Quiz 9

 ${\rm Continuous-Time\ Signals\ and\ Systems-complex\ poles,\ frequency\ response}$

1. A causal continuous-time LTI system is described by the equation

$$y''(t) + 2y'(t) + 2y(t) = x(t)$$

where x is the input signal, and y is the output signal.

- (a) Find the transfer function H(s) and its ROC.
- (b) Find the impulse response of the system.
- (c) Accurately sketch the pole-zero diagram.
- 2. The impulse response of an LTI system is

$$h(t) = e^{-t}u(t) - 2e^{-t}\sin(3\pi t)u(t)$$

- (a) List the poles of the system
- (b) Find the differential equation describing the system
- (c) What is the dc gain of the system?
- (d) Find the output signal produced by input x(t) = 2.

3. It is observed of some continuous-time LTI system that the input signal

$$x(t) = \mathrm{e}^{-2t} \, u(t)$$

produces the output signal

$$y(t) = 3 e^{-2t} u(t) + 2 e^{-3t} \cos(2\pi t) u(t).$$

What can be concluded about the pole positions of the LTI system?

4. The frequency response of a continuous-time LTI system is given by,

$$H^{f}(\omega) = \begin{cases} 2 e^{-j\omega}, & |\omega| \le 2\pi\\ 0, & |\omega| > 2\pi \end{cases}$$

- (a) Accurately sketch the frequency response magnitude $|H^f(\omega)|$.
- (b) Accurately sketch the frequency response phase $\angle H^f(\omega)$.
- (c) Find the output signal produced by the input signal

$$x(t) = 1 + 2\cos(\pi t) + 4\cos(3\pi t)$$

5. The impulse responses of eight causal continuous-time systems are illustrated below, along with the pole/zero diagram of each system. But they are out of order. Match the figures with each other by completing the table.

Impulse response	Pole-zero diagram
1	
2	
÷	
8	

6. The frequency responses of eight causal continuous-time systems are illustrated below, along with the pole/zero diagram of each system. But they are out of order. Match the figures with each other by completing a table.

7. Each of the two continuous-time signals below are processed with each of four LTI systems. The two input signals, illustrated below, are given by:

Input signal 1: $0.6\cos(3\pi t) + 2\cos(17\pi t)$

Input signal 2: $2\cos(3\pi t) + 0.6\cos(17\pi t)$

The frequency responses $H^f(\omega)$ are shown below. Indicate how each of the output signals are produced by completing the table below (copy the table onto your answer sheet). Note: one of the output signals illustrated below will appear twice in the table (there are seven distinct output signals).

	Input signal	System	Output signal	
	1	1		
	1	2		
	1	3		
	1	4		
	2	1		
	2	2		
	2	3		
	2	4		
a –		INPUT SIGNAL	. 1	
		A A A		۸ <u>۸</u> ۸۸.
	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	$ \land \land \land \land $	ΔΑΑΔΙΙΔΑΑΙ	
o	NNAAAAAA		MAAMMAAM	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -		$\langle \langle V \rangle \rangle \langle V \rangle \langle V \rangle \rangle \langle V \rangle \langle V \rangle \langle V \rangle \rangle$		
_2 -	V	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	
-3 0 05 1	15 2	25	3 35	
0 0.0 1	1.0 2	TIME (SECONE	DS)	
3 _「		INPUT SIGNAL	_ 2	
2 A	Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.Δ.	٨Δ	ΛΛ	$\Lambda \qquad \Lambda \Lambda$
		η [*]		V V V
0-\ / ·	Γ 4	N	ή <u>Γ΄</u> ή Ι	
	$\sqrt{\sqrt{2}}$	N ./		γ / γ
-2 - VV V	VV	٧V	V VV	VV V
_3Li 0 0.5 1	1.5 2	2.5	3 3.5	4 4.5 5
		TIME (SECONE	DS)	

useful formulas

name	formula
Euler's formula	$e^{j\theta} = \cos(\theta) + j\sin(\theta)$
for cosine	$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$
for sine	$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$
sinc function	$\operatorname{sinc}(\theta) := \frac{\sin(\pi \theta)}{\pi \theta}$

formulas for continuous-time LTI signals and systems

name	formula
area under impulse	$\int \delta(t) dt = 1$
multiplication by impulse	$f(t)\delta(t) = f(0)\delta(t)$
by shifted impulse	$f(t)\delta(t-t_o) = f(t_o)\delta(t-t_o)$
convolution	$f(t) * g(t) = \int f(\tau) g(t - \tau) d\tau$
\ldots with an impulse	$f(t) \ast \delta(t) = f(t)$
\dots with a shifted impulse	$f(t) * \delta(t - t_o) = f(t - t_o)$
transfer function	$H(s) = \int h(t) e^{-st} dt$
frequency response	$H^{f}(\omega) = \int h(t) e^{-j\omega t} dt$
their connection	$H^{f}(\omega) = H(j\omega)$ provided $j\omega$ -axis \subset ROC

x(t)X(s)ROC $\int x(t) e^{-st} dt \quad \text{(def.)}$ x(t) $\delta(t)$ all \boldsymbol{s} 1 $\frac{1}{s}$ $\operatorname{Re}(s) > 0$ u(t) $\frac{1}{s+a}$ $e^{-at} u(t)$ $\operatorname{Re}(s) > -a$ $\frac{s}{s^2+\omega_o^2}$ $\cos(\omega_o t) u(t)$ $\operatorname{Re}(s) > 0$ $\frac{\omega_o}{s^2+\omega_o^2}$ $\sin(\omega_o t) u(t)$ $\operatorname{Re}(s) > 0$ $\frac{s+a}{(s+a)^2+\omega_o^2}$ $e^{-at}\cos(\omega_o t)u(t)$ $\operatorname{Re}(s) > -a$ $\frac{\omega_o}{(s+a)^2+\omega_o^2}$ $e^{-at}\sin(\omega_o t)\,u(t)$ $\operatorname{Re}(s) > -a$

Note: a is assumed real.

Laplace transform properties

x(t)	X(s)
a x(t) + b g(t)	a X(s) + b G(s)
x(t) * g(t)	X(s) G(s)
$\frac{dx(t)}{dt}$	s X(s)
$x(t-t_o)$	$e^{-s t_o} X(s)$

selected Laplace transform pairs