand, 12
tanh, 12,122
Taylor series expansion, 116
TEX, See Character string
text, \(49,51,52,53,125\)
Text properties, 53
Text window, 40
tic, 27, 124
Time, See cputime, tic, toc
title, 43, 47, 53, 124
multiline, See Character string, multiline
Title
for entire figure, 54
toc, 27, 124
Transpose, 18, 20, 123
conjugate, \(18,20,123\)
Trigonometric functions, Subsect. 1.5 (11), Subsect. 2.6
(29)
tril, 23, 24, 123
triplequad, 111
triu, 23, 24, 123
true, 71, 72, 123
TRUE (result of logical expression), 71
type, \(14,15,16,77,83,120\)

\section*{U}

Underdetermined system, See Linear system of equations

\section*{V}

Van der Pol's equation, See Initial-value ordinary differential equations
vander, \(107,108,123\)
Vandermonde matrix, 107
Variables, Subsect. 1.2 (7)
about, 9
case sensitive, 9
conflict between variable and function name, 11
deleting, 9
global, 81, 82
inputting, 10
list of, 15
loading, 15
local, 76, 81, 82
logical, 75
modifying, 81,82
overwriting, 7
persistent, 82
predefined, 8, 9, 120
ans, \(8,9,120\)
eps, \(9,10,71,120\)
i, \(6,9,120\)
Inf, \(9,42,120\)
j, 6, 9, 120
NaN, 9, 120
```

Variables, predefined (cont.)
overwriting, 8,69
pi, 8, 9, 120
realmax, 9, 120
realmin, 9, 10, 120
saving, 15
saving local variables in functions, 82
scope of, 84
special cases of vectors or matrices, 7
static, 82
string, 7, Subsect. 3.3 (36)
See also Character string
typeless, 8,81
vdp (locally defined), 98
vdpj (locally defined), 99
Vector
average value of elements, 30
column vs. row, }1
deleting elements, 24
generating, Subsect. 2.1 (17)
individual elements, }1
"masking" elements of, 75
maximum value, 30
mean value of elements, 30
minimum value, 30
preallocation of, 19, 38,78
repeated elements, testing for, 31
sort elements, 31
standard deviation of elements, 31
sum of elements, 30
vectorize, 36,40
Vectorizing code, Subsect. 8.5 (87)
view, 48, 49, 125
W
while, 71, 72, 127
who, 15, 16, 120
whos, 15, 16, 120
Workspace, 6, 80
X
xlabel, 43, 47, 50, 53, 124
xor, 71, 73, 126
Y
ylabel, 43, 47, 50, 53, 124
Z
zeros, 19, 20,123
zlabel, 49, 51, 53, 125

```
```


[^0]: ${ }^{\dagger}$ There is a technical distinction between a command and a function in MATLAB: input arguments to commands are not enclosed in parentheses (they are separated by spaces) and there are no output arguments (i.e., a command cannot be on the right-hand side of an equal sign). In reality, this is a very fine distinction since many commands can be written as functions by putting the arguments between parentheses and separating them with commas. We will generally use the term functions unless there is a reason to make a distinction.

[^1]: ${ }^{\dagger}$ A simple way to calculate $\sin 40^{\circ}$ is to type
 $\gg \mathrm{deg}=\mathrm{pi} / 180 ; \sin (40 * \mathrm{deg})$
 ${ }^{\ddagger}$ Be sure to define deg $=$ pi/180 beforehand.

[^2]: ${ }^{\dagger}$ If a is a complex number, then its complex conjugate, denoted by a^{*} is obtained by changing the sign of i whenever it appears in the expression for a. For example, if $a=3+17 i$, then $a^{*}=3-17 i$; if $a=e^{i \pi / 4}$, then $a^{*}=e^{-i \pi / 4}$; if $a=(2+3 i) \sin (1+3 i) /(3-\sqrt{5} i)$, then $a^{*}=(2-3 i) \sin (1-3 i) /(3+\sqrt{5} i)$.

[^3]: ${ }^{\dagger}$ These variables are saved in binary format; when loaded back in using load the variables will be exactly the same as before. The contents of this file can be viewed by the user with an editor - but the contents will appear to be gibberish. The contents can only be interpreted by the load command.

[^4]: ${ }^{\dagger}$ This possiblity is much more real in the programming language C. For example, the statement for (i = 0.02; i < 0.98 ; i = i + . 001)
 generates successive values of i by adding 0.001 to the preceding value. It is possible that when i should have the value 0.98 , due to round-off errors the value will be slightly larger; the condition i <= 0.98 will be false and the loop will not be evaluated when i should be 0.98 .

[^5]: ${ }^{\dagger}$ The CPU, Central Processing Unit, is the "guts" of the computer, that is, the hardware that executes the instructions and operates on the data.

[^6]: ${ }^{\dagger}$ As we discussed previously, it is very unlikely (but it is possible) that round-off errors might cause the statement
 $\gg \mathrm{x}=[0: 2 * \mathrm{pi} /(\mathrm{n}-1): 2 * \mathrm{pi}]^{\prime} ;$
 to return $\mathrm{n}-1$ elements rather than n . This is why we used the statement
 $\gg \mathrm{x}=2 * \mathrm{pi} *[0: \mathrm{n}-1]^{\prime} /(\mathrm{n}-1) ;$

[^7]: ${ }^{\dagger}$ The load command is a little tricky because it can read in files generated both by MATLAB (using the save command) and by the user. For example,
 \gg save allvariables;
 \gg clear
 or
 > save allvariables.mat;
 > clear
 saves all the variables to the file allvariables.mat in binary format and then deletes all the variables. Entering
 > load allvariables
 or
 > load allvariables.mat
 loads all these variables back into MATLAB using the binary format. On the other hand, if you create a file, say mymatrix.dat, containing the elements of a matrix and enter it into MATLAB using
 \gg load('mymatrix.dat')
 you obtain a new matrix, called mymatrix, which contains these elements. Thus, the load command determines how to read a file depending on the extension.

[^8]: ${ }^{\dagger}$ To understand this "switch", look at the actual coding of rref. It uses the variable tol to determine whether an element of the augmented matrix

 $$
 \left(\begin{array}{cc|c}
 0.05 & -0.03 & b_{1} \\
 -0.05 & 0.03 & b_{2}
 \end{array}\right)
 $$

 is "small enough" that it should be set to 0 . tol is (essentially) calculated by tol $=\max (\operatorname{size}(<$ augmented matrix>)) $*$ eps $*$ norm(<augmented matrix>, inf); The maximum of the number of rows and columns of the augmented matrix, i.e., max(size(...)), is multiplied by eps and this is multiplied by the "size" of the augmented matrix. (norm in section 7.) Since b is the last column of the augmented matrix, the "size" of this matrix depends on the size of the elements of b. Thus, the determination whether a number "should" be set to 0 depends on the magnitude of the elements of b .

 You can obtain the correct answer to the homogeneous equation by entering
 $\gg \operatorname{rref}\left(\left[\operatorname{eye}(\operatorname{size}(\mathrm{C}))-\mathrm{C} \quad\left[\begin{array}{ll}0 & 0\end{array}\right]^{\prime}\right]\right.$, eps)
 which decreases the tolerance to eps.

