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Abstract—Real-time video communication is becoming more
and more important in our daily life. WebRTC-based video com-
munication technique has attracted a lot of attentions recently.
Its user Quality-of-Experience (QoE), however, faces challenges
in wireless networks. This paper studies the problem of accurate
prediction of QoE of WebRTC in WiFi networks. We first propose
a real-time video QoE metric which is based on the time interval
between two consecutively played video frames, and prove it
correctly reflects playback freezing and video quality. We then
conduct 620 experiments in an indoor WiFi environment to
evaluate the correlation between video QoE and wireless network
conditions. We final build two machine learning models to predict
QoE based on wireless network QoS metrics. The first model can
be used by a user to estimate her QoE before she initializes a
video call, and the second model is for the system to adjust
strategy during a video call. Experimental results show that the
models are accurate, with F1 scores above 70%. Our results
also clearly demonstrate that current WebRTC’s QoE problem
is mainly related to the volatility of RTT. Our QoE evaluation
method, results, and prediction models are beneficial for wireless
video communication system design.
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I. INTRODUCTION

Wireless video real-time communication (RTC) is becoming
a killer application on mobile devices. There are special-
ized video RTC tools for mobile handheld devices, such as
Google Hangout, Apple Facetime, and Microsoft Skype, etc.
Evaluation results of these applications can be found in [1].
Recently, web real-time communication (WebRTC1) technique
has attracted lots of attentions in academic and industry.
WebRTC enables RTC within webpages. It has been supported
in most of the popular web browsers and platforms without
installing extra software or plugin. Due to its high-bandwidth
and low-delay requirement, it is a big challenge to deliver
a satisfactory RTC video service in wireless networks. The
existing research focus on congestion control [2] and Quality-
of-Service (QoS) measurement [3]. It is Quality-of-Experience
(QoE), however, that ultimately determines the user-perceived
service quality [3]. To the best of our knowledge, there is no
systematic study of WebRTC QoE. There only has been some
RTC QoE studies based on Skype [4], [5] and their results
cannot be directly used to design and improve WebRTC-based
systems. In this paper, we are the first to study WebRTC QoE
on WiFi networks.

1www.webrtc.org

Specifically, this paper studies and solves the following
three problems:

1) How to choose an appropriate QoE metric for real-time
video communication?

The traditional video quality metrics, e.g., Structural SIM-
ilarity index (SSIM) and Mean Opinion Score (MOS) cannot
accurately reflect video freezing, which is found to be the QoE
metric that users care the most [6], [7]. Besides, they cannot
be obtained easily in real-time. Thus, we propose to use the
time interval between two consecutively played video frames
(named QoEIndex) to evaluate real-time video playback QoE.
We find it can reflect video’s playback continuity and picture
quality. It is also a general metric which can be easily obtained
in most of real-time video systems.

2) How to conduct systematic measurements to collect
comprehensive datasets to evaluate the correlation between
video QoE and wireless network conditions?

In this paper, we design and conduct systematic and exten-
sive measurements in an indoor WiFi environment. During the
experiments, we collect two types of network QoS metrics: a)
wireless signal/link quality metrics, including Signal Quality,
received signal strength indicator (RSSI), and Link Quality;
b) network data transfer quality metrics, including packet loss
rate and Round Trip Time.

3) How to predict WebRTC’s video QoE from wireless
network’s QoS metrics?

We systematically evaluated the correlation between video
QoE and various wireless network quality metrics, and pro-
posed two video QoE prediction models. The first model can
be used by a user to estimate her video QoE before she
initializes a video call, and the second can be used for the
system to adjust service strategy in real time during a video
call. Experimental results show the models are accurate. Their
F1 scores are above 70%.

Our QoE evaluation method, measurement results, and
prediction models provide valuable insights for wireless
WebRTC-based video communication system design. The pa-
per is organized as follows: Section II describes our experi-
mental methodology; Section III introduces our measurement
results and the evaluation of the relationship between wireless
network quality metrics and the proposed video QoE metric;
Section IV presents the QoE prediction models. Section V
concludes the paper.



II. METHODOLOGY

This section describes our experimental environment, mea-
surement methods, and the proposed video QoE metric.

A. Testbed
In this paper, we focus on studying WebRTC video com-

munication in WiFi environment. With WiFi access, most of
RTC communication takes place indoors. Thus, we consider
the typical office usage environment. We set up a testbed
which contains two laptops and a 802.11n wireless LAN AP.
The laptops are ThinkPad T440p-20ANS00U00, and the AP
is TP Link-WDR4320. One and only one client accesses the
WiFi AP via its air interface. The other client connects to
the AP through its Ethernet port. The clients run the official
open-source reference programs of WebRTC. The programs
were modified to add video QoE and network QoS monitoring
code. We also wrote a python program to run on the clients
to collect wireless network related information. To ensure the
transmitted video contents are consistent and repeatable, we
choose a high-definition (HD) video sequence Big Buck Bunny
as the video source, as it is widely used in video-related
research. We inject the video sequence into the WebRTC
clients using a virtual video camera tool2.

B. Measurement Methodology
We carried out comprehensive measurements within the

AP’s signal coverage range. Fig. 1 shows the indoor WiFI
network environment in our measurement. The AP is placed
in room3. The brown thick lines are the walls between rooms,
and the light blue blocks are our experiment spaces. Room0
to room4 are typical office rooms which contain desks, chairs,
computers, and other office supplies. Besides, each room is
covered by several other WiFi APs which work in channels
that different from our AP. We conducted independent ex-
periments at each seat in room1 to room4. We also divided
the space of corridor into squares with size of one square
meter, and conducted experiments in each square. In total, we
have 62 experimental positions. At each experimental position,
we conducted 10 experiments. Thus, we finally have 620
experiments.

C. Wireless Network Quality Metrics
To characterize the wireless network quality, we use the

following metrics:
• Wireless signal/link quality metrics: We use all wireless

physical layer metrics reported by Microsoft Windows
7 OS through its API, including Signal Quality (SQ)
, received signal strength indicator (RSSI), and Link
Quality (LQ), which are recorded by the Python program
we write and run on the laptop.

• UDP transportation quality metrics. As video transporta-
tion in WebRTC uses RTP over UDP, we also measure
Packet Loss Rate (Loss) and Round Trip Time (RTT),
which are recorded by the open-source WebRTC refer-
ence program we modified to add these monitoring codes.

2e2eSoft. http://www.e2esoft.cn/vcam/
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Fig. 1: Indoor measurement environment

D. Video QoE Metric

It is a challenge to record video playback continuity for RTC
video. To the best of our knowledge, there is no attempt to
track video freezing automatically in RTC applications. Thus,
we must design a method to trace user video freezing events.
After extensive experiments, we found that the time inter-
val between two consecutively played video frames (named
QoEIndex) is a good QoE indicator. Specifically, when the
QoEIndex is larger than one second, users usually feel video
freezing. This result is reasonable. For a video with frame rate
of 30 frames/second, the regular interval of two consecutively
played frames is 33ms. Thus, when the QoEIndex is longer
than 33ms, i.e., there are some frames lost or delayed, the
video playback continuity is impacted. As visual sensitivity
of human is limited, when this interval is abnormal but not
too long, users’ eyes may not detect it immediately. After
lots of tests with human subjects, we find that one second
is an appropriate threshold. Such a result is consistent to the
measurement result reported in [8], where the video freeze
duration is measured by seconds.

We now give the definition of “Good” and “Bad” QoE
used in this paper. When QoEIndex > 1s, we say the QoE
is bad, otherwise, we say QoE is good. With this method,
we further obtain the durations of good and bad QoE. We
also find that the QoEIndex is strongly correlated to video’s
Structural SIMilarity (SSIM) index3. In WebRTC, when the
network condition gets worse, the video sender decreases its
video encoding rate to ensure smooth streaming. The video’s
playback quality is degraded. Thus, when a bad QoE event
occurs, the video’s picture quality usually also degrades.

III. MEASUREMENT RESULTS

In this section, we present our experimental measurement
results and evaluate the relationship between WebRTC’s user
QoE and wireless network’s quality metrics.

3http://www.cns.nyu.edu/~lcv/ssim/
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Fig. 2: Distribution of measured wireless network quality metrics.
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Fig. 3: Variances of wireless network QoS metrics in one experiment.

A. Distribution of Wireless Network Quality Metrics
Fig. 2 plots the CDFs (cumulative distribution function)

of the measured wireless network quality metrics. As shown
in Fig. 2, our measurement covers a wide range of wireless
network conditions. For instance, Fig. 2c shows the RSSI
ranges from -70dB to 0dB, which is the general working
range of WiFi network. Such a result proves the efficiency
and coverage of our measurement methodology.

B. Volatility of Wireless Network Quality
We then observe the volatility of wireless network quality

metrics during our experiments. As an example, we first
observe the volatility of the five WiFi network metrics in
one randomly picked experiment. Fig. 3 plots the temporal
variance of the five QoS metrics and our QoEIndex. The
experiment is conducted at a position in room2 and lasts for
5 minutes. As showed in Fig. 3, all these 5 metrics varies
considerably during the experiment. For instance, as shown in
Fig.3(a), the signal quality drops from 91% to 52% at 240s,
which is a significant dropping. Moreover, the link quality and
RSSI all vary with some trends. As a result, the variance of
link quality within 300 seconds is 133.83 and variance of RSSI
is 11.07. The packet loss and RTT, however, keeps low most
of time, but have several abrupt increases.

We next observe the volatility of the 5 wireless network QoS
metrics across all 620 experiments. Fig. 4 plots the variances
of the five QoS metrics over all experiments. The x-axis is
position ID. We have 62 positions. For each position, we plot
ten variance values, one for each experiment. As shown in

Fig. 4, even at a same position, the variance of QoS metrics
in different experiments can be quite different. For instance,
in Fig. 4, we use red “o” to mark the 20th, 40th, and 60th

positions’ experiment results. As shown in Fig. 4, while some
QoS metrics are stable (e.g., signal quality and RSSI for the
20th position), some metrics have very different variances
cross different experiments (e.g., for the 20th position, 8
experiments have stable link quality, but 2 experiments have
significantly volatile link quality).

C. Correlation between Wireless Network QoS and Video QoE
This subsection analyzes the correlation between the wire-

less network QoS metrics and video QoE.
As an example, we first illustrate their correlation in the

experiment used to generate Fig. 3. We augment Fig. 3
with QoEIndex of the experiment. The QoE bad event is
marked with red color. As shown in Fig. 3, the bad QoEIndex
seems correlated with wireless network QoS degradations. For
instance, during the time from 200s to 250s, QoEIndex is bad
and both the RSSI and link quality (LQ) are low.

We then evaluate the correlation of wireless network quality
metrics with video QoE in all experiments. To obtain a
macroscopic analysis of all 620 experiments, we define a
video session is unacceptable when its QoE bad duration
is longer than 30% of the whole session length. We then
calculate the relative information gain [7] of the mean and
variance of the five wireless network QoS metrics to QoE
unacceptable indicator of all 620 experiments, respectively.
More specifically, X is the QoE unacceptable indicator. For
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Fig. 4: Variances of wireless network QoS metrics in all experiments.

each QoS metric Y , we calculate the relative information gain
of X against Y as:

RIG(Y |X) =
H(Y )�H(Y |X)

H(Y )
,

where H(Y ) is the entropy of random variable Y and H(Y |X)
is the conditional entropy of Y given random variable X . The
relative information gain quantifies how much uncertainty in
each wireless network QoS metrics is reduced by knowing
whether the QoE is unacceptable or not. The higher the
information gain, the more correlated the QoS metric is to
the QoE unacceptable event. To bin measurement results of
wireless network quality metrics into discrete bins, we use the
method introduced in [9]. Table I shows the result.

As shown in Table I, the relative information gain of QoE
unacceptable indicator against the variance of RTT is 0.136,
which is the highest value in the table. Then, the mean of RTT
and variance of link quality are 0.087 and 0.082, respectively.
They are relatively high. Thus, we conclude that the video
QoE are correlated to the wireless network quality metrics,
in particular the variance of RTT. Such a result suggests that
the current WebRTC’s video QoE problem is mainly due to
the volatility of RTT. It is reasonable, as existing WebRTC
congestion control algorithms partially relies on variance of
network latency to adjust the video streaming rate.

TABLE I: Relative information gain of network QoS metrics and video QoE
unacceptable indicator

Feature Relative Information Gain
RTT - Variance 0.136

RTT - Mean 0.087
Link Quality - Variance 0.082

RSSI - Mean 0.040
Link Quality - Mean 0.035

Signal Quality - Variance 0.031
RSSI - Variance 0.026

Signal Quality - Mean 0.017
Packet Loss - Mean 0.012

Packet Loss - Variance 0.009

IV. WEBRTC QOE MODELS

A. QoE Models
In this section, we build the following two machine learning

models to predict the QoE of a user’s WebRTC video com-
munication session from the wireless network quality metrics.

• QoE mapping model: In this model, we use the current
wireless network QoS metrics to predict whether a user’s
WebRTC video communication session will have accept-
able QoE. It aims to establish the relationship between
the current WebRTC QoE and current QoS metric. The
model can be used by a user to estimate her video QoE
before she initializes a video call, which is very important
to improve user satisfaction in video RTC services in
wireless network and video services. [10] works in this
direction also, but they use QoS data collected at base
station of cellular network. For comparison, we use the
QoS data collected on the mobile terminal itself in a WiFi
network.

• QoE prediction model: In this model, we use the mea-
sured wireless network QoS metrics in a limited time
window (say window A) to predict the video unaccept-
able event in the next time window (say window B). As
WebRTC use a 10 second video jitter buffer at the receiver
side, we use 10 seconds as the size of window B. We
tune the size of window A to obtain the best prediction
performance in our model training. The training and
prediction can be done online. During a user’s video
communication process, we can keep collecting wireless
network quality metrics, predicting user QoE in the next
time window, and then adjusting WebRTC’s rate control
algorithm to improve video playback continuity.

B. Methods
We use the wireless network quality features listed in Table

II to train our QoE mapping model, and the features listed in
Table III to train the QoE prediction model. For QoE mapping
model, we treat each experiment as a sample. Then, among
all 620 samples, 496 samples are randomly selected as the



training set and the remaining 124 samples are used as testing
set. For each experiment, we calculate the mean and variance
of each metric, and then use them as the features. Thus, we
totally have 10 features. For QoE prediction model, we use
the same 620 experiments’ measurement results but extract
samples by sliding windows. Besides the features used for the
QoS mapping model, we also use the current QoS metric value
(i.e., the last value in the sliding window) as a feature. Thus,
we totally have 15 features. We use Decision Trees (DTs),
Random Forests (RandF), Support Vector Machines (SVM)
and Extra-Trees classifier (ExtraT) to train our models and
compare their performance.

C. Performance
We evaluate the effectiveness of classification methods in

terms of Precision, Recall and F1 score. Among them, we use
F1 score as the main metric, as it is a comprehensive index
which includes precision and recall. Moreover, the prediction
accuracy of QoE bad is more important to avoid users’
frustration of wrong prediction. Thus, we mainly compare the
algorithms’ F1 score of QoE bad prediction results. Table IV

TABLE II: Features used in QoE mapping model and their importances

Feature Importance
RTT - Variance 0.44

Link Quality - Variance 0.14
Link Quality - Mean 0.12

RSSI - Mean 0.09
RSSI - Variance 0.07

RTT - Mean 0.04
Packet Loss - Mean 0.04

Packet Loss - Variance 0.04
Signal Quality - Mean 0

Signal Quality - Variance 0

TABLE III: Features used in QoE prediction model and their importances

Feature Importance
RTT - Mean 0.16

RSSI - Mean 0.13
RTT - Variance 0.12

Link Quality - Mean 0.09
Link Quality - Variance 0.06

RSSI - Variance 0.06
Link Quality - Last value 0.05

Signal Quality - Mean 0.05
Signal Quality - Last value 0.04

Packet Loss - Mean 0.04
RSSI - Last value 0.04

Packet Loss - Variance 0.03
RTT - Last value 0.03

Signal Quality - Variance 0.02
Packet Loss - Last value 0.01

TABLE IV: Performance of different algorithms for QoE mapping model

Algo. QoE-good result QoE-bad result
precision recall F1 precision recall F1

SVM 0.98 0.89 0.94 0.5 0.86 0.63
RandF 0.92 0.94 0.93 0.73 0.67 0.70
DTs 0.94 0.92 0.93 0.71 0.77 0.74
ExtraT 0.93 0.98 0.96 0.83 0.56 0.67
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Fig. 6: Performance of Random Forests QoE prediction model.

shows the performance evaluation results of the QoS mapping
model. As showed in Table IV, the Decision Tree method has
the highest F1 score for QoE bad prediction, i.e., 0.74, which
means the model has high accuracy.

We plot the resulting Decision Tree model in Fig. 5, and
list its feature importance in Table II. Note that the mean and
variance of Signal Quality are not included in the Decision
Tree model and thus their importances are marked by “0”. As
shown in Table II, the importance of variance of RTT is 0.44,
which is considerably higher than other features, meaning it
is the most important feature for the prediction of WebRTC
video QoE unacceptable event. Such a result is consistent with
the results of relative information gain shown in Table I, where
the relative information gain of the variance of RTT is also
the highest in all features.

For QoS prediction model, after extensive experiments, we
find that SVM’s F1 score is always below 0.3 and the per-
formance of Extra-Trees and Decision Tree fluctuates widely
with the size of sliding window A, i.e., the historical time
window in which we collect historical wireless network qual-
ity metrics for prediction. For comparison, Random Forests
method performs well and stably. Such a result is reasonable
as Random Forests is ensembles of a number of decision trees
and is the most successful general-purpose algorithm [11].
Thus, we finally select Random Forests model. Fig. 6 plots
the F1 score of the Random Forests model against the size
of sliding window. As shown in Fig. 6, as the size of sliding
window A increases, the F1 score of the prediction model
gradually increases, meaning the model performs better when
using more historical data. Then, when the window size is
larger than 17 seconds, the F1 score keeps relatively stable
and is always larger than 0.8, means the model has high
accuracy. For instance, when the window size is 20 seconds,
the precision, recall and F1 score of the model are 0.996,
0.744, and 0.839, respectively. Thus, in practice, we suggest
that the size of sliding window can be selected in the range
from 20 to 30 seconds.

We list the features’ importance of the Random Forests
model in Table III. As shown in Table III, the importance
of RTT is still the highest: the importance of RTT-Mean is
0.16, and RTT-Variance is 0.12. Such a result is consistent
with that of the QoE mapping model. The difference is
that the importance of different features are relatively close.
Such a result suggests that the online real-time prediction is
essentially different from the offline mapping.
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Fig. 5: Decision Tree for QoE mapping

V. CONCLUSIONS

In this paper, we studied the problem of accurate prediction
of user video QoE of WebRTC in WiFi networks. First, we
proposed a new, simple, and efficient QoE metric which is
based on the time interval between two consecutively played
video frames. Second, we conducted 620 experiments in an
indoor WiFi environment and showed the strong correlation
of WebRTC user QoE with wireless network QoS metrics.
Finally, we built two machine learning models to predict
a user’s WebRTC video communication QoE based on the
current wireless network measurement results. The first model
can be used by a user to estimate video QoE before she
initializes a video call, and the second model is for a system
to adjust its servicing strategy in real-time during a video call.
Experimental result demonstrated that the models are accurate,
with F1 scores above 70%. Moreover, our analysis results
and models clearly show that the current WebRTC imple-
mentation’s QoE problem is mainly due to volatility of RTT.
Our QoE evaluation method, analysis results, and prediction
models provide valuable insights for wireless WebRTC video
communication system design.
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