EE 3054 - Fall 2012
Quiz 4 (Discrete-time systems)

1. An LTI system has impulse response

$$
h(n)=2 \delta(n)+3 \delta(n-1)-\delta(n-2)
$$

Write a difference equation to implement the system.
2. An LTI system has impulse response

$$
h(n)=2 \delta(n)+\left(\frac{2}{3}\right)^{n} u(n)
$$

Write a difference equation to implement the system.
3. A causal LTI system is implemented by the difference equation

$$
y(n)=x(n)+\frac{3}{2} y(n-1)-\frac{1}{2} y(n-2)
$$

(a) Find the transfer function $H(z)$.
(b) Find the impulse response $h(n)$.
(c) Classify the system as stable/unstable.
(d) Find and sketch the impulse response $g(n)$ of the stable inverse system.
4. An LTI system has impulse response

$$
h(n)=-\delta(n)+\frac{5}{2} \delta(n-1)-\delta(n-2)
$$

Find the impulse response $g(n)$ of the stable inverse system.
Accurately sketch $g(n)$ for $-3 \leq n \leq 2$.
5. Two causal LTI systems are combined in parallel:

The two systems are implemented with difference equations:

$$
\begin{aligned}
H_{1}: & f(n)=2 x(n)-\frac{1}{2} f(n-1) \\
H_{2}: & g(n)=x(n)-\frac{1}{3} g(n-1)
\end{aligned}
$$

Find the difference equation describing the total system between input $x(n)$ and output $y(n)$.

