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Abstract

An emerging Internet application, peer-to-peer (P2P) video streaming, would revolutionize the enter-

tainment and media industries. In this paper, we have conducted an in-depth measurement study on the

start-up delay performance of one of the most popular P2P streaming systems, namely, PPLive. We devel-

oped a dedicated PPLive traffic sniffer, which enables us to dissect the start-up delay performance of the

PPLive streaming system. Our measurement results show long start-up delays of the PPLive system. We

also correlate various factors with the measured start-up delay components in order to reveal the major

delay bottleneck. This delay dissection analysis leads to the major reason due to the slow speed in finding

“good” video peers the local peer to download video content. Insights obtained in this study will be valuable

for the development and deployment of future P2P streaming systems with low start-up delay.

Keyword: Measurement, Peer-to-peer streaming, Delay

1 Introduction

Video streaming may be the next disruptive Internet application with the quick penetration of broadband

residential access and the technology progress in video compression. The emerging peer-to-peer (P2P) net-

works have appeared to be the most promising driving wheel for the large scale video streaming [1–3]. P2P

streaming networks do not rely on a dedicated delivery infrastructure and hence offer the possibility of a rapid
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deployment at low cost. P2P video streaming would revolutionize the entertainment and media industries.

There exist two major design issues for constructing a P2P streaming network: (i) how to form an overlay

topology between peers; (ii) how to deliver video content efficiently. The current approaches can be classified

into two major categories: (i) peers form a tree-shaped overlay and video content is pushed from the origin

server to peers, namely, tree-push; (ii) peers form a mesh-shaped overlay and they pull video from each other

for content delivery, namely, mesh-pull. Over years, many tree-push systems have been proposed and evalu-

ated in academia and achieved some successes. However, they have never taken off commercially. In the past

several years, mesh-pull streaming systems (also known as data-driven or BitTorrent-like) have shown major

advantages, including system simplicity and inherent robustness, particularly desirable for highly dynamic,

high-churn P2P environment. These mesh-pull architectures have enjoyed many successful large scale deploy-

ments including CoolStreaming [2], PPLive [4], PPStream [5], UUSee [6], SopCast [7], TVAnt [8], and many

others.

The users’ viewing experience in streaming applications is crucial for a successful service deployment. Im-

portant video quality metrics in P2P streaming include video playback continuity, start-up delay, channel

switching latency, playback time lags among users, and so on. Start-up delay is the time interval from when

one channel is selected until actual playback starts on the screen. For streaming applications on the best-effort

Internet, start-up buffering has always been a useful mechanism to deal with the rate variations of streaming

sessions. P2P streaming applications additionally have to deal with peer churn, increasing the need for startup

buffering and delay. While short start-up delay is desirable, certain amount of start-up delay is necessary

for continuous playback. Our previous measurement study has shown that mesh-pull streaming systems are

able to achieve satisfactory download rate to maintain smooth video playback at 300 kbps up to 800 kbps;

however, these systems often incur significant long start-up delays, up to a few minutes [9, 10].

The delay performance has become one of the major research issues in improving user’s quality-of-experience

(QoE) of video streaming applications [11–14]. In this measurement study, we dissect the start-up delay

components in mesh-pull streaming systems. The understanding of the start-up delay bottleneck of mesh-pull

systems may provide insights into reducing the long delays effectively. In addition, the start-up delay in mesh-

pull streaming systems is closely related to the channel switching delay in these systems. The effective delay

minimization schemes may also be of good reference on decreasing the channel switching delay in mesh-pull

systems.

This rest of the paper is organized as follows. In Section 2, we provide an overview of mesh-pull P2P streaming

systems. Based on our understanding on the streaming architecture and the protocol design, we propose the

dissecting heuristics on the start-up delay of mesh-pull streaming systems in Section 3. In Section 4, we present
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our measurement methodologies for dissecting the start-up delay performance of mesh-pull P2P streaming

systems and validate our delay dissection method using detailed trace analysis. In Section 5, we report the

measurement results of the start-up delay performance in PPLive. In Section 6, we correlate various factors

with the start-up delay of PPLive and reveal the reasons of the incurred long start-up delay. In Section 7, we

provide an overview on various promising approaches on reducing start-up delay of P2P streaming systems.

Finally, we summarize the paper in Section 8 and outline a few directions of future work.

2 Mesh-pull P2P Streaming Architecture

A number of mesh-pull streaming systems have been deployed; however, most mesh-pull streaming systems

provide little information about their proprietary technologies. Through our measurement study and protocol

analysis on a few mesh-pull streaming systems [9, 10], we have gained significant insights into the protocols

and streaming mechanisms of mesh-pull streaming systems. In spite of different features and implementation

details, they share a common generic architecture, which we describe in this section.

2.1 System Overview

As shown in Figure 1, mesh-pull P2P architectures have the following characteristics. A video is divided

into media chunks and is made available from an origin server for broadcast. All the video information is

accessible for users at the channel server. A host, interested in viewing the video, requests from the channel

server the available video streams (step 1 in Figure 1). The tracker server maintains the list of the hosts

who are interested in watching the same video. After a host selects its interested video, it retrieves a list of

hosts currently watching the same video (step 2 in Figure 1). The host then establishes partner relationships

(TCP/UDP connections) with a subset of hosts on the list (step 3 in Figure 1). These peers help each other

and deliver video traffic cooperatively. The host may also establish a partner relationship with the origin

server. Each host viewing the video caches and shares chunks with other hosts viewing the same video. In

particular, each host receives buffer maps (BM) from its current partners. A buffer map from a remote partner

indicates the chunks that are available on that partner. We will discuss the buffer maps in details in Section

2.3. Using a chunk scheduling algorithm, each host requests from its partners the chunks that it will need in

the near future. Each host continually seeks new partners from which it can download chunks.
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Figure 1: The mesh-pull P2P live streaming architecture

2.2 Software Components

Figure 2 shows the software components of a peer in a mesh-pull system. The peer software includes a P2P

streaming engine and a media player. The streaming engine accomplishes the jobs of (i) retrieving chunks

from partner peers and (possibly) from the origin server; (ii) storing the retrieved chunks in a cache; (iii)

sharing media chunks stored in its cache with its partners; (iv) sending a copy (of the data) of each chunk,

which it receives, to the media player. As shown at the bottom of Figure 2, the local peer sends buffer maps

to each of its partner peers. A partner peer, having learned from the buffer map what chunks the local peer

has, issues requests for specific chunks. The local peer then sends the requested chunks to that partner peer.
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Figure 2: The software components of a peer in a mesh-pull system

2.3 Buffer Map and P2P Streaming Engine

The buffer maps play an important role in our approach to measure the delay performance of mesh-pull

streaming systems. At any given time instant, the P2P streaming engine caches up to a few minutes video

chunks within a sliding window. Some of these chunks may be chunks that have been recently played; the
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remaining chunks are chunks scheduled to be played in the next few minutes. Peers download chunks from

each other. To this end, peers send to each other buffer map messages; a buffer map message indicates which

chunks a peer currently has buffered and can share. Each chunk is assigned with a unique increasing ID.

Specifically, the buffer map message includes the offset (the ID of the first chunk), the width of the buffer

map, and a string of zeroes and ones indicating which chunks are available (starting with the chunk designated

by the offset), as illustrated in Figure 3. A unique channel ID is also carried in each buffer map message.

Offset

0

BM playable 
video

1 1 1 1 1 1 1 0 0 0 1 0 1 001

BM width

time

... ...

Playback point

Figure 3: The buffer map structure

A peer can request a buffer map from any of its current partner peers. After peer A receives a buffer map

from peer B, peer A can request one or more chunks that peer B has advertised in its buffer maps. A

peer establishes partner relationships (TCP/UDP connections) with some peers of the same channel in the

network to download video chunks. This peer may also establish a partner relationship with the origin server

for chunk download. A peer may download chunks from tens of other peers simultaneously. The streaming

engine continually searches for new partners from which it can download chunks. Different mesh-pull systems

may differ significantly with their peer selection and chunk scheduling algorithms. The chunks are typically

sent over TCP connections, although recently in more mesh-pull systems, video chunks are also transferred

using UDP.

2.4 Media Player

When the client application is started, the media player is launched and the URL of the video stream is

provided to the media player. As illustrated in Figure 4, from the client’s perspective, the server of the media

content is the P2P streaming engine (which is in the same host as the media player). Once the media player

is activated, it sends (typically) an HTTP request to the P2P streaming engine. After having received the

request, the P2P streaming engine assembles the header information and these video chunks in order into a

media file, and delivers the file to the media player. Because new chunks continually arrive at the streaming

engine, the streaming engine continually adds data to the file. Because some chunks may not arrive before

the playback deadline, there may exist “gaps” in the file. When the media player begins to receive the video
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from the streaming engine, it buffers the video before playback. When it has buffered a sufficient amount of

continuous video content, it begins to render the video.
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Figure 4: Protocol interaction between the P2P engine and the media player

A video stream is commonly encoded in one of four video formats: Window media video (WMV), Real video

(RMVB), Quicktime video or Macromedia flash video. For the sake of concreteness, let us consider mesh-pull

P2P streaming systems that use WMV (as is often the case today). WMV videos use the advanced systems

format (ASF) [15]. An ASF file starts with a header object and is followed by a series of media data objects.

The file header object includes various meta information for the file (i.e., the file identifier, buffering time and

overall file bit-rate), number of available audio and video streams carried in the file, and meta information for

each audio (i.e., sampling rate) and video stream (i.e., spatial resolution, compression algorithm). Each data

object starts with an object header. This object header includes the sequence number of the media object,

the number of streams carried in the object, playback duration of the object, and so on. In the payload of

data objects, multiple media objects from different streams (for example, a video stream and an audio stream)

may be carried and interleaved.

3 Dissecting start-up delay of mesh-pull P2P streaming systems

Three delay metrics are of particular interests in characterizing the delay performance of video streaming

systems: start-up delay, channel switching delay and playback time lag among peers. The start-up delay is

the time interval from the time instant when one channel is selected until the actual playback starts on the

screen. The channel switching delay is the time interval from the time instant when a new channel is selected

until the actual playback starts on the screen. The playback time lags among peers indicates the difference

of video playback progress on a peer, which is determined by how quickly it collects video chunks from the

system. The variations in chunk retrieval times from one peer to another result in time lags among the peers.

We are interested in dissecting the start-up delay in this section. Note that in most of the current mesh-pull

streaming systems, channels are managed largely independently. Peers form a content delivery swarm and

help each other to download video for streaming. When a user switches from one channel to another channel,
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this peer essentially repeats the start-up process; hence, the understanding of the start-up delay directly helps

to explore effective techniques to decrease the channel switching delay. Nevertheless, in the multi-channel

case, common control overlays have been proposed to manage the peers across different channels [16, 17].

These ideas may have applications in the new generation of the P2P streaming systems; then, the channel

switching may experience significantly different delay from the start-up. More investigations are required to

study the channel switch delay in those cooperative multi-channel overlays.

Before the normal playback, a newly arrived peer ought to actively harvest buffer maps and passively receive

buffer maps from neighbors; then, the peer issues chunk requests until the required chunks have been down-

loaded. Though we have reported the gross start-up delay performance in [10], the understanding of these

delay components are not clear. In mesh-pull systems, the fundamental task of the P2P streaming engine is

to download video chunks quickly. To this end, a peer should first locate its peer neighbors as potential chunk

providers; then, identify which chunks to download. Either its neighbors notify this peer their buffer maps,

or this peer acquires the buffer maps of its neighbors, so that the chunk availability information propagates

among peers quickly. Finally, this peer “pulls” chunks from its neighbors according to the buffer map infor-

mation. The amount of the time used in this process often contribute a large portion of the long service delay

suffered in mesh-pull systems.

Many factors impact the start-up delay performance of the P2P streaming systems. We are interested in

evaluating the impact of peer strategy, chunk scheduling and transport selection on the delay performance

of P2P streaming systems. The local peer needs to contact its peer neighbors to download video chunks

using an appropriate peering strategy. A good peer selection scheme will help the local peer identify peers

with interested contents in a timely fashion. The local peer may download chunks from multiple peers. It

remains a question whether the commonly used random chunk scheduling is sufficiently good to provide

a low delay performance. Video chunks in mesh-pull streaming systems are carried using TCP or UDP.

TCP provides a reliable and congestion aware transport. However, TCP incurs inneglectable connection

management overhead. The selection of the TCP transport induces various implications on end-hosts, access

links and network cores. Recently we find that mesh-pull streaming systems tend to carry IPTV traffic using

UDP instead of TCP. UDP incurs much less connection overhead than TCP; however, this increasing usage

of UDP raises the concerns that these UDP traffic should be congestion-aware to avoid network collapse.

Because UDP datagrams may be dropped in the networks, streaming applications have to address how to

react on packet loss. The simplest strategy is to ignore the dropped UDP datagrams with the expectation that

the viewing quality does not suffer too much in spite of a small number of packet dropping; however, too much

UDP segment loss will severely degrade the video playback performance. It may be beneficial to retransmit
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some lost UDP datagrams with the additional complexity in P2P applications. However, this retransmission

may lead to long start-up and playback delay. Our measurement results may be able to reveal insights into

the tradeoff between timeliness and reliability.

As shown in Figure 5, we take a closer look at the start-up process. A new peer, interested in viewing the

video, requests from the channel server for the available video streams when the P2P software first starts

(step 1 in Figure 5). After this peer selects its interested video, it retrieves an initial list of peers currently

watching the same video from the tracker server (step 2 in Figure 5). Then this peer starts to contact a

sub-set of peers on this initial list to harvest more peers (step 3 in Figure 5). This peer also exchanges buffer

maps with its neighbor peers (step 4 in Figure 5). Based on the content of the harvested buffer maps, the

peer selects some peers and schedules chunk download from these peer neighbors using some peer selection

and chunk scheduling algorithms (step 5 in Figure 5).
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Figure 5: The start-up process of a new peer in mesh-pull P2P live streaming systems

In our measurement experiments, we propose a few delay metrics in characterizing the start-up process. We

show these important delay metrics in the time diagram of the signaling exchanges during a normal start-up

process in Figure 6. After a user starts the P2P software, it takes t1 that the user browses the channel list and

selects a video channel for viewing. This period of time is largely random depending on user behaviors. During

t1, the channel list may also be updated. In our study, we do not consider this delay t1. More interesting

to us is the delay components after a user selects a channel until the video starts to be played back. As

discussed previously, a normal start-up process usually consists of three major steps: harvest peers of the

channel, retrieve buffer maps of peer neighbors and download video chunks from neighbors. We denote t2 be

the time difference between the time when the user selects a channel and the time when the local peer receives

the first peer list. Note that the first peer list may come from the tracker server or from a normal peer. Then

we denote t3 be the time difference between the time when the local peer receives the first peer list and the
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time when the local peer receives the first buffer map. After the first buffer map is received, it takes t4 to

download the first video chunk. After this download time of the first chunk, it takes t5 to download additional

video chunks for caching before the video playback really starts. The streaming engine then activate a local

video player when the size of the cached playable video size exceeds a specified pre-buffering video threshold.

This threshold is a system parameter of the streaming engine, which an end user may configure in the option

settings of the engine. We use the default pre-buffering threshold value specified in the video file header when

collecting statistics in our experiments. The streaming engine continues to stream the video chunks to this

local player, and the player finally starts the playback after this player finishes the required pre-buffering

phase in its local player cache.
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Figure 6: The time diagram of the start-up process of a newly arrived peer in mesh-pull P2P streaming
systems

It is relatively easy to determine the values of t2, t3 and t4 by analyzing the traffic pattern based on the protocol

knowledge of the corresponding mesh-streaming system. However, it is challenging to correctly determine t5

since it is unknown for the exact criteria how the P2P streaming engine makes the streaming decision to the

local video player. Nevertheless, we can apply various heuristic methods to infer the t5 value. First, we count

the download video chunks in that we are able to trace the exact download time for n-th chunks as time cn

starting from the time instant when the first chunk is downloaded. At the beginning of the chunk download,
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chunks may not be able to be downloaded consecutively. The value of cn does not consider the playback order

and the sequence of the downloaded video chunks. Therefore, given a pre-specified buffering threshold θ in

terms of video chunk numbers, cθ may serve as a lower bound of the real video pre-buffering delay t5. In our

experiments, a commonly used pre-buffering video size is 5 seconds in time; therefore, if one chunk size is of

0.1 seconds, θ is roughly 50 chunks.

As demonstrated in [9, 10], buffer maps can also be used to infer the start-up delay when P2P the streaming

engine starts up the video player for playback (see Figure 3). When a peer joins the network and has no

chunks in its engine buffer, it sends buffer maps with the playback offset of zero and a buffer size of zero. After

a peer obtains chunks from other peers, the offset is set to a non-zero value. The consecutive buffer maps

provide snapshots of the video chunks in the buffer. Therefore, we can infer the start-up time of the playback

of a peer given the sequence of the buffer maps of this peer with the first buffer map having a zero-valued

offset. The length of the BM playable video can provide a good indicator when the video playback starts. We

denote bn as the time instant when the BM playable video length is larger than n chunks for the first time

after the first chunk is downloaded. Similarly, given a pre-specified buffering threshold θ, bθ may serve as a

good estimate of the real start up delay. In our experiments, to simplify the analysis, we do not re-construct

the buffer maps of the local peer based on the downloaded video chunks. Instead, we trace the buffer maps

which are sent out by the local peer in its out-going traffic. A side effect is that we may miss the exact bθ

time if there are no buffer maps sent out by the local peer at bθ. Hence, we approximate bθ with the sending

time of the first buffer map when K > theta. Usually, the difference between bθ and bK is within sub-second

because buffer maps are actively exchanged between the local peer and its peer neighbors.

4 Measurement Methodology

In previous sections, we have provided a background introduction on the system architecture and the signaling

protocol of mesh-pull P2P streaming systems. In this section, we outline the setup of our measurement utilities

and validate our dissecting methods on the start-up delay.

4.1 Measurement Setup

Our P2P network measurements on PPLive fall into two categories: passive sniffing and active crawling. The

passive sniffing is used to gain a deeper insight into PPLive from the perspective of residential users and

campus users. The active crawling is used to obtain user behaviors and the global view of the entire PPLive

network for any channel. As shown in Figure 7, we captured the incoming and outgoing traffic from the local
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peer using the traffic capture utility Wireshark [18]. We also correlate the video start-up performance with

various network factors.
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Figure 7: PPLive traffic sniffing

We sniffed and collected multiple PPLive packet traces from four PCs shown in Table 1: one PC connected to

the campus network of Polytechnic Institute of NYU with the 100 Mbps Ethernet access; one PC connected

to the residential network through cable modem located at Brooklyn, New York; and two PCs connected to

the campus network of Hong Kong University of Science and Technology with the 100 Mbps Ethernet access.

Most of the PPLive users today have either one of these two types of network connections. Each PC ran

Wireshark to capture all the inbound and outbound PPLive traffic. We built our own customized PPLive

packet analyzer to analyze the various fields in the various PPLive signaling and content packets. To have

an overview about the peer dynamics in the monitored channels, we also launched PPLive peer list crawlers

in two locations: one PC connected to the campus network of Polytechnic Institute of NYU with the 100

Mbps Ethernet access and one PC connected to the campus network of Hong Kong University of Science

and Technology with the 100 Mbps Ethernet access. This peer list crawler implements the peer tracking

methodology by exploiting PPLive’s distributed gossiping algorithm [9]. The peer crawling is conducted in a

round-by-round fashion consecutively. In each round, the aggregate peer list harvested by the crawler includes

all the peers of the channel. At the beginning of the next crawling round, the crawling is restarted from a

fresh state. By investigating the peers on the aggregate peer list harvested in each crawling round, we are

able to determine the peer arrivals and departures. This may lead to some inaccuracy of determining the

exact peer arrival and departure time. However, this inaccuracy is constrained at the time granularity within

the minute level.

To study the start-up delay, we have collected traces for a number of live channels with different popularity

as shown in Table 2. The “x-star” popularity in the table is marked for each PPLive channel. This popularity

parameter is computed based on the peer statistics and is provided by the PPLive web site. We use it for a

reference of the channel popularity. It is not feasible to conduct extensive measurements on start-up delays by
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Table 1: Summary of sniffers and crawlers

IP Access location
Sniffer 128.238.88.50 campus New York

24.185.66.10/192.168.123.110 cable New York
143.89.47.138 campus Hong Kong
143.89.47.217 campus Hong Kong

Crawler 128.238.88.52 campus New York
143.89.47.160 campus Hong Kong

initiating multiple start-up processes manually. We instrument scripts to automate the PPLive experiments

to initiate multiple start-up sessions for the interested channels. The scripts initiate the PPLive client to

connect to one selected channel, keep it downloading video and connected to this channel for 5 minutes; then,

shut down the clients and remain silent for 20 minutes. This start-up on-off process is repeated for 20+ times

for each channel. We captured the incoming and outgoing traffic of the monitored peer. Therefore, for each

channel, 20+ start-up sessions are captured with traces. Based on our understanding of the PPLive protocol,

we successfully dissect different delay components of the start-up process of newly arrived PPLive peers in a

channel by tracing the PPLive signaling and video traffic. This traffic analysis of the captured traces shed

some light on the major portions of start-up delays.

Table 2: Summary of the monitored channels

channel name type popularity bit rate (kbps) chunk size (byte)
Hunan TV TV Live 4-star 381 4818
DragonTV TV Live 2-star 390 4793
Hubei TV TV Live 1-star 381 4818
TianjinTV TV Live 1-star 381 4793
DragonBall Cartoon 5-star 381 7239
Conan Cartoon 3-star 381 7239
VNETGX Cartoon 0-star 434 5369
PGLS3-SC Game show 4-star 400 4918
ROTK08-WAR3 Game show 4-star 400 4918
LuDingJi TV play series 4-star 381 7239
RedMansions TV play series 1-star 380 4669

4.2 Validation

We captured two types of the start-up traces: single start-up and multiple start-ups. For single start-up

experiments, we initiate one complete PPLive start up session manually in each experiment and capture the

traffic trace of the local peer. By studying the detailed signaling and video traffic messages between the

local peer and the other peer neighbors, we apply the delay dissection criteria and determine various delay

12



measurement values, t2, t3, t4, bn and cn.

As shown in Figure 8, we plot the start-up process that a peer with the IP address 143.89.47.138 joins two

channels respectively. The channel ROTK08-WAR3 is a popular game channel with the channel size around

1000 peers during the measurement period. The channel VNETGX is a unpopular cartoon channel with

the channel size around 20 peers. The green points in the figure indicate the time instants when this peer

appears first in the harvest peer list in each crawling round. Note that these green points are plotted for

the illustration purpose, in which the y-coordinates of these points are of no physical meaning and only their

x-coordinates show the meaningful time instants. The PPLive client was shutdown around 5 minutes after

the start-up. We can observe that when the client is connected to the PPLive network, this client remains in

the peer list crawling traces. After the client is terminated, this client no longer appears in the crawled IPs.

The signaling and video transport are carried using TCP and UDP in PPLive. As show in Figure 8, after

the PPLive client leaves the channel, the local peer still keeps receiving the UDP signaling messages for up

to around 20 minutes. These UDP messages usually carry the peer list information.
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Figure 8: Single start-up sessions

In Section 4.1, we set the off time period between two start-up sessions to be 20 minutes. Based on the

trace analysis of the single start-up sessions, this setting is configured to ensure that two consecutive start-up

sessions are not interfered with each other with signaling and video traffic. Similarly, the green points in the

figure indicate the time instants when this peer appears first in the harvest peer list in each crawling round,

as shown in Figure 9. These green points show a clear on-off client start-up pattern in our experiments.

We also evaluate the accuracy of estimating t5 using the BM playable video size bn in buffer maps. Using

our monitored peers, we manually recorded two types of start-up delays in PPLive: the delay from when one
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Figure 9: Multiple start-up sessions

channel is selected until the streaming player pops up; and the delay from when the player pops up until the

playback actually starts. As shown in Table 3, b50 is usually less than t5 and hence provides a conservative

estimation.

Table 3: Human validation on video playback of PPLive v1.0.9.6

channel name location channel player playback player popup player buffering b50

selection popup start delay (sec) delay (sec) (sec)
Hunan TV HK-Campus 23:43:23 23:44:17 23:45:19 54 116 70.79
ROTK08-WAR3 HK-Campus 23:12:15 23:13:07 23:14:52 52 157 86.29
LuDingJi HK-Campus 23:19:25 23:21:08 23:21:46 103 141 56.02
RedMansions HK-Campus 23:30:50 23:31:31 23:32:32 41 102 87.88

5 Start-up delay measurement results

In this section, we report the start-up delay measurement results on the single start-up sessions. We will

further correlate various network factors with the measured start-up delay in Section 6. In addition, we

also provide the measured delay statistics of automated multiple start-up sessions to have a more general

understanding of the start-up delay performance of PPLive.

5.1 Single start-up sessions

As tabulated in Table 4, the time to harvest the first peer list, t2, is usually very small (< 1 seconds); the

time to retrieve the first buffer map, t3, is at the time granularity of the second level; the time to download
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the first video chunk, t4, is also at the time granularity of the second level. We use cn and bn to estimate the

time duration to download a pre-specified number of video chunks, t5. As shown in Table 5 and 6, t5 is at the

time granularity of 10+ seconds. On the other hand, cn and bn only provide conservative estimates of t5. A

more accurate estimation of t5 is to re-construct the pre-buffering streaming process of the P2P engine based

on the chunk download process extracted from the traffic traces.

Table 4: Signaling delay in single start-up experiments

ID channel name location t2(sec) t3 (sec) t4 (sec)
1 Hunan TV HK-Campus 0.05 0.59 0.54
2 Hunan TV HK-Campus 0.00 2.97 1.77
5 DragonTV HK-Campus 0.00 1.95 16.40
6 TianjinTV HK-Campus 0.00 1.48 2.89
7 DragonBall HK-Campus 0.00 2.43 2.77
8 DragonBall HK-Campus 0.18 -0.15 0.18
9 Conan HK-Campus 0.03 0.81 0.47
10 VNETGX HK-Campus 0.00 1.47 2.75
11 VNETGX HK-Campus 0.26 -0.02 0.12
12 PGLS3-SC HK-Campus 0.00 2.43 2.42
13 ROTK08-WAR3 NY-Cable 0.00 3.02 2.30
14 ROTK08-WAR3 HK-Campus 0.15 -0.07 0.09
15 ROTK08-WAR3 HK-Campus 0.00 3.30 0.84
16 ROTK08-WAR3 HK-Campus 0.00 9.07 2.10
17 ROTK08-WAR3 HK-Campus 0.00 2.95 1.35
18 ROTK08-WAR3 HK-Campus 0.00 3.49 1.72
19 LuDingJi HK-Campus 0.03 0.08 1.14
20 LuDingJi HK-Campus 0.00 3.65 0.66
21 RedMansions HK-Campus 0.08 0.11 0.49

5.2 Multiple start-up sessions

In this sub-section, we further provide the comprehensive start-up delay statistics for a number of the mon-

itored channels with 20+ start-up sessions for each channel. In Table 7, we tabulate the average and the

standard deviation of the measurement delay components in the start-up process. The measurement results

in this table confirm again that major delay bottleneck is on the chunk download time for pre-buffering a

sufficient number of video chunks.

We also plot the cumulative density function (CDF) of these delay components in Figures 10, 11 and 12. We

can observe that the worst chunk download time for pre-buffering may reach over 100+ seconds. In Figure

10, the signaling delays, including harvesting peer list and downloading buffer maps, only contribute a small

portion of the total start-up delay. Nevertheless, these delays are still at the time granularity of seconds. If

P2P video streaming services are eventually able to compete with traditional television services, the start-up
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Table 5: Video pre-buffing time estimation for t5 by counting the downloaded chunks in single start-up
experiments

ID channel name location c10(sec) c50 (sec) c100 (sec)
1 HunanTV HK-Campus 2.62 9.42 13.43
2 HunanTV HK-Campus 1.32 5.81 10.99
3 HunanTV HK-Campus 0.51 2.63 5.84
4 DragonTV HK-Campus 2.62 9.47 16.09
6 TianjinTV HK-Campus 1.43 11.36 28.73
7 DragonBall HK-Campus 2.81 8.27 13.37
8 DragonBall HK-Campus 0.56 4.02 7.03
9 Conan HK-Campus 3.05 7.30 13.95
10 VNETGX HK-Campus 1.67 5.54 10.96
11 VNETGX HK-Campus 0.79 5.49 11.05
12 PGLS3-SC HK-Campus 0.89 5.81 10.80
13 ROTK08-WAR3 NY-Cable 0.87 3.49 5.08
14 ROTK08-WAR3 HK-Campus 2.75 8.96 15.30
15 ROTK08-WAR3 HK-Campus 1.06 5.69 10.44
16 ROTK08-WAR3 HK-Campus 5.39 20.12 43.23
17 ROTK08-WAR3 HK-Campus 1.51 9.66 15.31
18 ROTK08-WAR3 HK-Campus 5.76 11.04 15.40
19 LuDingJi HK-Campus 2.83 10.66 19.22
20 LuDingJi HK-Campus 3.31 9.11 19.43
21 RedMansions HK-Campus 2.11 9.25 18.13
22 RedMansions HK-Campus 0.58 4.60 9.22

delay should strive to be less than a few seconds in order to achieve similar video surfing experiences.

Based on these measurement results, the chunk pre-buffering time appears to the major delay bottleneck in

the PPLive start-up process. Nevertheless, it remains unclear whether the peers in the initial harvest peer

lists are “good peers”, in that they are able to provide useful video chunks for the local peer to download.

It may take a long time for those “good peers”. In the next section, we will analyze the captured traces to

evaluate the quality of the peer neighbors and provide a quantitative illustration on the search delay for these

peers.

6 Understanding start-up delay of PPLive

In this section, we analyze the signaling traffic and the download process of PPLive video chunks of a campus

peer in a popular channel PGLS3-SC in order to understand the reasons of the long start-up delays of PPLive

clients. First, we will evaluate the signaling efficiency of harvesting peer lists of PPLive clients using some

gossip protocol, then assess the promptness of the video chunk buffering process of PPLive peers and finally

review the video chunk download performance of peer neighbors. To assist the discussions, we set the time
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Table 6: Video pre-buffing time estimation for t5 using buffer maps in single start-up experiments

ID channel name location b10(sec) b50 (sec) b100 (sec)
1 HunanTV HK-Campus 77.82 77.82 77.82
2 HunanTV HK-Campus 8.29 70.29 178.26
3 HunanTV HK-Campus 3.79 58.74 58.74
4 DragonTV HK-Campus 24.76 31.77 65.17
5 DragonTV HK-Campus 27.66 27.66 27.66
6 TianjinTV HK-Campus 3.70 73.71 101.68
9 Conan HK-Campus 20.70 122.42 122.42
10 VNETGX HK-Campus 5.81 21.80 116.84
11 VNETGX HK-Campus 7.68 64.58 64.58
12 PGLS3-SC HK-Campus 13.17 58.23 184.15
13 ROTK08-WAR3 NY-Cable 5.69 73.67 87.67
14 ROTK08-WAR3 HK-Campus 71.82 191.82 191.82
15 ROTK08-WAR3 HK-Campus 4.88 98.90 117.86
16 ROTK08-WAR3 HK-Campus 18.91 74.88 74.88
18 ROTK08-WAR3 HK-Campus 72.80 85.79 85.79
19 LuDingJi HK-Campus 72.79 88.50 88.50
20 LuDingJi HK-Campus 55.96 55.96 55.96
22 RedMansions HK-Campus 10.83 87.80 94.12

zero as the sending time of the channel registration message of the local peer in the figures in this section.

In Section 5, we have conjectured that the long video buffering delay is mainly due to the difficulty for the

local PPLive client to locate “good” video peers, from which the local peer is able to download video chunks

with high rates. We start with an evaluation on the peer quality of the peer list harvested by the local peer.

The peer quality is used to quantify whether a peer neighbor is able to provide a high video download rate

for the local peer. As we shown in Section 2, after a user starts the PPLive client software, the local peer first

harvests an initial peer list from the tracker server and contacts the peers on this initial list for more peer

lists using some gossip protocol recursively; then, it retrieves buffer maps from these peer neighbors; finally, it

Table 7: Start-up delay statistics of multiple start-up sessions across channels

channel name t2 t2 t3 t3 t4 t4 b50 b50

avg std avg std avg std avg std
HunanTV 0.023 0.041 2.49 2.15 0.60 1.91 68.4 42.7
Hubei TV 0.061 0.097 1.94 1.76 0.90 0.96 64.1 53.3
DragonTV 0.094 0.15 1.66 1.50 1.01 1.04 58.3 44.7
TianjinTV 0.21 0.44 1.58 1.73 0.76 0.86 58.1 49.2
DragonBall 0.33 0.099 2.32 1.43 1.40 1.22 42.7 52.3
Conan 0.029 0.053 1.74 1.55 1.05 1.11 55.7 42.6
VNETGX 0.062 0.11 1.38 1.26 1.07 1.11 28.3 39.2
ROTK08-WAR3 0.065 0.27 1.91 1.60 0.97 1.04 83.5 40.1
LuDingJi 0.056 0.12 2.03 1.51 1.04 0.97 69.4 69.0
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Figure 10: Delay component t2, t3 and t4 across all monitored channels
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Figure 11: Delay component c10, c50 and c100 across all monitored channels

starts download video chunks from some selected neighbors. As shown in Figure 13, we evaluate the signaling

efficiency of harvesting peers list in channel PGLS3-SC. The “all” curve is the aggregate harvested peer list

from the tracker server and the peer neighbors of the controlled peer in channel PGLS3-SC. Figure 13 shows

that a PPLive peer keeps harvesting peer lists from the PPLive network and the peer number of this aggregate

peer list increases quickly as the time increasing. Within 300 seconds, the total number of the harvested peers

may reach 1000+ for popular channels such as PGLS3-SC. These peers are the potential video chunk providers

for the local peer. PPLive clients utilize both UDP and TCP to exchange peer information. The “UDP send”

curve indicates the number of peers, to which the local peer sends UDP signaling packets. The “UDP receive”

curve shows the number of peers, from which the local peer receives UDP signaling packets. We can observe

a large gap between the “UDP send” curve and the “UDP receive” curve, in particularly at the beginning
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Figure 12: Delay component b10, b50 and b100 across all monitored channels

of the start up process. This gap implies that the peers on the harvested peer list may not be very updated

in that many peers may have already departed from the network; therefore, the local peer contacts a large

number of peers using UDP, only a small percentage of the peers respond. Another possible reason of this

small peer response ratio is due to the network address translation (NAT) traversal issue in that UDP packets

are blocked by NAT servers or firewall servers. Nevertheless, as the time increases at 300 seconds, the gap

between the “UDP send” curve and the “UDP receive” curve becomes quite small. This is a good indication

that NAT traversal may not be a significant problem for the PPLive network. Instead, it just takes a long

time for the local peer to discover a sufficiently large number of peers for video download. PPLive clients also

utilize TCP to exchange peer lists and accomplish other signaling functions. The “TCP send” curve plots the

number of peers, to which the local peer sends TCP signaling segments. The “TCP receive” curve shows the

number of peers, from which the local peer receives TCP signaling segments. Unlike UDP, the gap between

the “TCP send” curve and the “TCP receive” curve is very small due to the fact that TCP is a connection-

oriented protocol, in which either end-point can initiates the connection and utilize the same connection for

exchanging signaling segments. Nevertheless, the existence of the gap between the “TCP send” curve and the

“TCP receive” curve indicates that some peers are solely the receivers of TCP signaling segments.

We further classify the peers on the harvested peer list into different types. Figure 14 shows the process for

the local peer to locate video peers in channel PGLS3-SC. The “server” curve shows the number of peers on

the aggregate harvested peer list retrieved from the tracker server. The “neighbor” curve shows the number

of peers on the aggregate harvested peer list retrieved from peer neighbors. We can see that at the beginning

of the start-up process, the local peers harvested 100+ peers from the tracker server and the major harvested

peers are retrieved from the peer neighbors using some gossip protocol. The “buffermap” curve shows the
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Figure 13: Signaling efficiency of harvesting peers list in channel PGLS3-SC

number of peers, which send buffer maps to the local peer. The “chunk” curve shows the number of peers,

which send video chunks to the local peer. It appears that PPLive clients contact dozens of peers and harvest

a sufficient number of buffer maps before it starts to download video chunks. These buffer maps provide a

clear picture about the video chunk availability in the caches of the peer neighbors; hence, the local peer may

crank out a good starting point to download video chunks. Nevertheless, in Figure 14, the local peer appears

not to be able to locate good video peers quickly. At t = 50 seconds, the local peer only downloads video

chunks from only 3 peers. At t = 150 seconds, the video peers only increases to 4.
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Figure 14: Locate video peers in channel PGLS3-SC

The number of video peers increase slowly in the start-up process. Their contribution of video chunk download

also differs significantly. We use the following criterion to characterize the peer quality in terms of its video

chunk download performance. Given m video peers and n video chunks, the average chunk download per

peer is n/m. Denote the number of download chunk from peer i as di. If di > n/m, we classify peer i as

a “good” video peer. Figure 15 demonstrates the difficulty that the local peer finds good video peers. In
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Figure 15, the “active peer” curve shows the number of peers, to/from which the local exchange signaling

packets or video traffic. The number of active peers increases to 100+ within just a few seconds; however,

the local peer can only contact a very small number of peers for video download. An even smaller number of

peers download more chunks than the average chunk download per peer so as to stand out as a “good” video

peer. In particular, at around t = 175 seconds, t = 200 seconds and t = 248 seconds, only 1 peer contributes

significantly larger downloads than other peers.
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Figure 15: Chunk download from peers in channel PGLS3-SC

PPLive peers download video chunks from multiple peers in order to sustain a sufficient high download rate

for video playback. However, the contribution of the peers may differ significantly. Figure 16 shows the peer

download performance of a campus peer in channel PGLS3-SC. The “top n” curve is the aggregate chunk

download ratio of the total download for the peer with the largest n chunk download volume up to time t.

For this campus peer in Figure 16, one peer neighbor contributes the total chunk download for the first 20

seconds after the peer starts up. Up to 150 seconds, the top 3 peers contribute over 80% of the total chunk

download.

Figure 17 shows the video download rate of a campus peer in channel PGLS3-SC. The instant rate is computed

with the time average interval of 1 second. The cumulative rate is computed as the ratio between the total

chunk download and the total download time t. We observe that after t = 50 seconds, the local peer is able

to achieve quite a stable high download rate. It is a good indication that the local peer can achieve a smooth

video playback. This is also consistent with b50 = 58.23 seconds of channel PGLS3-SC in Table 6. In Table 2,

for channel PGLS3-SC, the media playback bit rate is 400 kbps and the chunk size is 4918 bytes; the required

chunk download rate for smooth video playback should be at r = 400 · 1000/(4918 · 8) chunks/sec = 10.2

chunks/sec. The instant rate and the cumulative rate of the video download tends to be larger than this

nominal playback rate. This is counter intuitive; nevertheless, a closer examination of the downloaded video
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Figure 16: Peer download performance in channel PGLS3-SC

chunks leads to the finding that PPLive clients may download duplicate video chunks during the start-up

process.
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Figure 17: Video download rate in channel PGLS3-SC

We apply the video start-up heuristic in that the video playback starts at b50. Table 8 shows the download

chunk statistics at the time of b50 for each channel. As discussed in Section 2, each chunk is associated with

a unique increasing chunk ID. We trace the IDs of the downloaded chunks and find that there exist a large

number of duplicate download chunks. In Table 8, at the time of b50 for channel PGLS3-SC, we recorded a

total 684 downloaded chunks, in which 104 chunks have duplicate chunk IDs with one or more chunks. Hence,

the chunks with unique IDs is only 580. We also observe that the BM video size is 88, which can be played

back continuously. However, the total buffered video chunks already reach 579. It appears that PPLive clients

apply conservative buffering strategies in that they download more chunks than the required pre-buffering

video size. Considering the total buffer size is 1488, the number of chunk holes in the buffers may still be

quite large. In Table 8, we also count the number of video chunks with the ID value smaller than the offset of
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the buffer map at the time b50. Because these chunks are not included in the buffer maps, we consider them

as dropped chunks by the local peer before the playback. Note that in our traced chunks, we find that some

chunks have chunk IDs, which are largely away from the ID range of the other chunks. We consider these

chunks as errors chunks and exclude them in our analysis. We conjecture that there may be two reasons for

the existence of the error chunk IDs. One is due to the possible software bugs in the PPLive client and the

chunk IDs is labeled incorrectly when these chunks are sent out. The other may be due to a false video chunk

tracing of our PPLive traffic analyzer. Nevertheless, the number of error chunks remains small or even zero

across channels. Our analysis results may not deviate too much due to these error chunks.

Table 8: Download chunk statistics at the time of b50

ID channel total effective duplicate dropped error buffered buffer BM video
name chunk chunk chunk chunk chunk chunk size size

1 HunanTV 1670 1422 248 69 4 1349 1440 113
2 HunanTV 796 683 113 1 4 678 1440 51
4 DragonTV 259 250 9 1 7 242 904 51
6 TianjinTV 252 240 12 60 1 179 1144 64
7 DragonBall 1178 1005 173 1 0 1004 1864 56
9 Conan 1190 855 335 1 7 847 1120 112
10 VNETGX 199 176 23 1 0 175 984 62
11 VNETGX 579 549 30 1 0 548 1024 128
12 PGLS3-SC 684 580 104 1 0 579 1488 88
13 ROTK08-WAR3 1647 1418 229 39 0 1379 1424 72
14 ROTK08-WAR3 2689 2112 577 702 3 1407 1448 197
15 ROTK08-WAR3 1420 1094 326 156 0 938 976 85
17 ROTK08-WAR3 1968 1640 328 507 1 1132 1584 160
18 ROTK08-WAR3 1004 819 185 154 2 663 1304 384
19 LuDingJi 480 418 62 61 8 349 624 120
20 LuDingJi 477 388 89 0 0 388 840 120
22 RedMansions 1195 910 285 158 3 749 1272 96

7 Reducing start-up delay of P2P streaming systems

In this section, we provide an overview on various possible approaches to reduce the start-up delay of P2P

streaming systems. The measurement results in Section 5 and the analysis in Section 6 show long start-up

delays and the delay bottleneck is on finding “good peers” for streaming video content for the local peer.

These peers may not be in the initial peer list. The baseline solution is to download chunks from the servers

after each start-up and each channel switch, until the local peer finds satisfactory peers, and then offload

from the servers. To be cost-effective, it is crucial that service providers detect quickly when the service

quality degrades, so that they can add, retroactively and dynamically, additional uploading capacity. When
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the service quality is satisfactory, the infrastructure capacity can be released for other purposes. A more

cost-effective approach is to download initial chunks from stable super peers, which stick to the channel. The

percentage of these stable super peers in the P2P streaming networks may vary significantly; however, they

have been playing important role in contribute significantly to video data uploading [9, 19]. In the current

mesh-pull streaming systems, these super-peers usually evolve passively. If new P2P streaming systems initiate

proactive actions in identifying these nodes and move more network functions onto these nodes, the system

performance may be improved significantly including reducing the start-up delay.

As discussed in Section 2, the current P2P streaming systems usually support many video channels. Those

peers, who are interested in the same video content, join the same channel for cooperative video streaming.

The peers are managed and cooperated on a channel-basis. Peers of different channels will not help each

other in signaling and video traffic transport. Therefore, the breakdown of one channel will not interfere with

another channel. Nevertheless, in this multi-channel case, common control overlays may be very effective to

manage the peers across the channels in providing high-quality peer and video chunk information; hence, the

start-up delay can be reduced considerably.

Another avenue in reducing start-up delay is on the system architecture. Unlike mesh-pull systems, tree-push

systems have smaller delay performance when the tree structure does not break down due to peer churn and

peers at the higher level of the tree have sufficient upload capacity to support the streaming of their children

peers. The debate on whether mesh-pull or tree-push is more suitable for IPTV is still on-going [20] [21]. The

architecture design tradeoffs will impact various system characteristics significantly [22], i.e., system resilience

and signaling overhead, etc.. Video can also be divided into chunks and be delivered via tree-push systems.

Before the chunk delivery starts, the single/multiple-tree structure is established and the chunks are just

forwarded from the root of the tree at the video source, to the different level of tree hierarchy. There are no

further communication overhead for the subsequent chunk delivery unless the trees have to be repaired due

to the departure of intermediate peers. Therefore, the delay performance in tree-push systems is in general

good when the trees are stable.

From the technology side, we may strive research efforts to minimize start-up delays for high-quality video

streaming services, another interesting direction is to optimize the streaming application to achieve satisfied

user experiences. In addressing noticeable start-up delay, some advertisement videos can be pre-cached on the

users’ side; when a user starts the streaming application, immediately these advertisement videos are played

back. During the playback of these commercials, videos are downloaded at the background. Therefore, users

experience zero start-up delay, while the video streaming service provider finds an avenue to obtain revenues.

Another possibility is to provide multiple videos with different bit rates for the same channel. If dedicated
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servers are deployed, they can be used to provide the low-quality video, and the P2P delivery architecture

is utilized to transfer the high-quality video. When a user joins the service, the P2P engine downloads the

low-quality video from the server to achieve a quick service initiation; then, the engine downloads the high-

quality video from other peers. Technologies may provide the foundation of the video streaming application;

nevertheless, a deep psychological understanding on user behaviors and expectations are helpful in optimizing

the application to maximize the user viewing experience.

8 Conclusion and future work

In this paper, we conducted an in-depth measurement study on characterizing the start-up delay performance

of a popular mesh-pull streaming system, PPLive. Our measurement results show that the current state-of-the-

art of mesh-pull P2P streaming technology does not provide users with the same channel-surfing experience as

traditional television services. We dissect the start-up delay and correlate various factors with the measured

start-up delay components in order to reveal the major delay bottleneck. We find that the major reason of

the long start-up delay is due to the slow speed in finding “good” video peers for the local peer to download

video contents.

As discussed in Section 7, infrastructured servers and super-peers may be very helpful in reducing start-up

delay. The core research issue is to characterize how much load is imposed on the servers, given an aggregate

start-up delay (across all users). We are interested in evaluating the feasibility of this approach. In particular,

based on the peer crawling traces, we will examine the existence of stable super peers; then, examine the

usage of those super peers in the system using trace-driven simulations.

We also intend to explore the possible new mesh-pull schemes to release the delay bottleneck and eventually

to improve the delay performance. This mesh-pull scheme enjoys the signaling simplicity and performs as

well as in terms of delay as those proposed push-pull schemes. We will compare the proposed mesh-pull

scheme with some of the existing push-pull schemes. The comparison study is conducted via trace-driven

simulations. A trace-driven simulation study may provide a common evaluation platform to examine the

architecture design tradeoff on the delay performance. We developed a trace-driven simulator based on the

P2P streaming simulator reported in [21] with the PPLive traces serving as the input of the simulator, in

order to capture the impact of real P2P workload on the start-up delay performance.
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