EE 3054 - Spring 2013
Quiz 4 (Discrete-time)

1. A causal LTI system is implemented with the difference equation

$$
y(n)=x(n)+0.9 y(n-5)
$$

(a) Find and sketch the impulse response of the system.
(b) Find the dc gain of the system.
(c) Find the steady-state value of the step-response of the system.
2. An LTI system has impulse response

$$
h(n)=2\left(\frac{1}{3}\right)^{n} \cos \left(\frac{\pi}{3} n\right) u(n)
$$

(a) Derive a difference equation to implement the system. Show your work.
(b) Find the poles and zeros of the system. Sketch the pole/zero diagram.
3. A causal LTI system is implemented by the difference equation

$$
y(n)=x(n)+y(n-1)-y(n-2)
$$

(a) Find the impulse response $h(n)$. Express $h(n)$ without j.
(b) Find the poles and zeros of the system. Sketch the pole/zero diagram.
(c) Classify the system as stable/unstable.
4. An LTI system has impulse response

$$
h(n)=3(0.8)^{n} u(n)
$$

Find the output signal $y(n)$ produced by input signal

$$
x(n)=2(0.9)^{n} \cos \left(\frac{\pi}{4} n\right) u(n)
$$

You need not find $y(n)$ exactly. Express $y(n)$ as accurately as possible without computing the residues in the partial fraction expansion. Your answer should not contain j.
5. The impulse responses and pole-zero diagrams of eight LTI systems are shown on the next page - but they are out of order. Match the systems by completing the table.

Pole-zero diagram	Impulse response
1	
2	
3	
4	
5	
6	
7	
8	

POLE-ZERO DIAGRAM 3

pole-zero diagram 5

POLE-ZERO DIAGRAM 7

POLE-ZERO DIAGRAM 2

POLE-ZERO DIAGRAM 4

POLE-ZERO DIAGRAM 6

POLE-ZERO DIAGRAM 8

IMPULSE RESPONSE 1

IMPULSE RESPONSE

IMPULSE RESPONSE 5

IMPULSE RESPONSE 7

IMPULSE RESPONSE 2

IMPULSE RESPONSE 4

IMPULSE RESPONSE 6

IMPULSE RESPONSE 8

